Шестеренная передача. Виды механических передач и передаточных миханизмов

  • 7. Основные геометрические параметры эвольвентных зубчатых колес.
  • 8. Кинематические и силовые соотношения прямозубых эвольвентных зубчатых колес.
  • 9. Виды напряжений, по которым проводится проектировочный и проверочный расчет зубчатых колес.
  • 10. Общие сведения о косозубых цилиндрических зубчатых передачах.
  • 11. Понятие об эквивалентном колесе и его параметры.
  • 12. Силы, действующие в косозубой цилиндрической передаче.
  • 13. Общие сведения о конических зубчатых передачах.
  • 14. Ортогональные прямозубые конические зубчатые передачи.
  • 15. Основные сведения о передаче Новикова.
  • 16. Планетарные передачи.
  • 17. Кинематика планетарных передач. Инематика.
  • 18. Условия подбора чисел зубьев планетарных передач.
  • 19. Основные сведения о волновых передачах.
  • 20. Червячные передачи: общие сведения, достоинства и недостатки.
  • 12.2. Достоинства и недостатки червячных передач
  • 21. Кинематические и силовые соотношения архимедовых червячных передач.
  • 22. Критерии работоспособности и особенности расчета червячных передач.
  • 23. Выбор материалов червяков и червячных колес.
  • 24. Охлаждение и смазка червячных редукторов.
  • 25. Общие сведения о фрикционных передачах и вариаторах. Общие сведения
  • Классификация
  • Достоинства и недостатки
  • 26. Основные сведения о передаче «винт-гайка» скольжения.
  • 27. Шарико-винтовые передачи (швп).
  • 28. Основные факторы, определяющие качество фрикционных передач.
  • 29. Ременные передачи: общие сведения, классификация, виды ремней.
  • 14.2. Классификация передач
  • 14.3. Достоинства и недостатки ременных передач трением
  • 30. Силы в ремнях ременных передачах.
  • 31. Напряжения в ремнях ременных передачах.
  • 32. Основные сведения о цепных передачах.
  • 13.2. Достоинства и недостатки цепных передач
  • 13.3 Типы цепей
  • 33. Кинематика и динамика цепной передачи.
  • 34. Критерии работоспособности и расчет цепной передачи.
  • 36. Ориентировочный расчет валов и осей.
  • 37. Проверочный расчет валов и осей.
  • 38. Подшипники скольжения.
  • 39. Режимы трения подшипников скольжения.
  • 40. Расчет подшипников скольжения при полужидкостном трении.
  • 41. Расчет подшипников скольжения при жидкостном трении.
  • 42. Назначение и классификация подшипников качения.
  • 43. Статическая грузоподъемность. Проверка подшипников качения по статической грузоподъемности. Проверка и подбор подшипников по статической грузоподъемности.
  • 44. Динамическая грузоподъемность. Проверка подшипников качения по динамической грузоподъемности.
  • 45. Назначение и классификация муфт.
  • 46. Классификация соединений.
  • 47. Основные сведения о резьбовых соединениях.
  • 48. Классификация резьб.
  • 49. Виды нагружений болтовых соединений.
  • 1. Для соединений стальных и чугунных деталей, без упругих прокладок = 0,2 – 0,3.
  • 2.Для соединений стальных и чугунных деталей с упругими прокладками (асбест, поронит, резина и др.) = 0,4 – 0,5.
  • 3. В уточненных расчетах определяют значения д и б, а затем.
  • 50. Основные понятия о заклепочном соединении.
  • 51. Область применения, преимущества и недостатки сварных соединений.
  • 52. Шпоночные и шлицевые соединения.
  • 4. Основные виды механических передач.

    Механической передачей называют устройство для передачи механического движения от двигателя к исполнительным органам машины. Может осуществляться с изменением значения и направления скорости движения, с преобразованием вида движения. Необходимость применения таких устройств обусловлена нецелесообразностью, а иногда и невозможностью непосредственного соединения рабочего органа машины с валом двигателя. Механизмы вращательного движения позволяют осуществить непрерывное и равномерное движение с наименьшими потерями энергии на преодоление трения и наименьшими инерционными нагрузками.

    Механические передачи вращательного движения делятся:

    По способу передачи движения от ведущего звена к ведомому на передачи трением (фрикционные, ременные) и зацеплением (цепные, зубчатые, червячные);

    По соотношению скоростей ведущего и ведомого звеньев на замедляющие (редукторы) и ускоряющие (мультипликаторы);

    По взаимному расположению осей ведущего и ведомого валов на передачи с параллельными , пресекающимися и перекрещивающимися осями валов.

    Зубчатые передачи

    Зубчатой передачей называется трехзвенный механизм, в котором два подвижных звена являются зубчатыми колесами, или колесо и рейка с зубьями, образующими с неподвижным звеном (корпусом) вращательную или поступательную пару.

    Зубчатая передача состоит из двух колес, посредством которых они сцепляются между собой. Зубчатое колесо с меньшим числом зубьев называют шестерней , с большим числом зубьев – колесом .

    Планетарные передачи

    Планетарными называются передачи, содержащие зубчатые колеса с перемещающимися осями. Передача состоит из центрального колеса с наружными зубьями, центрального колеса с внутренними зубьями, водила и сателлитов. Сателлиты вращаются вокруг своих осей и вместе с осью вокруг центрального колеса, т.е. совершают движение, подобное движению планет.

    Червячные передачи

    Червячная передача применяется для передачи вращения от одного вала к другому, когда оси валов перекрещиваются. Угол перекрещивания в большинстве случаев равен 90º. Наиболее распространенная червячная передача состоит из так называемого архимедова червяка , т.е. винта, имеющего трапецеидальную резьбу с углом профиля в осевом сечении, равным двойному углу зацепления (2α = 40), и червячного колеса.

    Волновые механические передачи

    Волновая передача основана на принципе преобразования параметров движения за счет волнового деформирования гибкого звена механизма.

    Волновые зубчатые передачи являются разновидностью планетарных передач, у которых одно из колес гибкое.

