Чернавский С.А. Курсовое проектирование деталей машин - файл n1.doc. Устройство червячных редукторов

Редукторы и мотор-редукторы служат для понижения частоты вращения выходного вала. В мотор-редукторах предусмотрены различные способы крепления фланцевого электродвигателя к корпусу редуктора.

Редуктор с нижним расположением червяка

Для сборки редуктора в его цельном корпусе предусмотрены отверстия. Червяк нарезан на входном валу, на который с натягом посажены подшипники. Одна опора вала зафиксирована от осевых смещений и представляет собой комбинацию двух роликовых радиально-упорных конических подшипников, вторая опора является плавающей в осевом направлении. Опоры вместе со стаканом вставлены в корпус слева направо. Под крышкой стакана имеется набор металлических прокладок для регулировки осевой игры такиех подшипников. Гайка на конце вала червяка служит для закрепления такиех подшипников и передачи осевой силы, возникающей в червячном зацеплении. На выходном валу установлены с натягом червячное колесо и роликовые радиально-упорные конические подшипники по схеме враспор. Вал в сборе с червячным колесом и подшипниками вставлен в корпус. Подшипники и червячное зацепление регулируют с помощью набора металлических прокладок, находящихся под крышками опор вала червячного колеса.

Редуктор червячный универсальный

Возможны два варианта сборки корпуса такого редуктора: с верхним или нижним положением червяка относительно червячного колеса. Червяк нарезан на входном валу, на который с натягом посажены роликовые радиальноупорные конические подшипники, установленные враспор. Входной вал вставлен через отверстие в корпусе. Для регулировки подшипников в осевом направлении под крышками опор входного вала предусмотрены наборы металлических прокладок.
Корпус редуктора имеет разъем по оси выходного вала, благодаря чему возможна установка этого вала с заранее посаженными на него с натягом червячным колесом и радиально-упорными коническими подшипниками. Для регулировки подшипников и червячного зацепления предусмотрен набор металлических прокладок под крышками опор вала червячного колеса.


Мотор-редуктор с верхним расположением червяка

Для сборки предусмотрено отверстие в цельном корпусе редуктора, к которому через переходный стакан-крышку прикреплен фланцевый электродвигатель. Вал электродвигателя соединен с входным валом редуктора упругой компенсирующей муфтой. Червяк нарезан на входном валу, на котором с натягом посажены роликовые радиально-упорные конические подшипники по схеме враспор. «Осевую игру» подшипников регулируют набором металлических прокладок под крышкой и под стаканом-крышкой опор входного вала. На выходной вал установлены с натягом червячное колесо и роликовые радиально-упорные конические подшипники по схеме враспор. Собранный выходной вал вставлен в корпус через отверстия и закрыт большими боковыми крышками. Для регулировки подшипников и червячного зацепления имеется набор металлических прокладок под малыми крышками опор вала червячного колеса.




Редуктор цилиндро-червячный

Двухступенчатый редуктор имеет быстроходную цилиндрическую и тихоходную червячную передачи. Последовательность сборки редуктора следующая. Через отверстие в корпусе вставляют промежуточный вал, на котором нарезан червяк и с натягом посажены подшипники правой опоры, зафиксированной от осевых смещений. Опора состоит из двух роликовых радиально-упорных конических подшипников, установленных в стакане. Далее на промежуточный вал надевают колесо цилиндрической косозубой передачи, плавающую опору промежуточного вала и радиальный роликовый подшипник с короткими роликами. Быстроходный вал-шестерню с нарезанным червяком и насаженными с натягом шариковыми радиальными подшипниками предварительно устанав­ливают в съемный стакан-крышку. Затем через отверстие в корпусе вводят в зацепление с цилиндрическим колесом консольную шестерню быстроходного вала и прикрепляют стакан-крышку к корпусу. Левую опору вала фиксируют от осевых перемещений кольцом и тремя установочными винтами с одной стороны и крышкой с другой. Правая опора вала является плавающей в осевом направлении. Тихоходный вал с насаженными на него с натягом червячным колесом и роликовыми радиально-упорными коническими подшипниками (в корпусе они поставлены враспор) устанавливают в плоскости разъема корпуса редуктора, проходящей по оси этого вала, и закрывают крышкой. Регулировку сначала подшипников, а затем и червячного зацепления осуществляют набором металлических прокладок под крышками опор вала червячного колеса. Для регулировки подшипников фиксированной опоры промежуточного вала служит набор металлических прокладок под крышкой стакана.




