Тепловые машины: основные части и принципы действия тепловых машин; коэффициент полезного действия тепловой машины и пути его повышения; проблемы энергетики и охрана окружающей среды. Принцип действия тепловых машин

Необходимые условия работы тепловых машин

Создание и развитие термодинамики было вызвано, прежде всего, необходимостью описания работы и расчёта параметров тепловых машин . Тепловые машины, или тепловые двигатели, предназначены для получения технической (полезной) работы за счёт тепла, выделяемого вследствие химических реакций (сгорание топлива), ядерных реакций или по другим причинам, например нагрева солнечной энергией.

Из рассмотрения основных принципов работы тепловых машин вне зависимости от их конструктивного исполнения следует, что непрерывное превращение тепловой энергии в механическую работу совершается в них при помощи вспомогательного тела , получившего название в термодинамике рабочего тела . Как было отмечено ранее, наиболее подходящими в качестве рабочих тел по своим физическим свойствам является газы и пары жидкостей, так как они характеризуются наибольшей способностью к изменению своих объёмов при изменении Р и Т .

Кроме того, работа этих машин возможна только при соблюдении двух непременных условий. Первое условие состоит в том, что любая тепловая машина должна работать циклично , то есть рабочее тело, совершая за определённый промежуток времени ряд процессов расширения и сжатия, должно возвращаться в исходное состояние. Этот цикл должен повторяться в течение всего периода работы машины, причём в зависимости от конструктивного исполнения тепловой машины отдельные части цикла могут осуществляться в разных её составных частях. При отсутствии цикла, например при любом процессе только расширения газа в рабочей камере (цилиндр двигателя внутреннего сгорания, каналы рабочих лопаток паровых и газовых турбин) тепловой машины, соответственно наступит момент, когда Р и Т рабочего тела станут равными с Р и Т окружающей среды, и на этом получение работы прекратится. В этом случае можно получить лишь ограниченное количество работы. Для повторного получения работы необходимо либо в процессе сжатия возвратить рабочее тело в первоначальное состояние, либо каким-то образом удалить из рабочей камеры отработанное рабочее тело и заполнить эту камеру новой порцией этого тела. С точки зрения термодинамического анализа работы тепловой машины вовсе не обязательно иметь дело с новыми порциями рабочего тела, так как для процесса преобразования тепловой энергии в механическую работу безразлично, остаётся ли в рабочей камера прежнее рабочее тело или вводится новое. Поэтому можно исходить из того, что в цилиндре тепловой машины находится одно и то же количество рабочего тела, которое, циклично проходя через ряд изменений своего состояния из начального в конечное и обратно, преобразует тепловую энергию в механическую работу.

v
P
v 2
v 1
Р 1
Р 2
q 1
q 2

Рис.6.6.1. Цикл тепловой машины

Рассмотрим круговой цикл тепловой машины, изображённый на рисунке. В процессе расширения рабочего тела по линии 1-3-2 к нему от источника тепловой энергии с температурой Т 1 , то есть от горячего источника тепла , подводится тепло в количестве q 1 . В результате имеет место дополнительное увеличение объёма рабочего тела. Таким образом, расширение рабочего тела осуществляется как за счёт снижения давления в рабочей камере, так и за счёт повышения его температуры. Однако для получения механической работы процесс расширения нагретого рабочего тела в рабочей камере должен осуществляться под определённым противодавлением со стороны подвижных поверхностей рабочей камеры. При этом получается положительная удельная механическая работа l 1 , а именно работа расширения рабочего тела, эквивалентна площади S 1-3-2-6-5-1 . При достижении точки 2 рабочее тело должно быть возвращено в первоначальное состояние, то есть в точку 1. Для этого нужно сжать рабочее тело.

Для того чтобы тепловая машина непрерывно производила механическую энергию, работа расширения рабочего тела должна быть больше работы его сжатия. Поэтому кривая сжатия 2-4-1 должна лежать ниже кривой расширения. Если процесс сжатия пойдёт по линии 2-3-1 , то никакой технической, то есть полезной, работы получено не будет, так как в этом случае будет l 1 = l 2 , где l 2 – отрицательная удельная работа сжатия рабочего тела. Поэтому для получения полезной работы необходимо в процессе расширения понизить давление рабочего тела за счёт отвода от него части тепла q 2 к источнику тепла с более низкой температурой Т 2 , то есть к холодному источнику тепла . Соответственно, l 2 эквивалентна площади S 2-4-1-5-6-2 . В результате каждый килограмм рабочего тела совершает за цикл полезную работу l ц , которая эквивалентна площади S 1-3-2-4-1 , ограниченной контуром цикла. Таким образом, для непрерывной работы тепловой машины необходим циклический процесс, в котором к рабочему телу от горячего источника подводится тепло q 1 и отводится от него к холодному источнику тепло q 2 . Наличие, по меньшей мере, двух источников тепла с разными температурами - горячего и холодного – является вторым необходимым условием работы тепловых машин .

Чрезвычайно важно подчеркнуть, что всё тепло q 1 , полученное рабочим телом от горячего источника, не может быть превращено в работу. Часть q 1 , то есть q 2 , обязательно должна быть отдана другому телу (телам) с более низкой температурой. В качестве такого тела может выступать атмосферный воздух, большой объём воды и тому подобное. Многочисленные попытки создать тепловую машину, в которой всё тепло q 1 превращалось бы в работу, то есть имело бы место равенство q 2 = 0, неизбежно оканчивались провалом. Такая машина, которая могла бы превращать всё подводимое к ней тепло в работу, получила название вечного двигателя второго рода , или перпетуум мобиле (perpetuum mobile ) второго рода . Весь накопленный наукой опытный материал говорит о том, что такой двигатель невозможен.