    Фрикционные передачи

    Передачи, работа которых основана на использовании сил трения, возникающих между рабочими поверхностями двух прижатых друг к другу тел вращения, называют фрикционными передачами .

    Ременные передачи

    Ременная передача состоит из двух шкивов, закрепленных на валах, и охватывающего их ремня. Ремень надет на шкивы с определенным натяжением, обеспечивающим трение между ремнем и шкивами, достаточное для передачи мощности от ведущего шкива к ведомому.

    В зависимости от формы поперечного сечения ремня различают: плоскоременную, клиноременную и круглоременную

    Цепные передачи

    Цепная передача состоит из двух колес с зубьями (звездочек) и охватывающей их цепи. Наиболее распространены передачи с втулочно-роликовой цепью и зубчатой цепью Цепные передачи применяются для передачи средних мощностей (не более 150 кВт) между параллельными валами в случаях, когда межосевые расстояния велики для зубчатых передач.

    Передача винт-гайка

    Передача винт-гайка служит для преобразования вращательного движения в поступательное. Широкое применение таких передач определяется тем, что при простой и компактной конструкции удается осуществить медленные и точные перемещения.

    В авиастроении передача винт-гайка используется в механизмах управления самолетом: для перемещения взлетно-посадочных закрылков, для управления триммерами, поворотными стабилизаторами и др.

    К преимуществам передачи относятся простота и компактность конструкции, большой выигрыш в силе, точность перемещений.

    Недостатком передачи является большая потеря на трение и связанный с этим малый КПД.

    Кулачковые механизмы

    Кулачковые механизмы (рис. 2.26) по широте применения уступают только зубчатым передачам. Их используют в станках и прессах, двигателях внутреннего сгорания, машинах текстильной, пищевой и полиграфической промышленности. В этих машинах они выполняют функции подвода и отвода инструмента, подачи и зажима материала в станках, выталкивания, поворота, перемещения изделий и др.

    Передача – это устройство, предназначенное для передачи движения на расстояние и для преобразования параметров движения.

    Существует три основных вида передач – механические, гидравлические и пневматические.

    это передача, в которой движение передается с помощью твердых тел.

    Механическая передача - механизм, служащий для передачи и преобразования механической энергии от энергетической машины до исполнительного механизма (органа) одного или более, как правило с изменением характера движения (изменения направления, сил, моментов и скоростей). Как правило, используется передача вращательного движения. Привод рабочих органов, ходовой части и других узлов машин осуществляется с помощью силовых передач, которые не только передают движение, но и изменяют скорость, а иногда и характер и направление движения.

    Передачи бывают:

    Механические;

    Гидравлические;

    Электрические;

    Смешанные.

    В каждой передаче элемент, который передает мощность, называется ведущим, а элемент, которому передается эта мощность, ведомым.

    Передачи в основном применяются понижающие.

    Передача характеризуется: входными, выходными и внутренними параметрами:

    - скорость : линейные; угловые.

    - силовые факторы : усилия (при поступательном движении); крутящие моменты (при вращательном движении).

    Мощность: передаточное отношение; КПД.

    Механические передачи по конструктивному исполнению различают:

    Фрикционные передачи – передачи трением с непосредственным контактов тел качения, в основном применяются во вспомогательных механизмах. Достоинства : проста, плавная, бесшумная работа. Недостатки : нужны специальные прижимные устройства, износ, повышение нагрузки.

    Ременные передачи - гибкая связь в основном применяются во вспомогательных механизмах. Достоинства : простота конструкции и безударность работы, возможность использования при значительных расстояниях между валами, бесшумные. Недостатки : проскальзывание, большие габариты, малая долговечность, вытягивание.

    Зубчатые передачи – передача зацеплением с непосредственным контактом, наибольшее распространение. Достоинство : малые габаиты; высокий КПД; большая долговечность и надежность; возможность применения в широком диапазоне. Недостатки : шум в работе; передача больших осевых усилий на валы; сложная технология изготовления.

    Червячные передачи – передача зацеплением с непосредственным контактом. Достоинства : бесшумность и плавность работы; высокая точность перемещений; обеспечение возможности самоторможение. Недостатки : низкий КПД; небольшие передаваемые мощности; повышенный износ.

    Цепные предназначаются для передачи движения между двумя параллельными валами при достаточно большом расстоянии между ними. Достоинства: возможность передачи движения на значительные расстояния; меньшие чем у ременных передач, габариты; отсуствие скольжения; достаточно высокий КПД, возможность легкой замены цепи. Недостатки: сравнительно быстрый износ шарниров, работающих в условиях попадания абразива; требует более трудный уход – смазки, регулировка в сравнении с клиноременными передачами; значительные вибрации и шум при достаточно высоких скоростях и невысокой точности элементов конструкции.

    Устройства, предназначенные для передачи мощности двигателя исполнительными органами машин, называются передаточными механизмами или механическими передачами.

    Механические передачи позволяют понижать (повышать) скорость, осуществлять ступенчатое или бесступенчатое регулирование ее в широком диапазоне, изменять направление движения, преобразовывать один вид движения в другой, приводить в движение несколько механизмов от одного двигателя.

    Типы механических передач LEGO «Technic»:

    v зубчатые (цилиндрические, конические, червячная, реечная, планетарная);

    v с гибкими элементами (цепные, ременные);

    v фрикционные.

    По способу передачи движения:

    v движение с вала на вал передается за счет сил трения (ременные, червячные, фрикционные);

    v движение передается зацеплением (зубчатые, цепные, с зубчатыми ремнями, червячные).

    Рассмотрим принцип работы механической передачи. Будем условно называть пару, осуществляющую вращательное движение, колесами. Колесо, от которого передается вращение, принято называть ведущим, а колесо, получающее движение - ведомым.

    Зная число оборотов в минуту ведущего колеса, мы можем определить число оборотов ведомого колеса.

    Число оборотов ведомого колеса зависит от соотношения диаметров соединенных колес. Если диаметры обоих колес будут одинаковы, то и колеса будут крутиться с одинаковой скоростью. Если диаметр ведомого колеса будет больше ведущего, то ведомое колесо станет крутиться медленнее, и наоборот, если его диаметр будет меньше, оно будет делать больше оборотов (рис 211).