Мотор-редуктор цилиндро-червячный

Двухступенчатый редуктор имеет быстроходную цилиндрическую косозубую передачу и тихоходную червячную. Сборку начинают с промежуточного вала, вставляя его слева направо через отверстие в корпусе редуктора. На промежуточном валу нарезан червяк, с натягом посажены подшипники. Левая опора зафиксирована от осевых смещении и состоит из двух роликовых радиально-упорных конических подшипников, установленных в стакане и закрепленных на валу концевой шайбой. Эта шайба служит для передачи осевой силы, возникающей в червячном или зубчатом зацеплении. Плавающая в осевом направлении правая опора вала — шариковый радиальный подшипник. Его устанавливают в промежуточной перегородке корпуса редуктора. Затем на промежуточный вал надевают зубчатое колесо быстроходной цилиндрической передачи и закрепляют концевой шайбой. Выходной вал с установленными на нем с натягом червячным колесом и роликовыми радиально-упорными коническими подшипниками (в корпусе они поставлены враспор) располагают в плоскости разъема корпуса, проходящей по оси этого вала, и закрывают крышкой. Шестерню быстроходной передачи закрепляют на валу фланцевого электродвигателя, который затем присоединяют к боковой крышке корпуса, и вводят в зацепление с цилиндрическим колесом.

Для регулировки подшипников и червячного зацепления применяют набор металлических прокладок, расположенных под крышками опор вала червячного колеса. Подшипники фиксированной опоры промежуточного вала регулируют набором металлических прокладок под крышкой стакана.




Редуктор двухступенчатый червячный

Сборку осуществляют через отверстия в цельном корпусе редуктора. На промежуточный вал с нарезанным червяком посажены с натягом червячное колесо быстроходной червячной передачи и подшипники. Правая опора зафиксирована от осевых смещений и является комбинацией двух роликовых радиально-упорных конических подшипников, закрепленных на валу гайкой и установленных в стакане. Гайка служит таже для передачи осевых сил. Левая опора промежуточного вала (роликовый радиальный подшипник с короткими роликами) является плавающей в осевом направлении. Быстроходный вал с нарезанными червяком и насаженными с натягом роликовыми радиально-упорными подшипниками по схеме враспор вставляют через отверстие в корпус. Для зацепления червяка с быстроходным колесом левая опора вала имеет стакан, который устанавливают после зацепления червяка с колесом. Выходной вал редуктора с насаженными на него с натягом тихоходным червячным колесом и подшипниками вставляют через отверстие в корпусе и закрывают крышкой.
Для регулировки поставленных враспор подшипников и тихоходного червячного зацепления применяют набор металлических прокладок, расположенных под малыми крышками опор выходного вала. Конические подшипники промежуточного вала регулируют набором металлических прокладок под крышкой стакана, а быстроходное червячное зацепление — набором металлических прокладок под фланцем стакана промежуточного вала.

Наибольшее распространение получили одноступенчатые червячные редукторы. По относительному расположению червяка и червячного колеса различают три основные схемы червячных редукторов: с нижним (рис. 1.а), верхним (рис.1.б) и боковым (рис.1.в,г) расположением червяка.

Рис. 1. Схемы червячных редукторов

Редукторы общемашиностроительного применения с межосевым расстоянием от 40 до 500мм изготавливаются обычно двух типов: с червяком под колесом - РЧП и над колесом - РЧН.



Корпусы относительно небольших червячных редукторов с межосевым расстоянием до 100мм. изготавливают чаще всего без разъёма (тип РЧУ40….РЧУ100). Редукторы с межосевым расстоянием 125мм. и более имеют обычно корпуса с разъёмом по оси червячного колеса (рис.2).