Ещё раз отметим, что наличие холодного источника тепла и передача ему части полученного от горячего источника тепла является обязательным, так как иначе работа тепловой машины невозможна. Действительно, для получения непрерывной механической работы необходимо наличие потока энергии, в данном случае потока тепла. Если же холодный источник будет отсутствовать, то рабочее тело неизбежно придёт в тепловое равновесие с горячим источником и поток тепла прекратится.

1-3-2 и 2-4-1 соответственно будет иметь вид:

q 1 = + Du + l 1 ;

Величины q 2 иl 2 необходимо брать по модулю, что позволит избежать путаницы со знаками у q 2 , так как уходящее из системы тепло имеет знак минус. Внутренняя энергия рабочего тела за цикл не должна изменяться, и поэтому перед Du в уравнениях проставлены прямо противоположные алгебраические знаки. Сложив эти уравнения, получим:

q 1 - |q 2 | = q ц = l 1 - ½l 2 ½ = l ц, (6.6.1)

где q ц - часть тепла горячего источника, превращаемая в цикле в работу; l ц – работа цикла 1-3-2-4-1 .

Так как в рассматриваемом случае l 1 > l 2 , то работа цикла положительна. Она, как показывает (6.6.1), равна разности подведённого и отведённого в цикле тепла.

Эффективность преобразования q 1 в l ц оценивается термическим (термодинамическим, тепловым) КПД цикла тепловой машины:

. (6.6.2)

Таким образом, термический КПД цикла тепловой машины есть отношение полученной в цикле полезной работы l ц ко всему введённому в рабочее тело теплу q 1 .

Цикл, состоящий из обратимых процессов, называется идеальным. При этом рабочее тело в таком цикле не должно подвергаться химическим изменениям. Если хотя бы один из процессов, входящих в состав цикла, будет необратимым, то цикл будет уже не идеальным. Для выполнения идеального цикла в тепловой машине (двигателе) должны полностью отсутствовать тепловые и механические потери. Такая машина получила название идеальной тепловой машины (идеального теплового двигателя).

Так как ½q 2 ½> 0, то h Т < 1,0, то есть КПД тепловой машины, даже идеальной, всегда будет меньше 1,0. Результаты исследований идеальных циклов могут быть перенесены на действительные, то есть необратимые, процессы реальных тепловых машин путём введения опытных поправочных коэффициентов.

Соотношение (6.6.2) является математическим выражением принципа эквивалентности тепловой и механической энергии. Если исключить из схемы тепловой машины холодный источник, то формально принцип эквивалентности не будет нарушен. Однако, как уже отмечалось выше, такая машина работать не будет.

Циклы, в результате которых получается положительная работа, то есть когда l 1 > l 2 , называются прямыми циклами , или циклами теплового двигателя . По этим циклам работают двигатели внутреннего сгорания, реактивные двигатели, газовые и паровые турбины и так далее.

Если цикл, изображённый на рис.6.6.1, представить протекающим в обратном направлении, то есть по замкнутой кривой 1-4-2-3-1 (см. рис. 6.6.2), то для его осуществления необходимо уже затратить работу l ц , которая будет уже отрицательной и эквивалентной площади S 1-4-2-3-1 . Охлаждаемым телом в такой машине является холодный источник тепла, а нагреваемым - окружающая среда, то есть горячий источник тепла. Такие циклы называются циклами холодильной машины, или холодильными (обратными) циклами.

Чтобы поддержать низкую температуру охлаждаемого тела, нужно непрерывно отводить от него тепло q 2 , которое поступает в рабочее тело от холодного источника. Этот отвод в холодильном цикле осуществляется в процессе 1-4-2 расширения рабочего тела, которое это тепло воспринимает и совершает при этом положительную работу l 2 , эквивалентную площади
S 1-4-2-6-5-1 . Возврат рабочего тела в исходное состояние происходит в процессе сжатия по кривой 2-3-1 , расположенной над кривой процесса расширения, то есть в процессе, происходящем при более высоких температурных условиях. Это даёт возможность передавать отводимое от рабочего тела тепло q 1 горячему источнику тепла, в качестве которого обычно выступает окружающая среда. На сжатие затрачивается отрицательная работа l 1 определяемая на графике площадью S 2-3-1-5-6-2 .

v
P
v 2
v 1
Р 1
Р 2
q 1
q 2

Рис. 6.6.2. Цикл холодильной машины

Уравнение 1-го закона термодинамики для процессов 1-4-2 и 2-3-1 с учётом алгебраических знаков перед составляющими соответственно имеют вид:

q 2 = +Du + l 2 ; -½q 1 ½= - Du - ½l 1 ½ .

Сложение по частям обоих уравнений даёт:

q 2 - ½q 1 ½= - (½l 1 ½ - l 2) = -½l ц ½ (6.6.3)

½q 1 ½= q 2 +½l ц.½ (6.6.4)

Это выражение показывает, что тепло q 1 , передаваемое горячему источнику тепла, складывается из тепла q 2 , поступившего в рабочее тело из холодного источника тепла, и работы цикла l ц . Так как ½l 1 ½ > l 2 , то l ц < 0 и, следовательно, для непрерывной работы холодильной машины необходимо затрачивать работу. Таким способом осуществляется передача тепла с низшего температурного уровня на высший, то есть производится охлаждение некоторых частей ОС и создаётся в нужном месте температура ниже температуры самой ОС . По холодильному (обратному циклу) работают холодильные машины, тепловые насосы и так далее.