    Рис. 211 Зависимость числа оборотов от диаметров колес

    В LEGO «Technic» для моделей используются электродвигатели. Главная причина этого заключается в том, что электрический двигатель компактен, постоянно готов к работе и преобразовывать электрическую энергию в механическую может до тех пор, пока к нему подводится напряжение (подробнее о различных электродвигателях LEGO «Technic» будет рассмотрено в § 26).

    Каждый двигатель имеет свою механическую мощность (N ), специфичную для конкретного типа двигателя. Важно то, что механическая мощность двигателя зависит от двух величин: угловой скорости и крутящего момента.

    Угловая скорость (ω ) – это число оборотов вала двигателя, производимое в течение заданного интервала времени. В LEGO механизмах угловая скорость вращающихся осей двигателя преобразуется в линейную скорость транспортного средства. Единицы измерения угловой скорости - обороты в минуту (обороты в секунду). Различные типы двигателей LEGO имеют различные значения угловых скоростей, с менее чем 20 оборотами в минуту до более 1000 оборотов в минуту.

    Крутящий момент (M ) – это сила, с которой приводной вал вращается. Чем выше крутящий момент, тем труднее остановить приводной вал. Поэтому двигатели, которые предлагают высокий крутящий момент, как правило, предпочтительнее, поскольку они могут приводить в движение тяжелые транспортные средства или более сложные механизмы, чем двигатели с низким крутящим моментом (чем больше вращающий момент, тем мощнее двигатель). Единица измерения вращательного момента в LEGO моторах – Н·см (произведение Ньютон на сантиметр). Значение вращающего момента у моторов LEGO «Technic» колеблется от 0,5 до 16,7 Н·см.

    Механическая мощность в некотором упрощении - это произведение крутящего момента и угловой скорости.

    механическая мощность = крутящий момент × угловая скорость

    N =

    Мощность двигателя при нормальной скорости вращения есть величина постоянная, поэтому M = N / ω , т.е. крутящий момент двигателя обратно пропорционален угловой скорости вала двигателя.

    В практических расчетах зависимость между мощностью, скоростью вращения вала и крутящим моментом на валу определяется для электродвигателей формулой: М=5,8N/n, М – крутящий момент на валу, N - мощность, n - скорость вращения вала.

    Таким образом, для того чтобы при той же мощности двигателя, которой мы располагаем, увеличить крутящий момент, надо снизить скорость вращения вала. Сделать это можно с помощью специальных механизмов, называемых редукторами (от английского слова reduce – уменьшать, понижать).

    Механизмы, предназначенные для увеличения скорости, а, следовательно, и для уменьшения крутящего момента на валу, называются мультипликаторами (multiplication – умножение, увеличение).

    Рассмотрим модель колесного робота – мы хотим, чтобы он был легким и быстрым. Так как легкому роботу не требуется большого крутящего момента для перемещения, то мы можем преобразовать скорость вращения вала двигателя за счет использования пары зубчатых колес. Используя выше приведенное правило, нам необходимо на вал двигателя поставить шестерню большего диаметра (ведущая шестерня), а в качестве ведомой использовать шестерню меньшего диаметра, при этом мы уменьшим крутящий момент и увеличим скорость.

    Вопрос: как измениться крутящий момент и скорость, если в качестве ведущего колеса использовать шестерню меньшего диаметра, чем у ведомой шестерни?

    Зубчатые передачи

    Зубчатой передачей называется механизм, служащий для передачи вращательного движения с одного вала на другой и изменения частоты вращения посредством зубчатых колес и реек.

    Рис. 212 Зубчатые передачи

    Количество зубьев на зубчатых колесах может быть разным. Самое малое число зубьев – шесть. Зубчатые колеса с таким числом зубьев назывались шестеренками. Позже это название стало применяться ко всем зубчатым колесам с любым количеством зубьев.

    Рис. 213 Примеры крепления зубчатых колес с балками

    Итак, зубчатая передача может:

    v передавать вращательное движение;

    v изменять число об/мин;

    v увеличивать или уменьшать силу вращения;

    v менять направление вращения.

    В зависимости от формы колес и их взаимного расположения различают следующие виды зубчатых передач : цилиндрическая, коническая, червячная, реечная, планетарная.

    Цилиндрическая передача состоит из двух или нескольких цилиндрических колес установленных на параллельных валах.

    Рис. 215 Цилиндрическая передача

    Коническая передача состоит из двух конических колес, находящихся на двух валах, оси которых пересекаются. Угол пересечения может быть любой, но обычно он равен 90º.

    Рис. 216 Коническая передача

    Червячная передача (зубчато-винтовая передача) - механическая передача, осуществляющаяся зацеплением червяка и сопряжённого с ним червячного колеса. Червячная передача применяется для перекрещивающихся, но не пересекающихся валов. Червячная передача состоит из винта (червяка) и зубчатого колеса.


    Рис. 217 Червячная передача

    Червячная передача обладает рядом уникальных свойств. Во-первых, она может быть использована только в качестве ведущего зубчатого колеса, и никак не может быть ведомой шестерней. Это очень удобно для механизмов, которые нужны для поднятия и удержания груза без нагрузки на двигатель. Существует много возможных применений этого свойства червячной передачи, например, во многих видах подъемных кранов и погрузчиков, железнодорожных барьеров, разводных мостах, лебедках. Очень широко червячная передача LEGO используется в конструкции захвата для робота-манипулятора.

    Во-вторых, характерной особенностью червячной передачи является то, что она имеет большое передаточное отношение. Поэтому червячные передачи используются как понижающее всякий раз, когда есть очень высокий крутящий момент.

    Вывод: червячная передача имеет ряд преимуществ:

    v Занимает мало места.

    v Имеет свойство самоторможения.

    v Во много раз снижает число об/мин.

    v Увеличивает силу привода.

    v Изменяет направление вращательного движения на 90°.

    Реечная передача – механическая передача, преобразующая вращательное движение зубчатого колеса в поступательное движение рейки и наоборот. Рейку можно рассматривать как вытянутую в прямую линию окружность большого зубчатого колеса.