Рис. 2. Редуктор червячный с верхним расположением червяка

Основные детали на рис. 2: 1 -корпус; 2-крышка корпуса; 3-червячное колесо; 4,20 - крышки подшипника сквозные; 5 - червяк; 11,16 - подшипники; 13 - крышка смотрового люка; 21 - вал тихоходный; 23 - штифт;24 - шуп маслоуказателя; 26 - сливная пробка; 9,17 - набор прокладок.

В червячных редукторах для опор валов применяют, как правило, подшипники качения. В редукторах с межосевым расстоянием до 160мм. червяки устанавливают обычно в радиально-упорных подшипниках по одному в каждой опоре (установка "враспор" - см. рис.2). При межосевых расстояниях более 200мм. в одной из опор червяка ставят два радиально- упорных подшипника, воспринимающих осевую нагрузку в обоих направлениях, а в другой опоре плавающий радиальный подшипник. Для опор вала колеса используют обычно по одному радиально-упорному подшипнику с каждой стороны, которые устанавливают "враспор". Внутренние кольца подшипников ставят на валы с натягом для предотвращения проворачивания кольца на шейке вала, а наружные ставят в корпус редуктора по переходной посадке или с минимальным зазором для выполнения осевой регулировки подшипников и регулировки зацепления по пятну контакта.

Основной способ смазки червячного зацепления - окунание червяка или колеса в масляную ванну картера редуктора. Масляная ванна должна иметь достаточную ёмкость во избежание быстрого старения масла и перемещения продуктов износа и осадков в зацепление и опоры валов. При нижнем расположении червяка уровень масла обычно назначают из условия полного погружения витков червяка. Уровень масла при верхнем расположении червяка назначают из условия полного погружения зуба червячного колеса.

В быстроходных червячных редукторах большой мощности применяют циркуляционную смазку. Для контроля уровня масла применяют маслоуказатели. Для заливки масла и контроля пятна контакта используют смотровой лючок (рис.2.) или верхнюю крышку редуктора. В нижней части корпуса редуктора устанавливают пробку для слива масла. Через отдушину на крышке смотрового лючка в редукторах типа РЧН или РЧП выравнивают давление воздуха внутри корпуса редуктора по отношению к наружному. В редукторах типа РЧУ для этой цели предусматривается отверстие в щупе маслоуказателя.

Для устранения утечек масла и попадания внутрь редуктора пыли и грязи в сквозных крышках опор редуктора устанавливают уплотнения. Наиболее часто применяют уплотнения манжетного типа.

Материал основных деталей редуктора

Крышку и корпус редукторов обычно изготавливают из серого чугуна или из алюминиевого сплава АЛ-3.

Червяк изготавливают из конструкционных марок сталей (сталь 45, сталь 40, сталь 20, сталь20Х) для малонагруженных редукторов и из легированных марок сталей (сталь 40ХН, сталь 34ХН1М, сталь 38ХГН, сталь 5ХНВ…) для тяжелонагруженных редукторов. Червяки, как правило, подвергают общей термообработке 260-290 НВ или общей термообработке 230-260 НВ и поверхностной закалке зубьев 42-48 HRC. Последний вариант более предпочтителен, но после поверхностной закалки необходима шлифовка на специальных станках. Червяки из малоуглеродистых марок сталей (20, 20Х, 20ХГ) подвергают цементации с последующей поверхностной закалкой.

С целью снижения коэффициента трения и предотвращения заедания зацепления червячные колёса изготавливают, как правило, из бронзы БрАЖ9-4Л, БрОФ10-1 и др. Реже их выполняют из чугуна, из антифрикционных алюминиевых сплавов и из пластмасс. При изготовлении колёс диаметром более 150-200мм. в целях экономии из бронзы изготавливают лишь зубчатый венец, а диск колеса из чугуна или углеродистой стали. Способов сочленения венца с диском много, но наиболее распространённые это заливка венца непосредственно на предварительно рифлёный диск колеса или посадка венца на диск с натягом и установка резьбовых гужонов по поверхности сочленения.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

НОВГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ ЯРОСЛАВА МУДРОГО

Кузнецов Н.П.