Эффективность работы холодильной машины оценивается так называемым холодильным коэффициентом e , определяемым отношением отнятой от холодного источника ограниченной ёмкости полезного тепла q 2 к затраченной работе l ц :

. (6.6.5)

Холодильный коэффициент характеризует эффективность передачи тепла от холодного источника тепла к горячему источнику тепла. Он будет тем больше, чем большее количество тепла q 2 будет взято от холодного источника тепла и передано горячему источнику тепла и чем меньше будет на это затрачено работы l ц . В отличие от термического (термодинамического,теплового) КПДh Т холодильный коэффициент 𝜺 может быть больше, меньше и равным единице.

В холодильной машине q 1 выбрасывается в окружающую среду, являющуюся источником неограниченной ёмкости . Поэтому холодильная машина может быть использована не только для охлаждения различных тел, но и для отопления помещения. Действительно, даже обычный бытовой холодильник, охлаждая помещённые в нём продукты, одновременно нагревает воздух в комнате. Принцип динамического отопления был предложен У. Томсоном и положен в основу действия современных тепловых насосов . Тепловыми насосами являются машины, основным продуктом производства которых является тепло q 1 , передаваемое в источник ограниченной ёмкости . Их эффективность оценивается отопительным коэффициентом , представляющим собой отношение переданного потребителю тепла q 1 к l ц:

В этом случае тепло q 2 отбирается от источника неограниченной ёмкости (атмосферный воздух, большие объёмы воды, породный массив).

Преимущество теплового насоса по сравнению с электрическим нагревателем заключается в том, что на нагрев помещений используется не только преобразованная в тепло электрическая энергия, но и тепло, отобранное от окружающей среды. Поэтому эффективность тепловых насосов может быть гораздо выше эффективности электрических нагревателей.

Комбинация из цикла двигателя и циклов теплового насоса или холодильной установки представляет собой цикл теплового трансформатора , который позволяет перекачивать тепло от источника с одной Т к источнику с другой Т в ходе совмещённого цикла. Назначение теплового трансформатора – изменение потенциала тепла. Если трансформатор предназначен для получения тепла с более низкой Т , чем исходная Т горячего источника, то такой трансформатор называется понижающим . Если в трансформаторе получено тепло при Т более высокой, чем исходное тепло, то такой трансформатор называется повышающим .

Таким образом, работа любой тепловой или холодильной машины возможна только при наличии двух источников тепла: горячего и холодного.

На производстве привело к появлению тепловых машин.

Устройство тепловых машин

Тепловая машина (тепловой двигатель) - устройство для преобразования внутренней энергии в механическую.

Любая тепловая машина имеет нагреватель, рабочее тело (газ или пар), которое в результате нагрева выполняет работу (приводит во вращение вал турбины, двигает поршень и так далее) и холодильник. На рисунке ниже изображена схема теплового двигателя.

Основы действия тепловых двигателей

Каждая тепловая машина функционирует благодаря двигателю. Для выполнения работы ему нужно, чтобы по ту и другую сторону поршня двигателя или лопастей турбины была разность давлений. Достигается эта разность во всех тепловых двигателях так: температура рабочего тела повышается на сотни или тысячи градусов в сравнении с температурой окружающей среды. В и в двигателях внутреннего сгорания (ДВС) происходит повышение температуры за счет того, что топливо сгорает внутри самого двигателя. Холодильником может выступать атмосфера или специального назначения устройства для конденсации и охлаждения отработанного пара.

Цикл Карно

Цикл (круговой процесс) - совокупность изменений состояния газа, в результате которых он возвращается в исходное состояние (может выполнять работу). В 1824 году французский физик Сади Карно показал, что выгодным является цикл тепловой машины (цикл Карно), который состоит из двух процессов - изотермического и адиабатного. На рисунке ниже изображен график цикла Карно: 1-2 и 3-4 - изотермы, 2-3 и 4-1 - адиабаты.

В соответствии с законом сохранения энергии работа тепловых машин, которую выполняет двигатель, равна:

А = Q 1 - Q 2 ,

где Q 1 - количество теплоты, которое получено от нагревателя, а Q 2 - количество теплоты, которое предано холодильнику.
КПД тепловой машины называется отношение работы А, которую выполняет двигатель, к количеству теплоты, которое получено от нагревателя:

η = А/Q =(Q 1 - Q 2)/Q 1 = 1 - Q 2 /Q 1 .

В работе «Мысли о движущей силе огня и о машинах, которые способны развивать эту силу» (1824) Карно описал тепловую машину под названием "идеальная тепловая машина с идеальным газом, который представляет собой рабочее тело". Благодаря законам термодинамики можно вычислить КПД (максимально возможный) теплового двигателя с нагревателем, который имеет температуру Т 1 , и холодильником с температурой Т 2 . Тепловая машина Карно имеет КПД:

η max = (T 1 - T 2)/T 1 = 1 - T 2 /T 1.

Сади Карно доказал, что какая угодно тепловая машина реальная, которая работает с нагревателем с температурой Т 1 и холодильником с температурой Т 2 не способна иметь КПД, который бы превышал КПД тепловой машины (идеальной).

Двигатель внутреннего сгорания (ДВС)

Четырехтактный ДВС состоит из одного или нескольких цилиндров, поршня, кривошипно-шатунного механизма, впускного и выпускного клапанов, свечи.