    Следует отметить, что существует в наборах LEGO коронная шестерня и шестерни с внутренним зацеплением.

    Коронная шестерня - это особый тип шестерен, их зубья находятся на боковой поверхности. Такая шестерня работает, как правило, в паре с прямозубой шестерней.



    Рис. 220 Соединения короной шестерни и цилиндрических колес с 8 и 24 зубьями

    Шестерни с внутренним зацеплением имеют зубья, нарезанные с внутренней стороны. При их использовании происходит одностороннее вращение ведущей и ведомой шестерен. В данной зубчатой передаче меньше затрат на трение, а значит выше коэффициент полезного действия*. Применяются зубчатые колеса с внутренним зацеплением в ограниченных по габаритам механизмах, в планетарных передачах, в приводе робота манипулятора.

    Рис. 221 Шестерня с внутренним зацеплением

    Особенность шестерни с внутренним зацеплением LEGO - наличие зубьев на внешней стороне, поэтому ее можно использовать в передачах как цилиндрическое колесо с 56 зубьями.

    Рис. 222 Способы соединения колеса с внутренним зацеплением с цилиндрической шестерней, колесом с короной и «червяком»

    Рис. 223 Способ соединения колеса с внутренним зацеплением с мотором

    Планетарная передача

    Планетарная передача (дифференциальная передача) - механическая система, состоящая из нескольких планетарных зубчатых колёс (шестерён), вращающихся вокруг центральной, солнечной, шестерни. Обычно планетарные шестерни фиксируются вместе с помощью водила. Планетарная передача может также включать дополнительную внешнюю кольцевую (коронную) шестерню, имеющую внутреннее зацепление с планетарными шестернями.

    Такая передача нашла широкое применение, например, она используется в кухонной технике или автоматической коробке передач автомобиля.

    Основными элементами планетарной передачи можно считать следующие:

    v Солнечная шестерня: находится в центре;

    v Водило: жёстко фиксирует друг относительно друга оси нескольких планетарных шестерён (сателлитов) одинакового размера, находящихся в зацеплении с солнечной шестерней;

    v Кольцевая шестерня: внешнее зубчатое колесо, имеющее внутреннее зацепление с планетарными шестернями.

    Рис. 224 Пример планетарной передачи: водило неподвижно, солнце ведущее, корона ведомая

    В планетарной передаче крутящий момент передается с помощью каких-либо (в зависимости от выбранной передачи) двух ее элементов, из которых один является ведущим, второй - ведомым. Третий элемент при этом неподвижен (таблица 8).

    Таблица 8. Элементы планетарной передачи

    Неподвижный

    Ведущий

    Ведомый

    Передача

    Корона

    Понижающая

    Повышающая

    Солнце

    Понижающая

    Повышающая

    Водило

    Реверс, понижающая

    Реверс, повышающая

    Реверс - изменение хода механизма на обратный, противоположный.

    Рис. 225 Пример конструкции планетарной передачи: корона неподвижна, водило ведущее, солнце ведомое

    Механические передачи с гибкими элементами

    Для передачи движения между сравнительно далеко расположенными друг от друга валами применяют механизмы, в которых усилие от ведущего звена к ведомому передается с помощью гибких звеньев. В качестве гибких звеньев применяются ремни, шнуры, цепи различных конструкций.

    Передачи с гибкими звеньями могут обеспечивать постоянное и переменное передаточное отношение со ступенчатым или плавным изменением его величины.

    Ременная передача

    Ременная передача состоит из двух шкивов, закрепленных на валах, и ремня, охватывающего эти шкивы. Нагрузки передается за счет сил трения, возникающих между шкивами и ремнем вследствие натяжения последнего. Ременная передача мало чувствительна к взаимному положению ведущего и ведомого валов. Их можно даже повернуть под прямым углом друг к другу или ремень надеть в виде перекрещенной петли, и тогда направление вращения ведомого вала измениться.



    Рис. 226 Ременная передача

    Цепная передача

    Рис. 227 Цепная передача

    Фрикционная передача

    Рис. 228 Фрикционная передача

    При фрикционной передаче вращение от одного колеса к другому передается при помощи силы трения. Оба колеса прижимаются друг к другу с некоторой силой и вследствие возникающего между ними трения одно вращает другое.

    Фрикционные передачи широко применяются в машинах. Недостаток фрикционной передачи: большая сила, давящая на колеса, вызывающая дополнительное трение в машине, а, следовательно, требующая и дополнительную силу для вращения.

    Кроме того, колеса при вращении, как бы они ни были прижаты друг к другу, дают проскальзывание. Поэтому там, где требуется точное соотношение чисел оборотов колес, фрикционная передача себя не оправдывает.

    Проект «Автоматический шлагбаум»:

    1. Сконструируйте модель автоматического шлагбаума.

    Технические условия:

    б) в конструкции используется червячная передача;

    в) автоматическое поднимание и опускание стрелы шлагбаума должно происходить при помощи ультразвукового датчика.

    4. В рамках робототехнического кружка изготовьте автоматический шлагбаум.

    6. В рабочей тетради составьте описание автоматического шлагбаума.

    Проект «Поворотная платформа»:

    1. Сконструируйте модель поворотной платформы.

    Технические условия:

    а) в модель входит один сервомотор, микроконтроллер NXT;

    б) в конструкции используется шестерня с внутренним зацеплением;

    в) автоматический поворот платформы происходит с помощью датчика касания (датчика освещенности).

    2. В рабочей тетради выполните эскиз модели.

    3. Обсудите проект с учителем.

    4. В рамках робототехнического кружка изготовьте поворотную платформу.

    5. С помощью языка программирования NXT-G напишите программу для управления моделью.

    6. В рабочей тетради составьте описание поворотной платформы.

    Проект «Раздвижные автоматические двери»:

    1. Сконструируйте модель раздвижных автоматических дверей.

    Технические условия:

    а) в модель входит один сервомотор, микроконтроллер NXT;

    б) в конструкции используется реечная передача;

    в) автоматическое открывание дверей происходит при помощи ультразвукового датчика (датчика освещенности).