ИЗУЧЕНИЕ КОНСТРУКЦИИ, РАБОТЫ И ОПРЕДЕЛЕНИЕ НАГРУЗОЧНОЙ СПОСОБНОСТИ ЧЕРВЯЧНЫХ РЕДУКТОРОВ

Методические указания к лабораторной работе

ВЕЛИКИЙ НОВГОРОД

Печатается по решению РИС НовГУ

Р е ц е н з е н т кандидат технических наук, доцент Е. И. Никитин

Кузнецов Н.П.

К93 Изучение конструкции, работы и определение нагрузочной способности червячных редукторов: Метод. указ. к лабораторной работе по ДМ и ОК /Авт. – сост. Кузнецов Н.П.; НовГУ им. Ярослава Мудрого. - Великий Новгород, 2012. – 23 с.

Рассмотрены устройство, конструктивные особенности, геометрические параметры, оценка несущей способности односиупенчатогочервячного редуктора общего назначения.

Методические указания предназначены для студентов специальностей 151001.65 «Технология машиностроения» , 190601.65 «Автомобили и автомобильное хозяйство» , 110301.65 «Механизация сельского хозяйства», 150201.65 «Машины и технология обработки металлов давлением», 50502.65 «Технология и предпринимательство» всех форм обучения и студентов направлений 151900.62 «Конструкторско-технологическое обеспечение машиностроительных производств», 190600.62 «Эксплуатация транспортно-технологических машин и комплексов», 110800.62 «Агроинженерия», 140100.62 «Теплоэнергетика и теплотехника», 540500.62« Технологическое образование» .

УДК 621.81 ББК 34.445.1

© Новгородский государственный университет, 2012

© Н.П. Кузнецов, 2012

1. Цель работы

Ознакомиться с конструкцией червячного одноступенчатого редуктора и назначением его деталей;

определить геометрические параметры червячного зацепления путѐм их замера и расчѐта;

оценить нагрузочную способность редуктора;

оценить КПД червячного редуктора.

Лабораторная работа выполняется в течение 2-х часов. Внеаудиторная подготовка к работе включает в себя ознакомление с методическими указаниями и изучение соответствующих разделов курса деталей машин по конспектам лекций и указанной литературе.

2. Описание конструкции червячного редуктора

Червячный редуктор - это механизм, предназначенный для уменьшения угловой скорости и увеличения вращающего момента. Он состоит из одного или нескольких червячных передач, смонтированных в закрытом корпусе. В диапазоне передаточных чисел u = 8 – 80 , в основном, применяются одноступенчатые редукторы.

Червячная передача относится к зубчатовинтовым передачам, состоит из червяка 1 (рис.1), т.е. короткого винта с трапецеидальной или близкой к ней резьбой, и червячного колеса 2 с косыми зубьями дугообразной формы, охватывающими часть червяка. Она применяется для передачи вращательного движения между валами с перекрещивающимися осями от входного быстроходного вала червяка к выходному тихоходному валу червячного колеса.

Основным кинематическим параметром червячной передачи является пере-

даточное отношение u 12 :

где ω 1 ,ω 2 – угловые скорости;

n 1 ,n 2 – частоты вращения соответст-

венно червяка и колеса; z 2 – число зубьев червячного колеса,z 1 – число заходов червяка (число ниток резьбы винта червяка).

В машиностроении используются редукторы с различным расположением червяков: с нижним (при окружной скорости червяка до 4–5 м/с - рис.2.а;

с верхним - рис. 2.б; с боковым - рис.2.в и вертикальным рис.2.г.

В зависимости от формы внешней поверхности червяка передачи бывают с цилиндрическими (рис.1,а), глобоидными (рис.1.б). Каждый из них имеет свою технологию нарезания . Глобоидная передача характеризуется повышенным КПД и более высокой несущей способностью за счѐт увеличения длины линии контакта, но одновременно сложностью в изготовлении, сборке и большей

чувствительностью к осевому смещению червяка, вызываемому износом подшипников.