Рабочий цикл состоит из четырех тактов:

1) засасывания - горючая смесь попадает через клапан в цилиндр;
2) сжатия - оба клапана закрыты;
3) рабочий ход - взрывное сгорание горючей смеси;
4) выхлоп - выпуск отработанных газов в атмосферу.

Паровая турбина

В паровой турбине преобразование энергии происходит за счет разницы давлений водяного пара на входе и выходе.
Мощности современных паровых турбин достигают 1300 МВт.

Некоторые технические параметры паровой турбины мощностью 1200 МВт

  • Давление пара (свежего) - 23,5 МПа.
  • Температура пара - 540 °С.
  • Расход пара турбиной - 3600 т/ч.
  • Частота вращения ротора - 3000 об/мин.
  • Давление пара в конденсаторе - 3,6 кПа.
  • Длина турбины - 47,9 м.
  • Масса турбины - 1900 т.

Тепловая машина состоит из воздушного компрессора, камеры сгорания и Принцип работы: воздух адиабатно засасывается в компрессор, поэтому его температура повышается до 200 °С и более. Далее попадает в камеру сгорания, куда одновременно под большим давлением поступает жидкое топливо - керосин, фотоген, мазут. При сгорании топлива воздух нагревается до температуры 1500-2000 °С, расширяется, и скорость его движения растет. Воздух движется с большой скоростью, и продукты сгорания направляются в турбину. После перехода от ступени к ступени продукты сгорания отдают лопастям турбины свою кинетическую энергию. Часть энергии, полученной турбиной, идет на вращение компрессора; оставшаяся часть расходуется на вращение ротора электрогенератора, винта самолета или морского судна, колес автомобиля.

Газовую турбину можно использовать, кроме вращения колес автомобиля и или теплохода, в качестве реактивного двигателя. Воздух и продукты сгорания с большой скоростью выбрасываются из газовой турбины, поэтому реактивная тяга, которая возникает при этом процессе, может использоваться для хода воздушных (самолет) и водных (теплоход) судов, железнодорожного транспорта. Например, турбовинтовые двигатели имеют самолеты Ан-24, Ан-124 («Руслан»), Ан-225 («Мечта»). Так, «Мечта» при скорости полета 700-850 км/ч способна перевозить 250 тонн груза на расстояние почти 15 000 км. Это крупнейший транспортный самолет в мире.

Экологические проблемы тепловых машин

Большое влияние на климат имеет состояние атмосферы, в частности наличие углекислого газа и водяного пара. Так, изменение содержания углекислого газа приводит к усилению или ослаблению парникового эффекта, при котором углекислый газ частично поглощает тепло, которое Земля излучает в космос, задерживает его в атмосфере и повышает тем самым температуру поверхности и нижних слоев атмосферы. Явление парникового эффекта играет решающую роль в смягчении климата. При его отсутствии средняя температура планеты была бы не +15 °С, а ниже на 30-40 °С.

Сейчас в мире существует более 300 млн различного вида автомобилей, которые создают более половины всех загрязнений атмосферы.

За 1 год в атмосферу из тепловых электростанций в результате сжигания топлива выделяется 150 млн тонн оксидов серы, 50 млн тонн оксида азота, 50 млн тонн золы, 200 млн тонн оксида углерода, 3 млн тонн феона.

В состав атмосферы входит озон, который защищает все живое на земле от губительного воздействия ультрафиолетовых лучей. В 1982 году Дж. Фарманом, английским исследователем, над Антарктидой была открыта озоновая дыра - временное снижение содержания озона в атмосфере. В момент максимального развития озоновой дыры 7 октября 1987 количество озона в ней уменьшилось в 2 раза. Озоновая дыра, вероятно, возникла в результате антропогенных факторов, в том числе использования в промышленности хлорсодержащих хладонов (фреонов), которые разрушают озоновый слой. Однако исследования 1990 гг. не подтвердили эту точку зрения. Скорее всего, появление озоновой дыры не связано с деятельностью человека и является естественным процессом. В 1992 году и над Арктикой была открыта озоновая дыра.

Если весь атмосферный озон собрать в слой у поверхности Земли и сгустить его к плотности воздуха при нормальном атмосферном давлении и температуре 0 °С, то толщина озонового щита будет всего лишь 2-3 мм! Вот и весь щит.

Немного из истории...

  • Июль 1769 года. В парижском парке Медоне военный инженер Н. Ж. Кюньйо на «огненной телеге», которая была оснащена двухцилиндровым паровым двигателем, проехал несколько десятков метров.
  • 1885 год. немецкий инженер, построил первый бензиновый четырехтактный трехколесный автомобиль Motorwagen мощностью 0,66 кВт, на который 29 января 1886 года получил патент. Скорость машины достигала 15-18 км/ч.
  • 1891 год. немецкий изобретатель, изготовил грузовую тележку с двигателем мощностью 2,9 кВт (4 лошадиные силы) от легкового автомобиля. автомобиля достигала 10 км/ч, грузоподъемность в различных моделях составляла от 2 до 5 тонн.
  • 1899 год. Бельгиец К. Женатци на своем автомобиле «Жаме Контант» («Всегда недовольная») впервые преодолел 100-километровый рубеж скорости.

Примеры решения задач

Задача 1. Температуру нагревателя идеальная тепловая машина имеет равную 2000 К, а температуру холодильника - 100 °С. Определить КПД.

Решение :
Формула, которая определяет КПД тепловой машины (максимальный):

ŋ = Т 1 -Т 2 /Т 1.
ŋ = (2000К - 373К) / 2000 К = 0,81.

Ответ: КПД двигателя - 81 %.