    2. В рабочей тетради выполните эскиз модели.

    3. Обсудите проект с учителем.

    4. В рамках робототехнического кружка изготовьте модель раздвижных автоматических дверей.

    5. С помощью языка программирования NXT-G напишите программу для управления моделью.

    6. В рабочей тетради составьте описание модели раздвижных автоматических дверей.

    Виды механических передач и передаточных миханизмов

    Вращательное движение в машинах передается при помощи фрикционной, зубчатой, ременной, цепной и червячной передач. Будем условно называть пару, осуществляющую вращательное движение, колесами. Колесо, от которого передается вращение, принято называть ведущим, а колесо, получающее движение - ведомым.

    Всякое вращательное движение можно измерить оборотами в минуту. Зная число оборотов в минуту ведущего колеса, мы можем определить число оборотов ведомого колеса. Число оборотов ведомого колеса зависит от соотношения диаметров соединенных колес. Если диаметры обоих колес будут одинаковы, то и колеса будут крутиться с одинаковой скоростью. Если диаметр ведомого колеса будет больше ведущего, то ведомое колесо станет крутиться медленнее, и наоборот, если его диаметр будет меньше, оно будет делать больше оборотов. Число оборотов ведомого колеса во столько раз меньше числа оборотов ведущего, во сколько раз его диаметр больше диаметра ведущего колеса.

    Зависимость числа оборотов от диаметров колес.

    В технике при конструировании машин часто приходится определять диаметры колес и число их оборотов. Эти расчеты можно делать на основе простых арифметических пропорций. Например, если мы условно обозначим диаметр ведущего колеса через Д 1 , диаметр ведомого через Д 2 , число оборотов ведущего колеса через n 1 , число оборотов ведомого колеса через n 2 , то все эти величины выражаются простым соотношением:

    Д 2 /Д 1 = n 1 /n 2

    Если нам известны три величины, то, подставив их в формулу, мы легко найдем четвертую, неизвестную величину.

    В технике часто приходится употреблять выражения: "передаточное число" и "передаточное отношение". Передаточным числом называют отношение числа оборотов ведущего колеса (вала) к числу оборотов ведомого, а передаточным отношением - отношение между числами оборотов колес независимо от того, какое из них ведущее. Математически передаточное число пишется так:

    n 1 /n 2 = i или Д 2 /Д 1 = i

    где i - передаточное число. Передаточное число - величина отвлеченная и размерности не имеет. Передаточное число может быть любым - как целым, так и дробным.

    Фрикционная передача

    При фрикционной передаче вращение от одного колеса к другому передается при помощи силы трения. Оба колеса прижимаются друг к другу с некоторой силой и вследствие возникающего между ними трения вращают одно другое. Недостаток фрикционной передачи: большая сила, давящая на колеса, вызывающая дополнительное трение, а следовательно, требующая и дополнительную силу для вращения. Кроме того, колеса при вращении, как бы они ни были прижаты друг к другу дают проскальзывание. Поэтому там, где требуется точное соотношение чисел оборотов колес, фрикционная передача себя не оправдывает.

    Достоинства фрикционной передачи:
    Простота изготовления тел качения;
    Равномерность вращения и бесшумность работы;
    Возможность бесступенчатого регулирования частоты вращения и включения/выключения передачи на ходу;
    За счет возможностей проскальзывания передача обладает предохранительными свойствами.

    Недостатки фрикционной передачи:
    Проскальзывание, ведущее к непостоянству передаточного числа и потери энергии;
    Необходимость обеспечения прижима.

    Применение фрикционной передачи:
    В машиностроении чаще всего применяют бесступенчатые фрикционные передачи для бесступенчатого регулирования скорости.


    Фрикционные передачи:
    а - лобовая передача, б - угловая передача, в - цилиндрическая передача.

    В самодельных устройствах фрикционная передача может быть широко использована. Особенно приемлемы передачи цилиндрическая и лобовая. Колеса для передач можно делать деревянные. Для лучшего сцепления, рабочие поверхности колес следует "обшить" слоем мягкой резины толщиной в 2-3 мм. Резину можно или прибить мелкими гвоздиками, или приклеить клеем.

    Зубчатая передача

    В зубчатых передачах вращение от одного колеса к другому передается при помощи зубьев. Зубчатые колеса вращаются намного легче фрикционных. Объясняется это тем, что здесь нажима колеса на колесо совсем не требуется. Для правильного зацепления и легкой работы колес профиль зубца делают по определенной кривой, называемой эвольвентой.


    Диаметр начальной окружности является основным расчетным диаметром зубчатых колес. Расстояние, взятое по начальной окружности между осями соседних зубцов, между осями впадин или от начала одного зубца до начала другого, называется шагом зацепления. Разумеется, что шаги у зацепляющихся шестерен должны быть равны.

    Передаточное число в зубчатых колесах может выражаться и через число зубцов:

    i = z 2 /z 1

    где z 2 - число зубцов ведомого колеса, z 1 - число зубцов ведущего колеса.

    Есть в шестернях еще одна очень важная величина, которую именуют модулем. Модулем называют отношение шага к величине? (3,14) или отношение диаметра начальной окружности к числу зубцов на колесе. Модуль, шаг и другие величины шестерен измеряются в миллиметрах. Колеса с одинаковым модулем, с любым количеством зубцов дают нормальное зацепление. Модули зубчатых колес берутся не произвольно. Величины их стандартизированы.

    Передаточное число шестеренчатой передачи берется обычно в определенных пределах. Оно колеблется до 1:10. При увеличении передаточного числа одна из шестерен делается очень большой, механизм получается громоздким. Но иногда бывает нужно получить очень большое передаточное число, которое одной парой шестерен создать трудно. В этом случае ставится несколько пар и передаточное число распределяется между ними.

    Иногда в передачах малую шестерню требуется сделать особенно уменьшенной, например в часах, в приборах. В этих случаях шестерню с валом делают из одного куска. Такую цельную шестерню принято называть трибком (трибок).