Рис.2. Варианты взаимного расположения червяка и колеса в червячном редукторе

По форме боковой поверхности витка передачи бывают трѐх типов: с архимедовым (ZA), конволютным (ZN) и эвольвентным (ZI) червяками. Выбор профиля червяка определяется технологическими соображениями. В машиностроении наиболее широко применяются архимедовы червяки. Для их изготовления не требуется специальных станков, но шлифование витков затруднено, т.к. требу-


ются шлифовальные круги фасонного профиля. Архимедовы червяки используют при твѐрдости материала НВ ≤ 350.

Эвольвентные и конволютные червяки применяют при высокой твѐрдости рабочих поверхностей (не менее 45HRC), т.к. шлифование их после термообработки не сопряжено с техническими трудностями.

Направление витков червяка может быть правое и левое. В основном испоьзуют червяки с правой нарезкой.

Основные геометрические параметры червячной передачи – модуль зацепления m , число заходов червякаz 1 и зубьев колесаz 2 , коэффициент диаметра червякаq , номинальное значение передаточного числаu ном и межосевое расстояниеa W регламентированы ГОСТ 2144.

В червячных передачах модуль m=p/π (здесьp – осевой шаг червяка). Для червяка этот модуль осевой, для колеса – торцевой. Наряду с шагом винта червяка для многозаходных червяков расматривают ход винта равный осевому перемещению точки профиля витка за один оборот:p h =p· z 1 . Делительный диаметр червякаd 1 =q·m . Коэффициент диаметра червякаq показывает сколько модулей составляют делительный диаметр червяка.

К основным размерам червячного колеса относятся: делительный диаметр d 2 = m· z 2 , диаметр вершинd а2 = m· (z 2 +2) , наибольший внешний диаметр венца колеса (диаметр заготовки)d аМ2 , условный угол обхвата2δ . (Рис.3)

Рис.3. Основные размеры червяка и венца червячного колеса

При работе передачи витки червяка скользят между зубьями колеса. Кроме того, в червячном зацеплении преобладает зона, неблагоприятная для гидроди-

намической смазки (скольжение происходит вдоль контактных линий, что затрудняет образование в кинематической паре масляного клина). В результате в зацеплении возникают большие силы трения, для уменьшения которых контактирующие поверхности звеньев передача изготавливается из антифрикционных материалов, уменьшающих абразивный износ и потери на трение. Плохие условия смазки приводят к опасности заедания (молекулярно-механического износа), зависящего от скорости скольжения витков червяка по зубьям колеса. Чем выше эта скорость, тем больше опасность заедания и тем больше должна быть разность в твердостях материалов, из которых изготавливаются червяк и колесо. Червяки в большинстве случаев выполняют заодно с валом из сталей 45 и 40Х с поверхностной закалкой до HRC 45...55.

Зубчатые венцы 1 червячного колеса (рис.4) изготовляют отдельно от чугунного или стального центра – ступицы 2. Выбор марки материала венца зависит от скорости скольжения и длительности работы. При Vs = 6...25м/с и длительной работе применяются оловянистые бронзы марок БрОФ10-1 и Бр.ОНФ10-1-1, при Vs =2...6 м/с применяют алюминиево-железистые бронзы Бр.АЖ9-4, при Vs < 2 м/с червячные колеса изготовляются целыми из серых чугунов марок СЧ 15-32, СЧ 18-36 и др.

Рис.4. Способы соединения зубчатого венца со ступицей колеса В машиностроении находят применение три типа конструкций червячных

колес: бандажированная (рис.4,а), болтовая (рис.4,б) и биметаллическая (рис.4в). Последняя конструкция является наиболее рациональной, и ее используют в редукторах серийного производства.

Конструктивное оформление червячных редукторов с нижним и верхним расположениями червяка показано на рис. 5 и 6. Корпус редуктора с нижним расположением червяка с целью облегчения сборки выполняется в виде разъемной коробки.

Он состоит из нижней части 1, которая и называется корпусом, и верхней части 2 – крышки. Корпус и крышка соединяются винтами 3. Взаимные положения крышки и корпуса фиксируются коническими штифтами 4 на рис.5.