Задача 2. В тепловом двигателе при сгорании топлива было получено 200 кДж теплоты, а холодильнику передано 120 кДж теплоты. Каков КПД двигателя?

Решение:
Формула для определения КПД имеет такой вид:

ŋ = Q1 - Q2 / Q1.
ŋ = (2·10 5 Дж - 1,2·10 5 Дж) / 2·10 5 Дж = 0,4.

Ответ: КПД теплового двигателя - 40 %.

Задача 3. Каков КПД тепловой машины, если рабочее тело после получения от нагревателя количества теплоты 1,6 МДж выполнило работу 400 кДж? Какое количество теплоты было передано холодильнику?

Решение:
КПД можно определить по формуле

ŋ = 0,4·10 6 Дж / 1,6·10 6 Дж = 0,25.

Переданное холодильнику количество теплоты можно определить по формуле

Q 1 - А = Q 2.
Q 2 = 1,6·10 6 Дж - 0,4·10 6 Дж = 1,2·10 6 Дж.
Ответ: тепловая машина имеет КПД 25 %; переданное холодильнику количество теплоты - 1,2·10 6 Дж.

Тема: «Принцип действия тепловой машины. Тепловая машина с наибольшим коэффициентом полезного действия».

Форма: Комбинированный урок с использованием компьютерных технологий.

Цели:

  • Показать важность применения тепловой машины в жизни человека.
  • Изучить принцип работы реальных тепловых двигателей и идеального двигателя работающего по циклу Карно.
  • Рассмотреть возможные пути повышения КПД реального двигателя.
  • Развить у учащихся любознательность, интерес к техническому творчеству, уважение к научным достижениям ученых и инженеров.

План урока.

№ п/п

Вопросы

Время
(минут)

1 Показать необходимость применения тепловых машин в современных условиях.
2 Повторение понятия «тепловой машины». Виды тепловых машин: ДВС (карбюраторный, дизельный), паровая и газовая турбины, турбореактивный и ракетный двигатели.
3 Объяснение нового теоретического материала.
Схема и устройство тепловой машины, принцип работы, КПД.
Цикл Карно, идеальная тепловая машина, её КПД.
Сравнение КПД реальной и идеальной тепловой машины.
4 Решение задачи № 703 (Степанова), № 525 (Бендриков).
5
Работа с моделью тепловой машины.
6 Подведение итогов. Домашнее задание § 33, задачи № 700 и № 697 (Степанова)

Теоретический материал

С давних времён человек хотел освободиться от физических усилий или облегчить их при перемещении чего-либо, располагать большей силой, быстротой.
Создавались сказания о коврах самолётах, семимильных сапогах и волшебниках, переносящих человека за тридевять земель мановением жезла. Таская тяжести, люди изобрели тележки, ведь катить легче. Потом они приспособили животных – волов, оленей, собак, больше всего лошадей. Так появились повозки, экипажи. В экипажах люди стремились к комфорту, всё более совершенствуя их.
Стремление людей увеличить скорость ускоряло и смену событий в истории развития транспорта. Из греческого «аутос» – «сам» и латинского «мобилис» – «подвижный» в европейских языках сложилось прилагательное «самодвижущийся», буквально «авто – мобильный».

Оно относилось к часам, куклам-автоматам, ко всяким механизмам, в общем, ко всему, что служило как бы дополнением «продолжением», «усовершенствованием» человека. В ХVIII веке попробовали заменить живую силу силой пара и применяли к безрельсовым повозкам термин «автомобиль».

Почему же счёт возраста автомобиля ведут от первых «бензиномобилей» с двигателем внутреннего сгорания, изобретённых и построенных в 1885-1886 годах? Как бы забыв о паровых и аккумуляторных (электрических) экипажах. Дело в том, что ДВС произвёл подлинный переворот в транспортной технике. В течение длительного времени он оказался наиболее отвечающим идее автомобиля и потому надолго сохранил своё главенствующее положение. Доля автомобилей с ДВС составляет на сегодня более 99,9% мирового автомобильного транспорта. <Приложение 1 >

Основные части теплового двигателя

В современной технике механическую энергию получают главным образом за счет внутренней энергии топлива. Устройства, в которых происходит преобразование внутренней энергии в механическую, называют тепловыми двигателями. <Приложение 2 >

Для совершения работы за счет сжигания топлива в устройстве, называемом нагревателем, можно воспользоваться цилиндром, в котором нагревается и расширяется газ и перемещает поршень. <Приложение 3 > Газ, расширение которого вызывает перемещение поршня, называют рабочим телом. Расширяется же газ потому, что его давление выше внешнего давления. Но при расширении газа его давление падает, и рано или поздно оно станет равным внешнему давлению. Тогда расширение газа закончится, и он перестанет совершать работу.

Как же следует поступить, чтобы работа теплового двигателя не прекращалась? Для того чтобы двигатель работал непрерывно, необходимо, чтобы поршень после расширения газа возвращался каждый раз в исходное положение, сжимая газ до первоначального состояния. Сжатие же газа может происходить только под действием внешней силы, которая при этом совершает работу (сила давления газа в этом случае совершает отрицательную работу). После этого вновь могут происходить процессы расширения и сжатия газа. Значит, работа теплового двигателя должна состоять из периодически повторяющихся процессов (циклов) расширения и сжатия.

На Рисунке 1 изображены графически процессы расширения газа (линия АВ ) и сжатия до первоначального объема (линия CD). Работа газа в процессе расширения положительна (AF > 0 ABEF . Работа газа при сжатии отрицательна (так как AF < 0 ) и численно равна площади фигуры CDEF. Полезная работа за этот цикл численно равна разности площадей под кривыми АВ и CD (закрашена на рисунке).
Наличие нагревателя, рабочего тела и холодильника принципиально необходимое условие для непрерывной циклической работы любого теплового двигателя.