    Часто в машинах применяют цилиндрические шестерни, у которых зубец идет не по оси вращения, а под некоторым углом (г). Такие шестерни работают на больших скоростях очень плавно, и зубцы их выносят большую нагрузку. Колеса с косыми зубцами носят название косозубых цилиндрических колес. Еще более плавный ход при большой прочности зубцов дают так называемые шевронные колеса (д). Зубцы у этих колес скошены в обе стороны, расположены "в елочку".

    Шестеренчатая передача применяется не только с параллельными валами, когда используются так называемые цилиндрические шестерни, но и тогда, когда валы идут под любым углом. Такая передача под углом называется конической зубчатой передачей, а шестерни - коническими (ж).

    Конические шестерни, так же как и цилиндрические, бывают со спиральным косым зубцом (з). Такие шестерни обычно применяются в автомобилях (для плавности работы). В зубчатых передачах можно применить шестерни с рейкой. Для периодического вращения может применяться шестеренчатая пара, у которой ведущая шестерня имеет неполное число зубцов.

    Реечное зацепление:
    а - шестерня с рейкой, б - разновидности реечных зацеплений.

    Ведущие шестерни встречаются и с одним зубцом. Такие передачи очень часто применялись в счетных механизмах. Ведущая шестерня имеет один зубец, а ведомая - десять, и, таким образом, за один оборот ведущей шестерни ведомая повернется всего на одну десятую оборота. Чтобы повернуть ведомую шестерню на один оборот, ведущая должна сделать десять оборотов.

    Механизмы для периодического вращения:
    а - шестерня с одним зубом, б - мальтийский крест.

    Достоинства зубчатой передачи:
    Значительно меньшие габариты, чем у других передач;
    Высокий кпд (потери в точных, хорошо смазываемых передачах 1-2%);
    Большая долговечность и надёжность.

    Недостатки зубчатой передачи:
    Шум при работе;
    Необходимость точного изготовления.

    Применение зубчатой передачи:
    Наиболее распространённый вид механических передач. Их применяют для передачи мощностей - от ничтожно малых до десятков тысяч кВт.

    К разобранному типу передач можно отнести и так называемое мальтийское зацепление, или мальтийский крест (б). Механизм мальтийского креста применяется для периодического вращения.

    Ременная передача

    Ременная передача, как и шестеренчатая, встречается очень часто. Ремень, натянутый на шкивы, охватывает какую-то их часть. Эта облегающая часть (дуга) носит, название угла обхвата. Чем больше будет угол обхвата, тем лучше образуется сцепление, лучше и надежнее будет вращение шкивов. При малом угле обхвата может получиться так, что ремень на малом шкиве станет проскальзывать, вращение будет передаваться плохо или его совсем не будет. Угол обхвата зависит от соотношения размеров шкивов и их расстояния друг от друга. На рисунках (а, б) показано, как меняются углы обхвата. Когда требуется увеличить угол обхвата, у передачи ставят нажимной шкив-ролик (в).


    Ременная передача:
    а,б - зависимость углов обхвата от размера и расположения шкивов; в - передача с натяжным роликом; г - открытая передача; д - перекрёстная передача; е - полуперекрёстная передача; ж - угловая передача; з - спаренная передача; и - ступенчатая передача; к - плоский ремень; л - круглый ремень; м - трапецоидальный ремень; н - расположение ремней на шкивах.

    В зависимости от расположения валов и ремня ременная передача бывает разных видов.

    Открытая передача (г). Оба шкива при такой передаче вращаются в одну сторону.

    Перекрестная передача (д). Такую передачу применяют, когда требуется изменить вращение ведомого шкива. Шкивы вращаются навстречу друг другу.

    Полуперекрестная передача (е) применяется, когда валы лежат не параллельно, а под углом.

    Угловая передача (ж) образуется, когда валы идут под углом, но лежат как бы в одной плоскости. При этой передаче для получения надлежащего направления ремня обязательно устанавливают ролики.

    Спаренная передача (з). При этой передаче с одного ведущего шкива могут идти ремни на несколько ведомых шкивов.

    Кроме перечисленных передач, бывает еще и ступенчатая передача (и). Она применяется тогда, когда требуется изменять число оборотов ведомого вала. Оба шкива в этой передаче делаются ступенчатыми. Переставляя ремень на ту или иную пару ступеней, меняют число оборотов ведомого вала. При этом длина ремня остается неизменной.

    По своему профилю ремни бывают плоские, круглые и трапецеидальные (к, л, м).

    Передаточное число ременных передач берется в пределах 1:4, 1:5 и только в исключительном случае - до 1:8.

    При расчете ременной передачи учитывается скольжение ремня по шкивам. Это проскальзывание выражается в пределах 2-3%. Чтобы получить нужные обороты, диаметр ведомого шкива уменьшают в этих же пределах.

    Шкивы можно cделать из фанеры или легких металлов.

    Достоинства ременной передачи:
    Простота конструкции;
    Возможность расположения ведущего и ведомого шкивов на больших расстояниях (более 15 метров);

    Предохранение механизмов от перегрузки за счёт упругих свойств ремня и его способности проскальзывать по шкивам;
    Возможность работы с большими угловыми скоростями.

    Недостатки ременной передачи:
    Постепенное вытягивание ремней, их недолговечность (при больших скоростях работает от 1000 до 5000 часов);
    Непостоянство передаточного отношения (из-за неизбежного проскальзывания ремня);
    Относительно большие размеры.

    Применение ременной передачи:
    Используется очень часто, от бытовой электроники до промышленных механизмов мощностью до 50 кВт.

    Червячная передача

    Червячная передача служит для получения вращения между валами, пересекающимися в одной плоскости. Передача состоит из винта (червяка) и винтового колеса, которые находятся в зацеплении. При вращении червяка витки ведут зубцы колеса и заставляют его вращаться. Обычно вращение от червяка передается колесу. Обратная передача почти не встречается из-за самоторможения.


    Червячная передача

    Червячная передача применяется чаще всего при больших передаточных числах в пределах от 5 до 300. Благодаря большому передаточному числу червячная передача широко применяется в качестве механизма для снижения числа оборотов - редуктора.