Корпус 1 редуктора, показанного на рис. 6, выполнен цельным. Отверстия в корпусе позволяют свободную установку в нем вала 2 с насаженными деталями (червячным колесом 3, втулками, подшипниками 4). В верхней части корпуса имеется люк, через который заливается масло и производится наблюдение за состоянием зубьев колеса и витков червяка 5. Люк закрыт крышкой 6, имеющей отдушину 7, предназначенную для выравнивания давления внутри корпуса и снаружи, иначе нагретый воздух при эксплуатации редуктора выдавливался бы вместе с маслом вследствие избыточного давления через уплотнения, и на корпусе образовывались бы масляные подтеки. Опорами валов 2 и 5 редуктора являются подшипники качения 4 и 8. (роликовые радиальноупорные конические), удерживающие вращающиеся детали в нужном для правильной работы взаимном расположении.

При работе в червячном зацеплении возникает сила, которую можно представить тремя взаимно-перпендикулярными составляющими: окружнойF t , радиальнойF r и осевойF a силами (рис.7). Причѐм, окружная сила на червяке равна осевой силе на червячном колесеF t1 = F a2 . Радиальные силы на червяке и колесе равныF r1 = F r2 . Окружная сила на колесе равна осевой силе на червякеF t2 = F a1 . Все эти силы передаются на корпус и крышку через подшипники качения.

Червяки с небольшим расстоянием между опорами в передачах, ненапряженных в тепловом отношении, допускается устанавливать на радиальноупорных подшипниках по одному в опоре (установка враспор), как показано на рис.5 и 6. Если червяк имеет большое расстояние между опорами (обычно при межосевых расстояниях а

Рис.7. Силы, действующие в червячном зацеплении

Цель работы : изучить назначение и конструкцию червячных редукторов, определить геометрические, кинематические и энергетические параметры зацепления и редуктора, ознакомиться с конструкцией, особенностями регулировки зацепления, подшипников и их смазкой.

1. Общие сведения о конструкциях червячных редукторов

1.1. Характеристика червячных редукторов

Червячные редукторы предназначены для передачи вращения между перекрещивающимися валами с уменьшением угловых скоростей и увеличением вращающих моментов, когда ведущим является червяк. Реже вращающим может быть колесо, тогда угловая скорость увеличивается, а вращающий момент уменьшается. Червячная передача состоит из червяка и червячного колеса. Червяк является винтом, червячное колесо представляет собой разновидность косозубого колеса. Червячные передачи относят к категории зубчато-винтовых.

Рис. 1. Червячная передача.

Основными характеристиками редуктора являются передаточное число и вращающий момент на тихоходном валу.

Редукторы червячные одноступенчатые универсальные обдуваемые типа Ч обеспечивают передачу вращающих моментов =85…2000Н∙м в диапазоне передаточных чисел =8…80.

Промышленностью серийно выпускаются редукторы Ч-63, Ч-80, Ч-100, Ч-125, Ч-160. Буква Ч обозначает – редуктор червячный одноступенчатый, число – межосевое расстояние в мм.

Серийно выпускаются также и червячные универсальные двухступенчатые редукторы типа Ч2: Ч2-125; Ч2-160; числа – межосевые расстояния тихоходной ступени, которые обеспечивают передачу вращающих моментов на тихоходном валу =1300…2800Н∙м в диапазоне передаточных чисел =100…6300.

Достоинства червячных передач:

1) большие передаточные числа в одной ступени =8…80 в силовых передачах, до 1000 в приборах;

2) плавность и бесшумность работы;

3) высокая кинематическая точность в сравнении с зубчатыми передачами;

4) возможность передачи вращения между скрещивающимися валами;

5) возможность самоторможения.

Недостатки червячных передач:

1) низкий коэффициент полезного действия ( =0,4…0,9 для одноступенчатого редуктора) из-за значительного скольжения между поверхностями витков червяка и зубьев колеса;



2) сравнительно большие габариты передач, особенно при больших вращающих моментах вследствие значительно меньших величин допускаемых контактных напряжений;

3) необходимость применения дефицитных дорогостоящих сплавов цветных металлов для изготовления червячных колес.