Коэффициент полезного действия тепловой машины

Рабочее тело, получая некоторое количество теплоты Q 1 от нагревателя, часть этого количества теплоты, по модулю равную |Q2|,отдает холодильнику. Поэтому совершаемая работа не может быть больше A = Q 1 - |Q 2 |. Отношение этой работы к количеству теплоты, полученному расширяющимся газом от нагревателя, называется коэффициентом полезного действия тепловой машины:

Коэффициент полезного действия тепловой машины, работающей по замкнутому циклу, всегда меньше единицы. Задача теплоэнергетики состоит в том, чтобы сделать КПДкак можно более высоким, т. е. использовать для получения работы как можно большую часть теплоты, полученной от нагревателя. Как этого можно достигнуть?
Впервые наиболее совершенный циклический процесс, состоящий из изотерм и адиабат, был предложен французским физиком и инженером С. Карно в 1824 г.

Цикл Карно.

Допустим, что газ находится в цилиндре, стенки и поршень которого сделаны из теплоизоляционного материала, а дно - из материала с высокой теплопроводностью. Объем, занимаемый газом, равен V 1 .

Приведем цилиндр в контакт с нагревателем (Рисунок 2) и предоставим газу возможность изотермически расширяться и совершать работу. Газ получает при этом от нагревателя некоторое количество теплоты Q 1 . Этот процесс графически изображается изотермой (кривая АВ ).

Когда объем газа становится равным некоторому значению V 1 ’< V 2 , дно цилиндра изолируют от нагревателя, после этого газ расширяется адиабатно до объема V 2 , соответствующего максимально возможному ходу поршня в цилиндре (адиабата ВС ). При этом газ охлаждается до температуры T 2 < T 1 .
Теперь охлажденный газ можно изотермически сжимать при температуре Т2. Для этого его нужно привести в контакт с телом, имеющим ту же температуру Т 2 , т. е. с холодильником, и сжать газ внешней силой. Однако в этом процессе газ не вернется в первоначальное состояние - температура его будет все время ниже чем Т 1 .
Поэтому изотермическое сжатие доводят до некоторого промежуточного объема V 2 ’>V 1 (изотерма CD ). При этом газ отдает холодильнику некоторое количество теплоты Q 2 , равное совершаемой над ним работе сжатия. После этого газ сжимается адиабатно до объема V 1 , при этом его температура повышается до Т 1 (адиабата DA ). Теперь газ вернулся в первоначальное состояние, при котором объем его равен V 1 , температура - T 1 , давление - p 1 ,и цикл можно повторить вновь.

Итак, на участке ABC газ совершает работу (А > 0), а на участке CDA работа совершается над газом (А < 0). На участках ВС и AD работа совершается только за счет изменения внутренней энергии газа. Поскольку изменение внутренней энергии UBC = – UDA , то и работы при адиабатных процессах равны: АВС = –АDA. Следовательно, полная работа, совершаемая за цикл, определяется разностью работ, совершаемых при изотермических процессах (участки АВ и CD ). Численно эта работа равна площади фигуры, ограниченной кривой цикла ABCD .
В полезную работу фактически преобразуется только часть количества теплоты QT, полученной от нагревателя, равная QT 1 – |QT 2 |. Итак, в цикле Карно полезная работа A = QT 1 – |QT 2 |.
Максимальный коэффициент полезного действия идеального цикла, как показал С. Карно, может быть выражен через температуру нагревателя (Т 1) и холодильника (Т 2):

В реальных двигателях не удается осуществить цикл, состоящий из идеальных изотермических и адиабатных процессов. Поэтому КПД цикла, осуществляемого в реальных двигателях, всегда меньше, чем КПД цикла Карно (при одних и тех же температурах нагревателей и холодильников):

Из формулы видно, что КПД двигателей тем больше, чем выше температура нагревателя и чем ниже температура холодильника.

Задача № 703

Двигатель работает по циклу Карно. Как изменится КПД теплового двигателя, если при постоянной температуре холодильника 17 о С температуру нагревателя повысить со 127 до 447 о С?

Задача № 525

Определите КПД двигателя трактора, которому для выполнения работы 1,9 · 107Дж потребовалось 1,5 кг топлива с удельной теплотой сгорания 4,2 · 107Дж/кг.

Выполнение компьютерного теста по теме. <Приложение 4 > Работа с моделью тепловой машины.

«Физика - 10 класс»

Что такое термодинамическая система и какими параметрами характеризуется её состояние.
Сформулируйте первый и второй законы термодинамики.

Именно создание теории тепловых двигателей и привело к формулированию второго закона термодинамики.

Запасы внутренней энергии в земной коре и океанах можно считать практически неограниченными. Но для решения практических задач располагать запасами энергии ещё недостаточно. Необходимо так же уметь за счёт энергии приводить в движение станки на фабриках и заводах, средства транспорта, тракторы и другие машины, вращать роторы генераторов электрического тока и т. д. Человечеству нужны двигатели - устройства, способные совершать работу. Большая часть двигателей на Земле - это тепловые двигатели .

Тепловые двигатели - это устройства, превращающие внутреннюю энергию топлива в механическую работу.


Принцип действия тепловых двигателей.


Для того чтобы двигатель совершал работу, необходима разность давлений по обе стороны поршня двигателя или лопастей турбины. Во всех тепловых двигателях эта разность давлений достигается за счёт повышения температуры рабочего тела (газа) на сотни или тысячи градусов по сравнению с температурой окружающей среды. Такое повышение температуры происходит при сгорании топлива.

Одна из основных частей двигателя - сосуд, наполненный газом, с подвижным поршнем. Рабочим телом у всех тепловых двигателей является газ, который совершает работу при расширении. Обозначим начальную температуру рабочего тела (газа) через T 1 . Эту температуру в паровых турбинах или машинах приобретает пар в паровом котле. В двигателях внутреннего сгорания и газовых турбинах повышение температуры происходит при сгорании топлива внутри самого двигателя. Температуру Т 1 называют температурой нагревателя .


Роль холодильника.

По мере совершения работы газ теряет энергию и неизбежно охлаждается до некоторой температуры Т 2 , которая обычно несколько выше температуры окружающей среды. Её называют температурой холодильника . Холодильником является атмосфера или специальные устройства для охлаждения и конденсации отработанного пара - конденсаторы . В последнем случае температура холодильника может быть немного ниже температуры окружающего воздуха.

Таким образом, в двигателе рабочее тело при расширении не может отдать всю свою внутреннюю энергию на совершение работы. Часть тепла неизбежно передаётся холодильнику (атмосфере) вместе с отработанным паром или выхлопными газами двигателей внутреннего сгорания и газовых турбин.

Эта часть внутренней энергии топлива теряется. Тепловой двигатель совершает работу за счёт внутренней энергии рабочего тела. Причём в этом процессе происходит передача теплоты от более горячих тел (нагревателя) к более холодным (холодильнику). Принципиальная схема теплового двигателя изображена на рисунке 13.13.

Рабочее тело двигателя получает от нагревателя при сгорании топлива количество теплоты Q 1 , совершает работу А" и передаёт холодильнику количество теплоты Q 2 < Q 1 .

Для того чтобы двигатель работал непрерывно, необходимо рабочее тело вернуть в начальное состояние, при котором температура рабочего тела равна Т 1 . Отсюда следует, что работа двигателя происходит по периодически повторяющимся замкнутым процессам, или, как говорят, по циклу.

Цикл - это ряд процессов, в результате которых система возвращается в начальное состояние.


Коэффициент полезного действия (КПД) теплового двигателя.


Невозможность полного превращения внутренней энергии газа в работу тепловых двигателей обусловлена необратимостью процессов в природе. Если бы тепло могло самопроизвольно возвращаться от холодильника к нагревателю, то внутренняя энергия могла бы быть полностью превращена в полезную работу с помощью любого теплового двигателя. Второй закон термодинамики может быть сформулирован следующим образом:

Второй закон термодинамики:
невозможно создать вечный двигатель второго рода, который полностью превращал бы теплоту в механическую работу.

Согласно закону сохранения энергии работа, совершаемая двигателем, равна:

А" = Q 1 - |Q 2 | , (13.15)

где Q 1 - количество теплоты, полученной от нагревателя, a Q2 - количество теплоты, отданной холодильнику.

Коэффициентом полезного действия (КПД) теплового двигателя называют отношение работы А", совершаемой двигателем, к количеству теплоты, полученной от нагревателя:

Так как у всех двигателей некоторое количество теплоты передаётся холодильнику, то η < 1.


Максимальное значение КПД тепловых двигателей.


Законы термодинамики позволяют вычислить максимально возможный КПД теплового двигателя, работающего с нагревателем, имеющим температуру Т 1 , и холодильником с температурой Т 2 , а также определить пути его повышения.

Впервые максимально возможный КПД теплового двигателя вычислил французский инженер и учёный Сади Карно (1796-1832) в труде «Размышления о движущей силе огня и о машинах, способных развивать эту силу» (1824).

Карно придумал идеальную тепловую машину с идеальным газом в качестве рабочего тела. Идеальная тепловая машина Карно работает по циклу, состоящему из двух изотерм и двух адиабат, причем эти процессы считаются обратимыми (рис. 13.14). Сначала сосуд с газом приводят в контакт с нагревателем, газ изотермически расширяется, совершая положительную работу, при температуре Т 1 , при этом он получает количество теплоты Q 1 .

Затем сосуд теплоизолируют, газ продолжает расширяться уже адиабатно, при этом его температура понижается до температуры холодильника Т 2 . После этого газ приводят в контакт с холодильником, при изотермическом сжатии он отдаёт холодильнику количество теплоты Q 2 , сжимаясь до объёма V 4 < V 1 . Затем сосуд снова теплоизолируют, газ сжимается адиабатно до объёма V 1 и возвращается в первоначальное состояние. Для КПД этой машины было получено следующее выражение:

Как следует из формулы (13.17), КПД машины Карно прямо пропорционален разности абсолютных температур нагревателя и холодильника.

Главное значение этой формулы состоит в том, что в ней указан путь увеличения КПД, для этого надо повышать температуру нагревателя или понижать температуру холодильника.

Любая реальная тепловая машина, работающая с нагревателем, имеющим температуру Т 1 , и холодильником с температурой Т 2 , не может иметь КПД, превышающий КПД идеальной тепловой машины: Процессы, из которых состоит цикл реальной тепловой машины, не являются обратимыми.

Формула (13.17) даёт теоретический предел для максимального значения КПД тепловых двигателей. Она показывает, что тепловой двигатель тем эффективнее, чем больше разность температур нагревателя и холодильника.