    Обычно червяк соединяется при помощи муфты с электромотором, а вал червячного колеса соединяется с машинами (станком, лебедкой, транспортером и пр.), которым он и передает необходимое вращение. Конструктивно червячный редуктор оформляют в самостоятельный механизм, помещенный в закрытый корпус.

    Передаточное число червячной передачи (i ), зависит от числа заходов червяка и количества зубцов на колесе. Его можно легко вычислить по формуле:

    где Z - число зубцов винтового колеса, а K - число заходов червяка. Решим пример: мотор совершает n 1 = 1500 об/мин , на валу червячной шестерни нужно получить n 2 = 50 об/мин . Червяк двухзаходный, то есть K = 2 . Необходимо определить передаточное число и количество зубцов на винтовой шестерне. Передаточное число определится из формулы:

    i = n 1 /n 2 = 1500/50 = 30

    Число зубцов на шестерне Z = i*K = 30*2 = 60 зубцов .

    Редукторы можно сделать по-разному. У одних червяк делается из обыкновенного крепежного винта, у других он изготовляется навивкой на стержень в виде пружины проволоки или узкой медной полоски (на ребро). Для прочности витки к стержню следует припаивать. Червячные шестерни подбирают от ненужного часового механизма. Но их можно сделать и самим: нарезать напильником из латунного или дюралевого диска.

    При изготовлении редукторов нужно следить за тем, чтобы винт и шестерня при вращении не имели бы осевого смещения. В быстроходных редукторах его валы следует устанавливать на подшипниках.

    Достоинства червячной передачи:
    Плавность и бесшумность работы;
    Большое передаточное число.

    Недостатки червячной передачи:
    Усиленное тепловыделение;
    Повышенный износ;
    Склонность к заеданию;
    Сравнительно низкий кпд.

    Применение червячной передачи:
    Преимущественно используется, когда требуется большое передаточное число.

    Цепная передача

    Цепная передача по сравнению с ременной удобна тем, что не дает проскальзывания и позволяет соблюдать правильность передаточного числа. Цепная передача осуществляется только при параллельных валах.

    а - пластинчатая роликовая цепь, б - бесшумная цепь.

    Основной величиной цепной передачи является шаг. Шагом считается расстояние между осями роликов у цепи или расстояние между зубцами звездочки.

    Кроме роликовых цепей, в машинах широко применяются еще зубчатые, так называемые бесшумные цепи. Каждое звено их соединено из нескольких зубчатых пластин в ряд. Ширина этой цепи намного больше, чем роликовая. Звездочка такой передачи похожа на шестерню. Зубчатые цепи могут работать на больших скоростях.

    Допустимое передаточное число цепных передач может быть до 1:15. Самое малое число зубцов у звездочек берут: у роликовых цепей - 9, а у зубчатых - 13-15. Расстояние между осями звездочек принимают не менее полуторного диаметра большой звездочки.

    Цепь надевается на звездочки не туго, как ремни, а с некоторым провисанием. Для регулирования натяжения применяется натяжной ролик. Число оборотов ведомой звездочки зависит от соотношения зубцов на обеих звездочках.

    Достоинства цепной передачи:
    Меньшая чувствительность к неточностям расположения валов;
    Возможность передачи движения одной цепью нескольким звездочкам;
    Возможность передачи вращательного движения на большие расстояния.

    Недостатки цепной передачи:
    Повышенный шум и износ цепи при неправильном выборе конструкции, небрежном монтаже и плохом уходе.

    Храповые механизмы

    Кроме непрерывного вращательного движения, в машинах очень часто применяется прерывистое вращательное движение. Такое движение осуществляется при помощи так называемого храпового механизма. Основными частями храпового механизма являются: храповик (диск с зубцами), рычаг и собачка. Зубцы храповика имеют особую форму. Одна сторона у них сделана пологой, а другая отвесной или несколько поднутренной. Храповик насажен на вал неподвижно. Рычаг же, сидящий рядом с храповиком, может свободно качаться. На рычаге имеется собачка, которая одним концом лежит на храповике. С помощью шатуна или тяги от того или иного ведущего механизма рычаг приходит в качательное движение. При отклонении рычага влево собачка скользит свободно по пологому склону зубцов, не поворачивая храповик. При отходе вправо собачка упирается в уступ зубца и поворачивает храповик на некоторый угол. Так, непрерывно качаясь в ту и другую сторону, рычаг с собачкой приводит храповик с валом в периодическое вращательное движение. Для надежного прилегания собачки к храповику собачка снабжается нажимной пружиной.

    Но чаще бывает другое назначение храпового механизма - предохранения вала с храповиком от проворачивания. Так, у лебедки при подъеме груза храповик с собачкой не дают барабану провертываться обратно.


    Храповые механизмы:
    а - с односторонней собачкой; б - с перекидной собачкой.

    Иногда нужно получить вращение храповика не только в одну сторону, но и в другую. В этом случае зубцы у храповика делают прямоугольными, а собачку - перекидной (б). Перекинув собачку вправо или влево, можно изменить и вращение храповика.

    Число зубцов на храповике зависит от требуемого угла поворота. На какую часть окружности поворачивается храповик, столько делают и зубцов. Например, если на 60° - одну шестую долю окружности, то берут 6 зубцов; на 30° - одну двенадцатую долю - делают 12 зубцов и т.д. Меньше шести зубцов на храповике обычно не бывает.

    Храповик должен быть небольшим. Большой храповик потребует увеличения размаха рычага и большого хода кривошипа, качающего рычаг. Высоту зубца храповика следует брать в пределах 0,35-0,4 от шага. Профиль зубца делают остроугольным, пологую сторону зубца - прямой, но ее можно и очерчивать по радиусу. Рычагов лучше брать два, помещая их по обеим сторонам храповика. При двух рычагах собачка и поводок от кривошипа встанут между ними и уменьшат перекос при работе. Нажим собачки можно осуществлять не только пружиной, но и резинкой. Конец собачки следует хорошо скашивать, чтобы она надежнее упиралась в зубец.

    Преобразование вращательного движения в прямолинейное

    Кривошипно-шатунные механизмы

    Кривошипно-шатунные механизмы служат для преобразования вращательного движения в возвратно-поступательное и наоборот. Основными деталями кривошипно-шатунного механизма являются: кривошипный вал, шатун и ползун, связанные между собой шарнирно (а). Длину хода ползуна можно получить любую, зависит она от длины кривошипа (радиуса). Если длину кривошипа мы обозначим через букву А , а ход ползуна через Б , то можем написать простую формулу: 2А = Б , или А = Б/2 . По этой формуле легко найти и длину хода ползуна и длину кривошипа. Например: ход ползуна Б = 50 мм , требуется найти длину кривошипа А . Подставляя в формулу числовую величину, получим: А = 50/2 = 25 мм , то есть длина кривошипа равна 25 мм.

    а - принцип действия кривошипно-шатунного механизма,
    б - одно-коленчатый вал, в - много-коленчатый вал,
    г - механизм с эксцентриком.

    В кривошипно-шатунном механизме вместо кривошипного вала часто применяют коленчатый вал. От этого сущность действия механизма не меняется. Коленчатый вал может быть как с одним коленом, так и с несколькими (б, в).

    Видоизменением кривошипно-шатунного механизма может быть также эксцентриковый механизм (г). У эксцентрикового механизма нет ни кривошипа, ни колен. Вместо них на вал насажен диск. Насажен же он не по центру, а смещено, то есть эксцентрично, отсюда и название этого механизма - эксцентриковый.

    В некоторых кривошипно-шатунных механизмах приходится менять и длину хода ползуна. У кривошипного вала это делается обычно так. Вместо цельного выгнутого кривошипа на конец вала насаживается диск (планшайба). Шип (поводок, на что надевается шатун) вставляется в прорез, сделанный по радиусу планшайбы. Перемещая шип по прорезу, то есть удаляя его от центра или приближая к нему, мы меняем размер хода ползуна.

    Ход ползуна в кривошипно-шатунных механизмах совершается неравномерно. В местах "мертвого хода" он самый медленный.

    Кривошипно-шатунные механизмы применяются в двигателях, прессах, насосах, во многих сельскохозяйственных и других машинах.

    Кулисные механизмы

    Возвратно-поступательное движение в кривошипных механизмах можно передавать и без шатуна. В ползунке, которая в данном случае называется кулисой, делается прорез поперек движения кулисы. В этот прорез вставляется палец кривошипа. При вращении вала кривошип, двигаясь влево и вправо, водит за собой и кулису.

    Кулисные механизмы:
    а - принудительная кулиса, б - эксцентрик с пружинным роликом, в - качательная кулиса.

    Вместо кулисы можно применить стержень, заключенный в направляющую втулку. Для прилегания к диску эксцентрика стержень снабжается нажимной пружиной. Если стержень работает вертикально, его прилегание иногда осуществляется собственным весом.

    Для лучшего движения по диску на конце стержня устанавливается ролик.

    Кулачковые механизмы

    Кулачковые механизмы служат для преобразования вращательного движения (кулачка) в возвратно-поступательное или другой заданный вид движения. Механизм состоит из кулачка - криволинейного диска, насаженного на вал, и стержня, который одним концом опирается на криволинейную поверхность диска. Стержень вставлен в направляющую втулку. Для лучшего прилегания к кулачку, стержень снабжается нажимной пружиной. Чтобы стержень легко скользил по кулачку, на его конце устанавливается ролик.

    Кулачковые механизмы:
    а - плоский кулачек, б - кулачек с пазом, в - кулачек барабанного типа, г - серцевидный кулачек, д - простейший кулачек.

    Но бывают дисковые кулачки другой конструкции. Тогда ролик скользит не по контуру диска, а по криволинейному пазу, вынутому сбоку диска (б). В этом случае нажимной пружины не требуется. Движение ролика со стержнем в сторону осуществляется самим пазом.

    Кроме рассмотренных нами плоских кулачков (а), можно встретить кулачки барабанного типа (в). Такие кулачки представляют собой цилиндр с криволинейным пазом по окружности. В пазу установлен ролик со стержнем. Кулачок, вращаясь, водит криволинейным пазом ролик и этим сообщает стержню нужное движение. Цилиндрические кулачки бывают не только с пазом, но и односторонние - с торцовым профилем. В этом случае нажим ролика к профилю кулачка производится пружиной.

    В кулачковых механизмах вместо стержня очень часто применяются качающиеся рычаги (в). Такие рычаги позволяют менять длину хода и его направление.

    Длину хода стержня или рычага кулачкового механизма можно легко рассчитать. Она будет равна разнице между малым радиусом кулачка и большим. Например, если большой радиус равен 30 мм, а малый 15, то ход будет 30-15 = 15 мм. В механизме с цилиндрическим кулачком длина хода равняется величине смещения паза вдоль оси цилиндра.

    Благодаря тому, что кулачковые механизмы дают возможность получить разнообразнейшие движения, их часто применяют во многих машинах. Равномерное возвратно-поступательное движение в машинах достигается одним из характерных кулачков, который носит название сердцевидного. При помощи такого кулачка происходит равномерная намотка челночной катушки у швейной машины.

    Шарнирно-рычажные механизмы

    Часто в машинах требуется изменить направление движения какой-либо части. Допустим, движение происходит горизонтально, а его надо направить вертикально, вправо, влево или под каким-либо углом. Кроме того, иногда длину хода рабочего рычага нужно увеличить или уменьшить. Во всех этих случаях применяют шарнирно-рычажные механизмы.

    Рычаги и их применение в шарнирно-рычажных механизмах.

    На рисунке показан шарнирно-рычажный механизм, связанный с другими механизмами. Рычажный механизм получает качательное движение от кривошипно-шатунного и передает его ползуну. Длину хода при шарнирно-рычажном механизме можно увеличить за счет изменения длины плеча рычага. Чем длиннее плечо, тем больше будет его размах, а следовательно, и подача связанной с ним части, и наоборот, чем меньше плечо, тем короче ход.

    © "Энциклопедия Технологий и Методик" Патлах В.В. 1993-2007 гг.