1.2. Основные кинематические схемы червячных редукторов

Одноступенчатый горизонтальный (оси обоих валов горизонтальны) редуктор с нижним расположением червяка и скоростью его вращения до 4-5 м/с. При этом обеспечиваются хорошие условия смазки передачи окунанием червяка.
Одноступенчатый горизонтальный редуктор с верхним расположением червяка. Используется в быстроходных передачах во избежание излишних потерь на разбрызгивание масла быстроходным червяком.
Передача с вертикальным расположением вала червяка. Применяется в исключительных случаях, исходя из требований компоновки машины. При этом ухудшаются условия смазки подшипников вертикального вала.
Двухступенчатая передача для получения больших передаточных чисел (до 3600). Быстроходную пару целесообразно выполнить с верхним расположением червяка, а тихоходную – с нижним, что обеспечивает лучшие условия смазки.

1.2.1. Кинематический расчет

Передаточное отношение червячной передачи

Иными словами, передаточное отношение в червячной передаче, как и в зубчатой, численно равно передаточному числу . Так как число заходов червяка (число зубьев) , чего не может быть в зубчатой передаче, где =17, то в одной червячной паре можно получить передаточное число, значительно большее, чем в зубчатой, что является основным достоинством червячной передачи. При 2 минимальное число зубьев колеса по условию неподрезания = 2. В силовых передачах =8…80.


1.3. Конструкция одноступенчатого червячного редуктора


Рис. 2. Редуктор червячный одноступенчатый с вентилятором.

На рисунке 2 представлена конструкция одноступенчатого червячного редуктора с нижним расположением червяка с горизонтальной плоскостью разъема.

Оребренный корпус редуктора 1 болтами соединяется с крышкой 2, также имеющей ребра.

Вращающий момент от вала червяка 9 передается червячному колесу 12, а затем через шпоночное соединение тихоходному валу 13. Червячное колесо фиксируется от осевого перемещения по валу справа упорным буртиком вала, а слева – мазеудерживающим кольцом-втулкой 11.

Вал червяка фиксируется от осевого перемещения правой опорой с двумя радиально-упорными шарикоподшипниками, размещенными в стакане 5 – фиксирующая опора.

Левая опора вала-червяка с одним радиальным шарикоподшипником – плавающая.

Для смазывания червячного зацепления и одновременной защиты подшипников вала-червяка от попадания в них продуктов разрушения установлены брызговики-крыльчатки 8. На крышке редуктора для его транспортировки имеются проушины.

Лючок для заливки масла и осмотра зацепления закрыт крышкой-отдушиной 4.

Масло при его замене выливают через отверстие, закрытое пробкой 10 с резьбой с прокладкой из резиностойкой резины. Уровень масла замеряют маслоуказателем 14. Корпус обдувается вентилятором 6, закрытым кожухом 7.

1.4. Конструкции червяков и червячных колес

1.4.1. Червяки

Червяки обычно выполняют заодно целое с валом, но при большой разнице в диаметрах валов и червяков последние выполняют насадными.

По форме внешней поверхности червяки бывают цилиндрическими (рис. 3а), которые чаще используются, и глобоидными (рис. 3б).

Рис. 3. Типы червячных передач:

а – передача с цилиндрическим червяком;

б – передача с глобоидным червяком

Глобоидная передача имеет более высокий КПД, более надежна и долговечна, но из-за сложности изготовления имеет пока ограниченное применение.

Примером ее применения может служить рулевая колонка в автомобиле.

По числу заходов червяки бывают однозаходными и многозаходными ( - число заходов).

По направлению линии витка – с правым и левым направлением линии витка.

По форме винтовой поверхности резьбы цилиндрического червяка различают – архимедовы, конволютные и эвольвентные червяки.

Архимедов червяк в осевом сечении имеет прямолинейный профиль равнобедренной трапеции (рис. 4, а), аналогичный профилю инструментальной рейки. Угол между боковыми сторонами профиля витка у стандартных червяков . В торцовом сечении витки очерчены архимедовой спиралью.

Конволютные червяки имеют прямолинейный профиль в нормальном к витку сечении (рис. 4, б).

Эвольвентные червяки имеют эвольвентный профиль в торцовом сечении и, следовательно, подобны косозубым эвольвентным колесам, у которых число зубьев равно числу зубьев (заходов) червяка.

Наиболее распространены архимедовы червяки.