Лишь при температуре холодильника, равной абсолютному нулю, η = 1. Кроме этого доказано, что КПД, рассчитанный по формуле (13.17), не зависит от рабочего вещества.

Но температура холодильника, роль которого обычно играет атмосфера, практически не может быть ниже температуры окружающего воздуха. Повышать температуру нагревателя можно. Однако любой материал (твёрдое тело) обладает ограниченной теплостойкостью или жаропрочностью. При нагревании он постепенно утрачивает свои упругие свойства, а при достаточно высокой температуре плавится.

Сейчас основные усилия инженеров направлены на повышение КПД двигателей за счёт уменьшения трения их частей, потерь топлива вследствие его неполного сгорания и т. д.

Для паровой турбины начальные и конечные температуры пара примерно таковы: Т 1 - 800 К и Т 2 - 300 К. При этих температурах максимальное значение коэффициента полезного действия равно 62 % (отметим, что обычно КПД измеряют в процентах). Действительное же значение КПД из-за различного рода энергетических потерь приблизительно равно 40 %. Максимальный КПД - около 44% - имеют двигатели Дизеля.


Охрана окружающей среды.


Трудно представить современный мир без тепловых двигателей. Именно они обеспечивают нам комфортную жизнь. Тепловые двигатели приводят в движение транспорт. Около 80 % электроэнергии, несмотря на наличие атомных станций, вырабатывается с помощью тепловых двигателей.

Однако при работе тепловых двигателей происходит неизбежное загрязнение окружающей среды. В этом заключается противоречие: с одной стороны, человечеству с каждым годом необходимо всё больше энергии, основная часть которой получается за счёт сгорания топлива, с другой стороны, процессы сгорания неизбежно сопровождаются загрязнением окружающей среды.

При сгорании топлива происходит уменьшение содержания кислорода в атмосфере. Кроме этого, сами продукты сгорания образуют химические соединения, вредные для живых организмов. Загрязнение происходит не только на земле, но и в воздухе, так как любой полёт самолёта сопровождается выбросами вредных примесей в атмосферу.

Одним из следствий работы двигателей является образование углекислого газа, который поглощает инфракрасное излучение поверхности Земли, что приводит к повышению температуры атмосферы. Это так называемый парниковый эффект. Измерения показывают, что температура атмосферы за год повышается на 0,05 °С. Такое непрерывное повышение температуры может вызвать таяние льдов, что, в свою очередь, приведёт к изменению уровня воды в океанах, т. е. к затоплению материков.

Отметим ещё один отрицательный момент при использовании тепловых двигателей. Так, иногда для охлаждения двигателей используется вода из рек и озёр. Нагретая вода затем возвращается обратно. Рост температуры в водоёмах нарушает природное равновесие, это явление называют тепловым загрязнением.

Для охраны окружающей среды широко используются различные очистительные фильтры, препятствующие выбросу в атмосферу вредных веществ, совершенствуются конструкции двигателей. Идёт непрерывное усовершенствование топлива, дающего при сгорании меньше вредных веществ, а также технологии его сжигания. Активно разрабатываются альтернативные источники энергии, использующие ветер, солнечное излучение, энергию ядра. Уже выпускаются электромобили и автомобили, работающие на солнечной энергии.

Лекция: Принципы действия тепловых машин


Тепловая машина

Тепловая машина - это система, которая может превратить тепло в работу или же наоборот, совершает работу для получения тепла.

Существует два основных вида тепловых машин:


1. Системы, способные превращать тепло в работу. Такие системы называются тепловыми двигателями . Данные тепловые машины лежат в основе двигателей на автомобилях. Чтобы машина ехала, двигатель должен совершать работу. Для совершения данной работы происходит сгорание топлива.


2. Системы, способные охлаждать тела, за счет совершения работы внешних сил. Такие системы называются холодильными машинами. В основе нашего домашнего холодильника лежит принцип холодильной машины. Любое тепло, которое подводится к ней, выводиться за пределы машины за счет совершения работы внешними силами.


Любая тепловая машина состоит из тела, которое совершает работу, холодильника и нагревателя.


Тепловые двигатели


В основе данной машины лежит принцип извлечения работы из беспрерывного движения структурных единиц вещества. Данное изобретение открыло двери в эру нового технического прогресса.

Рабочим телом для данной машины является газ. Во время его нагревания поршень двигателя передвигается и тем самым совершает работу. Чтобы газ расширился, к нему подводят нагреватель. Расширение будет происходить только в том случае, когда температура газа будет больше, чем температура окружающей среды.


Во время сгорания топлива выделяется достаточная энергия, большая часть которой идет на совершение работы, поэтому

Q1 = A1


Теперь давайте разберемся, какую роль играет холодильник в тепловой машине. Для того, чтобы машина постоянно работала, необходимо, чтобы газ расширялся и сужался - в таком случае поршень будет периодически возвращаться в исходное положение. Поэтому холодильник охлаждает газ, передавая ему теплоту: Q2 = A2

В данном случае полезная работа будет равна: A = A1 − A2

Чтобы работа охлаждения была меньше, её следует совершать при меньшем давлении, как показано на графике.

Где Q1 - Q2 = А, А - полезная работа.

Стоит отметить, что КПД всегда меньше единицы. Более того, зачастую нами используются тепловые двигатели, КПД которых меньше 50%.


Холодильные машины


Как было сказано в предыдущих разделах, нельзя заставить некоторую систему самопроизвольно передавать тепло от менее нагретого тела к более нагретому. Однако ключевое слово здесь - самопроизвольно. С помощью внешнего источника работы это все-таки возможно. Холодильная машина производит именно такие процессы.