Рис. 4. Типы червяков: а - архимедов червяк;

б - конволютный червяк; в - эвольвентный червяк

1.4.2. Червячные колеса

Червячные колеса от цилиндрических косозубых зубчатых колес отличаются вогнутым профилем зубьев в осевом сечении. С целью экономии дорогостоящих сплавов цветных металлов колеса выполняют составными: центр из серого чугуна, иногда из стали, а зубчатый венец из бронзы или латуни. Для тихоходных малонагруженных передач при скорости скольжения используют относительно мягкие серые чугуны.

Зубчатые венцы с центрами соединяют посадкой с натягом и винтом (рис. 5, а); большие колеса (диаметр более 400 мм) без натяга только винтовым креплением. В крупносерийном и массовом производстве часто применяют заливку бронзового венца на чугунный или стальной центр (рис. 5, б), что позволяет снизить расход бронзы и латуни.


Рис. 5. Конструкции червячных колес.

1.4.3. Материалы червяков и червячных колес

В связи с большими скоростями скольжения и неблагоприятными условиями смазывания червячным передачам свойственно механическое изнашивание, заедание и задиры, поэтому материалы червяка и колеса должны составлять износостойкую антифрикционную пару с пониженной склонностью к заеданию и задирам.

Червяки изготавливают из углеродистых и легированных сталей. Архимедовы и конволютные червяки, шлифование витков которых вызывает затруднение, изготавливают из нормализованных или улучшенных сталей 40, 45Х, 40ХН и других с твердостью .

Нелинейчатые и эвольвентные червяки изготавливают из цементуемых сталей 20Х, 18ХГТ с твердостью , либо из среднеуглеродистых сталей 45, 40ХН, с поверхностной закалкой до твердости .

Материалы, применяемые для изготовления зубчатых венцов червячных колес, в зависимости от антифрикционных свойств в паре со стальным червяком условно делят на три группы.

I группа – оловянные бронзы типа Бр010Ф1, Бр010Н1Ф1 и другие используют при больших скоростях скольжения (). Они дороги и дефицитны.

II группа – безоловянные бронзы, например, алюминиево-железистые типа БрА9Ж4, БрА9Ж3Л, а также латуни, например, ЛЦ23А6Ж3Мц2 и другие обладают повышенными механическими характеристиками, но имеют пониженные противозадирные свойства. Их применяют в паре с твердыми (Н>45HRС э) шлифованными и полированными червяками для передач, у которых .

III группа – чугун серый (СЧ15, СЧ20) применяют при и в ручных приводах.

1.5. Основные геометрические параметры червяка, колеса и червячной передачи

Основным параметром передачи является осевой модуль червяка, который для колеса является торцовым:

где р – шаг резьбы (зацепления).

Делительный диаметр червяка – диаметр цилиндра, на котором толщина витка и ширина впадины равны по величине,

,

где - коэффициент диаметра червяка, величина стандартная (ГОСТ 2144-76). Чем меньше модуль , тем больший коэффициент диаметра червяка следует назначать, чтобы обеспечить жесткость червяка (табл. 2).

Для червячных цилиндрических передач ГОСТом 2144-76 регламентированы:

– длина нарезанной части червяка, ;

– делительные углы подъема винтовой линии червяка и наклона зубьев колеса (табл. 3);

– межосевые расстояния,

Таблица 1

Стандартные ряды межосевых расстояний , мм

1-й ряд 40; 50; 63; 80; 100; 125; 160; 200; 250; 315; 400; 500
2-й ряд 140; 180; 235; 280; 355; 450

Для нестандартных передач не обязательно придерживаться ГОСТа. Межосевые расстояния можно округлять и за счет некоторого отклонения передаточного отношения от стандартного (табл. 4), за счет изменения числа зубьев колеса .

Для нарезания червячных колес и со смещением и без смещения используют один и тот же инструмент. Червячная фреза и червяк должны иметь одинаковые размеры, поэтому он не имеет смещения (у червяка изменяется диаметр начальной окружности, она не совпадает с делительной), а со смещением нарезают только колеса. При заданном межосевом расстоянии коэффициент смещения инструмента:

.

По условию неподрезания и незаострения зубьев колеса: