Для чего нужен дифференциал. Дифференциал. Назначение и основные типы. Устройство повышенного сопротивления

Его основное предназначение заключается в распределении, изменении и передачи крутящего момента, а при необходимости, для обеспечения вращения двух потребителей с различными угловыми скоростями.

Межколесный дифференциал – это дифференциал, предназначенный для привода ведущих колес, если же он установлен между ведущими мостами в полноприводном автомобиле – межосевой интервал.

Как правило, дифференциал автомобиля располагается в следующим местах:

  • Привод ведущих мостов в полноприводном автомобиле – в раздаточной коробке
  • Привод ведущих колес в полноприводном автомобиле – в картере заднего и переднего моста
  • Привод ведущих колес в переднеприводном автомобиле — в коробке передач
  • Привод ведущих колес в заднеприводном автомобиле – картер заднего моста

В основе дифференциала лежит планетарный редуктор. Используемый в редукторе вид зубчатой передачи условно делит дифференциал на три следующих вида:

  • Червячный
  • Цилиндрический
  • Конический

Червячный – самый универсальный дифференциал и может быть установлен как между осями, так и между колесами. Цилиндрический тип, как правило, располагается в автомобилях между осями. Конический тип применяется в основном как межколесный.

Различают также несимметричный и симметричный дифференциалы автомобиля. Несимметричный тип устанавливается между двумя приводными осями и позволяет передавать крутящий момент в различных пропорциях. Симметричный тип, как правило, устанавливается на главных передачах и позволяет передает на два колеса равный по значению крутящий момент.

Устройство автомобильного дифференциала

Основными элементами дифференциала являются:

  • Полуосевые шестерни
  • Шестерни сателлитов
  • Корпус

Схема дифференциала переднеприводного автомобиля:
1 — ведомая шестерня главной передачи; 2 — фрагмент ведущей шестерни главной передачи; 3 — ось сателлитов; 4 — сателлит; 5 — корпус дифференциала; 6 — правый фланцевый вал; 7 — сальник; 8 — конический роликовый подшипник; 9 — полуосевая шестерня; 10 — левый фланцевый вал; 11 — фрагмент картера коробки передач.

Шестерни сателлитов по своему принципу работы напоминают планетарный редуктор и служат для соединения между собой корпуса и полуосевой шестерни. Последние в свою очередь соединяются с помощью шлицов с ведущими колесами. В различных конструкциях используются четыре или два сателлита, в легковых автомобилей чаще используется второй вариант.

Чашка дифференциала или корпус – ее основное предназначение заключается в том, чтобы передавать через сателлиты крутящий момент от главной передачи к полуосевым шестерням. Внутри него располагаются оси для вращения сателлит.

Солнечные или полуосевые шестерни – предназначены для передачи крутящего момента с помощью полуосей на ведущие колеса. Левая и правая шестерни могут иметь как одинаковое, так и различное между собой число зубцов. В свою очередь шестерни с различным число зубов используются для образование несимметричного дифференциала, а с одинаковым количеством – для симметричного.

Принцип работы автомобильного дифференциала

Работает дифференциал следующим образом: вращая одно из ведущих колес автомобиля, второе начнет вращаться в противоположном направлении, но при этом должно выполняться условие неподвижности карданного вала. В данном случае стеллиты вращаются в свих осях, играя роль шестерни.

Если завести двигатель и включить сцепление и любую из передач, начнет свое вращение карданный вал, передающий свой крутящий момент через цилиндрические и конические шестерни коробке дифференциала.

Таким образом, во время движения автомобиля по кривой траектории одно колесо замедляет свой ход, второе наоборот увеличивает его. В результате устраняется пробуксовка и скольжение колес и каждое из них вращается с той скоростью, которая необходима для безопасного движения.

Во время движения автомобиля по прямой, ничего особенного не происходи и дифференциал передает крутящий момент на оба колеса в одинаковом соотношении. Шестерни полуосевые вращаются с одинаковой угловой скоростью, так как сателлиты в этом случае находятся в неподвижном состоянии.

При движении на скользких покрытиях дифференциал обладает одним существенным недостатком – он может вызвать боковой занос машины, так как на буксующем колесе низкая сила сцепления с покрытием и оно начинает вращаться в холостую.

Самые простейшие дифференциалы автомобиля обладают еще одним недостатком. При попадании грязи или прочих сторонних элементов между шлицами крутящий момент может передаваться в различном соотношении, даже 0 к 100. Таким образом, одно колесо останется в абсолютно статичном положение.

Современные модели практически лишены данного недостатка. Их устройство отличается ручной или автоматической более жесткой . Более того, во многих легковых современных машинах устанавливаются системы стабилизации и курсовой устойчивости, позволяющие оптимизировать в зависимости от траектории движения автомобиля распределение крутящего момента.

Как работает дифференциал — видео:

На этом всё, теперь вы знаете устройство дифференциала.

Многие, кто собрался приобретать внедорожник, при выборе определённой модели, конечно могли столкнуться с термином «блокировка дифференциала». Но что это? Как это? И каков принцип работы и надобность этого самого дифференциала? Как показывает практика, знают не все будущие потенциальные «джиповоды».

В этой статье мы расскажем о том, что из себя представляет дифференциал и зачем он в автомобиле. Каких разновидностей он бывает и на какие автомобили предусмотрена его установка?

История дифференциала

Появление дифференциала в автомобильном мире не заставило себя ждать. Спустя лишь несколько лет, после того, как с конвейера стали сходить первые автомобили с двигателем внутреннего сгорания (ДВС). Давно ведь дело обстояло не так сладко, как сейчас и первые автомобильные образцы, которые работали при помощи двигателя, очень плохо управлялись.

Колёса, расположенные на одной оси, во время поворота вращались с одинаковой угловой скоростью, а это уже приводило к тому, что колесо, идущее по внешнему диаметру, сильно пробуксовывало. Решили эту проблему достаточно просто: заимствованием дифференциала у паровых повозок.

Этот механизм был изобретён во Франции в 1828 году инженером Оливером Пекке-Ром. Это было устройство, которое состояло из валов и шестерней. Через него крутящий момент от ДВС передавался на ведущие колёса.Но вот случилась ещё одна незадача – стали пробуксовывать колёса, которые утрачивали сцепление с дорожным покрытием. Зачастую это проявлялось во время движения по дороге с обледенелыми участками.

Колесо, которое находилось на льду, вращалось с большей скоростью, чем колесо, что оставалось на более пригодной для движения поверхности. Это и приводило к заносу. После конструкторы и стали думать о том, как настроить дифференциал, чтобы колёса вращались с одинаковой скоростью, дабы воспрепятствовать появлению заносов.

Первым человеком, проводившим эксперименты над дифференциалом с минимальным проскальзыванием, стал ни кто иной как Фердинанд Порше. Для того, чтобы рынок повидал кулачковый дифференциал – «детище» Порше с ограниченным проскальзыванием, потребовалось не менее трёх лет. Им оснащали первые модели автомобилей марки . В следующие десятилетия инженерами были разработаны разнообразные виды дифференциалов, о которых мы расскажем Вам далее.

Принцип работы и устройство

Давайте, пожалуй, начнём с типа дифференциала, который является самым простым для рассмотрения – открытого дифференциала. Мы начнем с простейшего типа дифференциала, называемого открытым дифференциалом. Итак, конструкция дифференциала включает в себя следующие части:

- Ведущий вал. Его задача заключается в передаче крутящего момента. Вал ведёт его от трансмиссии к самому началу дифференциала.

- Ведущая шестерня ведущего вала. Шестерня в форме косозубого конуса, необходимая для сцепки дифференциальных механизмов.

- Коронная шестерня. Элемент, являющийся ведомым. Так же имеет форму конуса и вращается ведущей шестернёй. Система вместе взятых ведущей и ведомой шестерней называется главной передачей. Она служит на завершающем этапе по уменьшению скорости вращения, которое достигает колёс в конечном счёте. Ведущая шестерня в своих размерах гораздо уступает коронной , поэтому для осуществления одного оборота ведомой, первой необходимо совершить не один оборот вокруг своей оси.

- Шестерни полуосей. Являются последним рубежом передачи вращения ведущего вала колёсам.

- Сателлиты – это планетарный механизм, осуществляющий ключевую роль в обеспечении разной угловой скорости колёс при осуществлении поворота.

Когда Вы двигаетесь по прямой на своём автомобиле, то весь дифференциальный механизм вращается с единой скоростью: входной вал вращается с идентичной скоростью, что и полуоси, соответственно, с той же скоростью происходит и вращение самих колёс. Но только Вы повернёте руль, ситуация моментально в корне изменяется. Главными игроками теперь выступают сателлиты, которые разблокировываются под воздействием разности нагрузок на колёса , когда, например, одно колесо начинает пробуксовывать и поэтому движется быстрее.

Вся мощность мотора проходит непосредственно через них. А в результате того, что сателлиты представляют из себя две шестерни, которые независимы, то происходит передача разной частоты вращения двум полуосям. Но мощность не разделяется поровну, а передаётся на колесо, что движется во внешнем крае поворота машины . Следовательно оно и начинает крутиться гораздо быстрее за счёт количественного прибавления оборотов. И разность в распределении мощностей между колёсами тем больше, чем меньше радиус поворота автомобиля, то есть чем сильнее Вы выворачиваете рулевое колесо.

Что такое блокировка дифференциала и как она работает

Блокировка дифференциала – это один из эффективнейших способов повышения внедорожных характеристик автомобиля. Любой автомобиль, который предназначается напрямую или косвенно для бездорожья, оснащается конструкторами на заводе механизмом, который блокирует межосевой дифференциал. Так же автомобили оснащают механизмами, блокирующими передний и задний мосты.

Блокировка данного механизма, как и любое технологическое решение имеет свои преимущества и недостатки. Чтобы понять, когда необходимо использовать блокировку дифференциалов, а какие случаи просто запрещают её использование, нужно разобраться в принципах, на которых её действие основывается.

Попробуйте в зимнее заснеженное время совершить с места прыжок в длину. Ага. А вот и не получается, а всё потому, что одна нога у вас оказалась на скользкой оледенелой поверхности, а вторая на сухом асфальте. Вот из-за этого и не получилось совершить чемпионский прыжок. Одна нога выскользнула из под Вас, а мозг не сориентировался вовремя и не дал команду вложить всю силу для толчка в другую ногу. Итог этого эксперимента достаточно весел и комичен: ноги разъехались и Вы чуть не рухнули на пятую точку.

Так что же сделать в данном случае, чтобы обе ноги возымели возможность прекрасно оттолкнуться от земли? А всё очень и очень просто. Необходимо просто две толчковые ноги превратить в одну, связав их прочно между собой прочным ремнём или жгутом. Теперь они будут работать, как одно целое и будет использоваться максимальная сила толчка от одной стабильной опорной поверхности с хорошим сцеплением. Аналогичный процесс происходит и в автомобиле в момент взаимодействия его ведущих колёс с дорогой.

Давайте представим ситуацию при которой заднеприводный автомобиль остановился случайным образом так, что его левое колесо оказалось на скользкой поверхности, а правое на асфальте. Как Вам известно, стандартный межосевой дифференциал малого трения , который находится на заднем мосту автомобиля, всегда предоставляет колёсам равную окружную силу. Левое колесо, находящееся на льду, не в состоянии сдвинуться со скользкой поверхности с применением больших усилий в силу недостаточности сцепления.

И-за этого дифференциал не в состоянии предоставить ему огромное усилие, так как это просто невозможно физически. А в этом случае аналогичная сила подведётся и к колесу , которое находится на асфальтированной поверхности. Он выровняет усилия, которые распределены между колёсами, ориентируясь на левое колесо.

В результате машина сдвинется с места с пробуксовкой, но медленно. Его колёса не смогут использовать достаточную для толчка силу, которая была бы необходима для сцепления правого колеса, которая в данных условиях будет ни много, ни мало, а в целых семь раз превышающую чем у левого. Из-за такого свойства распределять тяговую силу поровну, правое колесо будет использовать лишь седьмую часть его возможностей сцепления с асфальтом. Говоря проще, толчок мог бы случиться в семь раз мощнее, но дифференциалом не было подведено к нему достаточного количества силы для совершения этого манёвра.

Следовательно необходимо осуществить такую связь между колёсами, для обеспечения совместного вращения или пробуксовки, буд-то бы единого колеса. Для решения данной задачи используется специальный механизм, блокирующий вращение шестерней дифференциала и связывающий два колеса между собой условной жёсткой связью с постоянным вращением и одинаковой скоростью. Такой механизм называется «механизм блокировки (отключения) дифференциала», или в простонародье – блокировкой.

Дифференциал, что заблокирован не в состоянии выравнивать межколёсное усилие, тем самым делая их связанными единой осью. В результате чего каждое колесо получает максимально возможную силу, которая нужна для наилучшего сцепления колёс. Следовательно, где лучше сцепление колёс с дорожной поверхностью, туда и будет прилагаться большая сила.

Какие бывают дифференциалы

Основой дифференциала является планетарный редуктор. Вид зубчатой передачи, который используется, условно может разделить дифференциал на три вида:

- Червячный;

Цилиндрический;

Конический.

Червячный дифференциал является самым универсальным и устанавливается как между осями, таки между колёсами. Цилиндрический тип, зачастую, располагается во внедорожниках меж осей. Конический тип в основном применяется в качестве межколёсного дифференциала.

Выделяют так же симметричный и несимметричный дифференциалы. Несимметричная конструкция дифференциала устанавливается в полно приводных автомобилях между осями, распределяя крутящий момент в различных пропорциях. Симметричный тип передаёт на ось между двумя колёсами равный крутящий момент. Так же дифференциалы разделяют по виду блокирования: ручная блокировка и электронная блокировка.

Ручная блокировка дифференциала

Исходя из названия, блокировка дифференциала оси включается по инициативе водителя с помощью нажатия кнопки или переключения определённого тумблера. В данном случае происходит блокировка шестерней-сателлитов, в результате чего ведущие колёса начинают вращаться с одинаковой скоростью. Зачастую ручной блокировкой дифференциала оснащаются внедорожники. Включать её рекомендуется для преодоления тяжёлого бездорожья, а отключение производить при выезде на обычную асфальтированную дорогу.

Электронная или автоматическая блокировка дифференциала

Автоматическое блокирование дифференциала осуществляется путём команд электронного блока управления, который анализирует состояние, в котором находится дорожное покрытие, используя ABSи ESP. Затем ЭБУ самостоятельно блокирует шестерни-сателлиты. По степени блокирования это устройство можно условно подразделить на дифференциал с полной и частичной блокировками.

Полная блокировка дифференциала

Включение такой блокировки подразумевает под собой тот факт, что шестерни-сателлиты останавливаются полностью, а механизм берётся за выполнение функций обычной муфты, тем самым передавая равностепенный крутящий момент на две полуоси. Вследствие этого оба колеса вращаются с одинаковой угловой скоростью. Если случится то, что хотя бы одно колесо потеряет сцепление с поверхностью, то крутящий момент с него в полной мере передаётся на другое колесо, которое осталось форсировать бездорожье. Такое дифференциальное устройство успешно реализовано на Toyota Land Cruiser, Mercedes-Benz G-Class и других.

Частичная блокировка дифференциала

Включение этой блокировки не полностью останавливает шестерни-сателлиты, а позволяет им проскальзывать. Такой эффект доступен благодаря самоблокирующимся дифференциалам. В зависимости от типа срабатывания данного механизма, делят его на два вида: Speed sensitive (задействуется, когда замечается разница в угловых скоростях вращения полуосей) и Torque sensitive (задействуется в случае уменьшения крутящего момента одной полуоси).Такой тип срабатывания дифференциального устройства можно встретить на внедорожниках Mitsubishi Pajero, Audi Q-серии и BMW X-серии.

Группа дифференциалов Speed sensitive различается строением конструкции. Одним из таких механизмов является тот, в котором дифференциальную функцию выполняет вискомуфта. Вискомуфта отличается от фрикционного дифференциала своей меньшей надёжностью. Именно из-за этого она имеет место устанавливаться на автомобили, которые не предназначены для преодоления непролазных дебрей и глубоких бродов или на автомобили со спортивным характером.

Ещё один механизм представляющий группу Speed sensitive называется героторный дифференциал. Роль блокирующих элементов здесь играют масляный насос и фрикционные пластины, монтируемые между корпусом дифференциала и шестернями-сателлитами полуосей. Хотя по принципу действия он схож с вискомуфтой.

Дифференциалы, которые относятся к группе Torque sensitive , также различны по своей конструкции. Например есть механизм с использованием фрикционного дифференциала. Особенность его заключается в разности угловых скоростей колёс в поворотах и при движении по прямой. Когда автомобиль движется по прямой, угловая скорость вращения обоих колёс одинакова, а во время прохождения поворота, крутящий момент для колёс различен.

Очередной тип дифференциалов - с гипоидным и косозубым зацеплением. Они условно подразделяются на три группы.

Первая с гипоидным зацеплением

Здесь каждая полуось имеет свои собственные шестерни-сателлиты. Крепятся они между собой путём прямозубого зацепления, располагаясь перпендикулярно друг относительно друга. В случае возникновения разницы угловых скоростей ведущих колёс, происходит расклинивание шестерней полуосей. В результате чего шестерни трутся о корпус дифференциала. Дифференциал частично блокируется и происходит перераспределение крутящего момента на ось, с меньшей скоростью углового вращения. После выравнивания полуосевых скоростей, блокировка деактивируется.


Вторая с косозубым зацеплением

Аналогична первой, но расположение шестерен-сателлитов параллельно относительно полуосей. Эти агрегаты крепятся между собой путём косозубого зацепления. Сателлиты этого механизма вмонтированы в специальные ниши на корпусе дифференциала.Когда наблюдается различие в угловой скорости колёсного вращения, шестерни расклиниваются и сопрягаются с шестернями, что находятся в нишах дифференциального корпуса. Происходит частичная блокировка. Направление крутящего момента определяется на ось с меньшей скоростью вращения.

Третья с косозубыми шестернями полуосей и винтовыми шестернями сателлитов

Используется в межосевых дифференциалах. Принцип тот же – смещение крутящего момента на ось с меньшим вращением. Диапазон смещения этого вида достаточно велик - от 65/35 до 35/65. Когда угловая скорость колёсного вращения обоих осей стабилизируется и выравнивается, дифференциал разблокировывается. Эти дифференциальные группы широко применяются в автомобилестроении как на обычных моделях, так и на спортивных.

Преимущества и недостатки блокировки дифференциалов

+ возможность колёсного блокирования до 70%;

Минимальное обслуживание;

Отсутствие рывков на руле;

КПП не требует заливания специального масла;

Установка не влечёт никаких сложностей;

Обеспечение лучших внедорожных характеристик автомобиля;

Более длительный срок работы конструкции;

Лучшая управляемость автомобиля;

Способность прохождения поворотов на более высоких скоростях;

Автомобиль легче выводится из заноса.

По истечению времени падает преднатяг;

Требуется замена регулировочных элементов каждые 40 тысяч километров для лучшей работоспособности конструкции;

Не своевременное или запоздалое проведение регулировочных работ приведут к тому, что система будет работать не корректно.

Подписывайтесь на наши ленты в

Дифференциал предназначен для передачи, изменения и распределения крутящего момента между двумя потребителями и обеспечения, при необходимости, их вращения с разными угловыми скоростями.

Дифференциал является одним из основных конструктивных элементов трансмиссии . Расположение дифференциала в трансмиссии автомобиля:

Дифференциалы, используемые для привода ведущих колес, называются межколесными. Межосевой дифференциал устанавливается между ведущими мостами полноприводного автомобиля.

Конструктивно дифференциал построен на основе планетарного редуктора. В зависимости от вида зубчатой передач, используемой в редукторе, различают следующие виды дифференциалов: конический, цилиндрический и червячный.

Конический дифференциал применяется в основном в качестве межколесного дифференциала. Цилиндрический дифференциал устанавливается чаще между осями полноприводных автомобилей. Червячный дифференциал, ввиду своей универсальности, может устанавливаться как между колесами, так и между осями.

Устройство дифференциала рассмотрено на примере самого распространенного конического дифференциала. Составные части дифференциала являются характерными и для других видов дифференциалов. Конический дифференциал представляет собой планетарный редуктор и включает полуосевые шестерни с сателлитами, помещенные в корпус.

Корпус (другое наименование – чашка дифференциала) воспринимает крутящий момент от главной передачи и передает его через сателлиты на полуосевые шестерни. На корпусе жестко закреплена ведомая шестерня главной передачи. Внутри корпуса установлены оси, на которых вращаются сателлиты.

Сателлиты, играющие роль планетарной шестерни, обеспечивают соединение корпуса и полуосевых шестерен. В зависимости от величины передаваемого крутящего момента в конструкции дифференциала используется два или четыре сателлита. В легковых автомобилях применяется, как правило, два сателлита.

Полуосевые шестерни (солнечные шестерни) передают крутящий момент на ведущие колеса через полуоси, с которыми имеют шлицевое соединение. Правая и левая полуосевые шестерни могут иметь равное или различное число зубьев. Шестерни с равным числом зубьев образуют симметричный дифференциал, тогда как неравное количество зубьев характерно для несимметричного дифференциала.

Симметричный дифференциал распределяет крутящий момент по осям в равных соотношениях, независимо от величины угловых скоростей ведущих колес. Благодаря этим свойствам симметричный дифференциал используется в качестве межколесного дифференциала.

Несимметричный дифференциал делит крутящий момент в определенном соотношении, поэтому устанавливается между ведущими осями автомобиля.

Работа дифференциала

В работе симметричного межколесного дифференциала можно выделить три характерных режима:

  1. прямолинейное движение;
  2. движение в повороте;
  3. движение по скользкой дороге.

При прямолинейном движении колеса встречают равное сопротивление дороги. Крутящий момент от главной передачи передается на корпус дифференциала, вместе с которым перемещаются сателлиты. Сателлиты, обегая полуосевые шестерни, передают крутящий момент на ведущие колеса в равном соотношении. Так как сателлиты на осях не вращаются, полуосевые шестерни движутся с равной угловой скоростью. При этом частота вращения каждой из шестерен равна частоте вращения ведомой шестерни главной передачи.

При движении в повороте внутреннее ведущее колесо (расположенное ближе к центру поворота) встречает большее сопротивление, чем наружное колесо. Внутренняя полуосевая шестерня замедляется и заставляет сателлиты вращаться вокруг своей оси, которые в свою очередь увеличивают частоту вращения наружной полуосевой шестерни. Движение ведущих колес с разными угловыми скоростями позволяет проходить поворот без пробуксовки. При этом, в сумме частоты вращения внутренней и наружной полуосевых шестерен всегда равна удвоенной частоте вращения ведомой шестерни главной передачи. Крутящий момент, независимо от разных угловых скоростей, распределяется на ведущие колеса в равном соотношении.

При движении по скользкой дороге одно из колес встречает большее сопротивление, тогда как другое проскальзывает - буксует. Дифференциал, в силу своей конструкции, заставляет вращаться буксующее колесо с увеличивающейся скоростью. Другое колесо при этом останавливается. Сила тяги на буксующем колесе, по причине низкой силы сцепления, мала, поэтому и крутящий момент на этом колесе тоже мал. А так как дифференциал у нас симметричный, то на другом колесе крутящий момент тоже будет небольшим. Тупиковая ситуация – автомобиль не может сдвинуться с места.

Для продолжения движения необходимо увеличить крутящий момент на свободном колесе. Это осуществляется с помощью

Многие покупатели при выборе внедорожника наверняка сталкивались в описании той или иной модели с термином «электронная блокировка дифференциала». Но что это такое, и как работает этот самый дифференциал, знают далеко не все потенциальные владельцы автомобилей этого класса. В нашем сегодняшнем материале мы подробно расскажем, для чего машине дифференциал, каковы его разновидности и на какие автомобили он устанавливается.

На фото самоблокирующиеся дифференциалы

История создания и назначение дифференциала

На автомобилях, оснащенных двигателем внутреннего сгорания, дифференциал появился через несколько лет после их изобретения. Дело в том, что первые экземпляры машин, приводимых в действие двигателем, имели очень плохую управляемость. Оба колеса на одной оси при повороте вращались с одинаковой угловой скоростью, что приводило к пробуксовке колеса, идущего по внешнему, большему, чем внутренний, диаметру. Решение проблемы было найдено просто: конструкторы первых автомобилей с ДВС позаимствовали у паровых повозок дифференциал – механизм, изобретенный в 1828 году французским инженером Оливером Пекке-Ром. Он представлял собой устройство, состоящее из валов и шестерней, через которые крутящий момент от двигателя передается на ведущие колеса. Но после установки на автомобиль дифференциала обнаружилась еще одна проблема – пробуксовка колеса, утратившего сцепление с дорогой.

Обычно это проявлялось, когда автомобиль двигался по дороге, покрытой участками льда. Тогда колесо, попавшее на лед, начинало вращаться с большей скоростью, чем то, которое находилось на грунте или бетоне, что в итоге приводило к заносу автомобиля. Тогда конструкторы задумались об усовершенствовании дифференциала с тем, чтобы при подобных условиях оба колеса вращались с одинаковой скоростью и автомобиль не заносило. Первым, кто проводил эксперименты с созданием дифференциала с ограниченным проскальзыванием, стал Фердинанд Порше.

Ему понадобилось три года, чтобы разработать, протестировать и выпустить на рынок так называемый кулачковый дифференциал – первый механизм с ограниченным проскальзыванием, который устанавливался на первые модели марки Volkswagen. Впоследствии инженеры разработали различные виды дифференциалов, о которых речь пойдет ниже.

В автомобиле дифференциал выполняет три функции: 1) передает от двигателя к ведущим колесам, 2) задает колесам разные угловые скорости, 3) служит в сочетании с главной передачей.

Устройство дифференциала

Усовершенствованный автомобильными конструкторами дифференциал устроен в виде планетарной передачи, где крутящий момент от двигателя передается через карданный вал и коническую зубчатую передачу на корпус дифференциала. Тот, в свою очередь, направляет крутящий момент на две шестерни, а уже они распределяют момент между полуосями. Сцепление между шестернями-сателлитами и полуосями имеет две степени свободы, что позволяет им вращаться с разными угловыми скоростями.

Таким образом, дифференциал обеспечивает разную скорость вращения колес, расположенных на одной оси, что предотвращает и пробуксовку при повороте. После того, как был изобретен , у автомобиля появилось два, а впоследствии и три (с межосевым) дифференциала, которые распределяли крутящий момент между ведущими осями.

Уже понятно, что без дифференциала не обходится ни один автомобиль. В передне- и заднеприводных автомобилях он расположен на ведущей оси. Если у автомобиля сдвоенная ведущая ось, то здесь в конструкции трансмиссии применяют два дифференциала — по одному на каждую ось. В полноприводных машинах дифференциалов два (для моделей с подключаемым полным приводом – по одному на каждую ось) или три (для моделей с постоянным полным приводом – по одному на каждую ось, плюс межосевой дифференциал, который распределяет крутящий момент между осями). Кроме количества механизмов, устанавливаемых на автомобили с разными типами приводов, дифференциалы различают по виду блокировки.

Разновидности дифференциалов

По виду блокировки дифференциалы делятся на два – ручная и электронная блокировка. Ручная, как следует из названия, производится водителем вручную при помощи кнопки или тумблера. В этом случае шестерни-сателлиты механизма блокируются, ведущие колеса двигаются с одинаковой скоростью. Обычно ручная блокировка дифференциала предусмотрена на внедорожниках.

Электронная или автоматическая блокировка дифференциала осуществляется при помощи электронного блока управления, который, анализируя состояние дорожного покрытия (используется информация с датчиков и антипробуксовочной системы), сам блокирует шестерни-сателлиты.

Задний дифференциал с электронным управлением Range Rover Sport

По степени блокировки это устройство делится на дифференциал с полной блокировкой и дифференциал с частичной блокировкой шестерен-сателлитов.

Полная блокировка дифференциала предполагает 100%-ную остановку вращения шестерен-сателлитов, при которой сам механизм начинает выполнять функцию обычной муфты, передавая равнозначный крутящий момент на обе полуоси. Вследствие этого оба колеса вращаются с одинаковой угловой скоростью. Если же одно из колес теряет сцепление с дорогой, весь крутящий момент передается на колесо с лучшим сцеплением, что позволит преодолеть бездорожье. Такое устройство дифференциала используется на внедорожниках , и других.

Частичная блокировка дифференциала предполагает неполную остановку вращения шестерен-сателлитов, то есть с проскальзыванием. Достигается такой эффект за счет так называемых самоблокирующихся дифференциалов. В зависимости от того, каким образом срабатывает этот механизм, их делят на два вида: Speed sensitive (функционируют при разнице в угловых скоростях вращения полуосей) и Torque sensitive (функционируют при уменьшении крутящего момента на одной из полуосей). Такое устройство дифференциала используется на внедорожниках Mitsubishi Pajero, Audi с , BMW с системой X-Drive и так далее.

Дифференциалы, относящиеся к группе Speed sensitive, имеют разную конструкцию. Существует механизм, в котором роль дифференциала играет вискомуфта. Она представляет собой резервуар, расположенный между полуосью и ротором карданного вала, заполненный специальной вязкой жидкостью, в которую, в свою очередь, погружены диски, сочлененные с полуосью и ротором. Когда угловая скорость вращения колес разнится (одно колесо вращается быстрее другого), диски в резервуаре тоже начинают вращаться с разными скоростями, но вязкая жидкость постепенно выравнивает их скорость, и, соответственно, крутящий момент. Как только угловые скорости обоих колес сравняются, вискомуфта отключается. По своим характеристикам вискомуфта менее надежна, чем фрикционный дифференциал, поэтому ее устанавливают на машины, предназначенные для преодоления бездорожья средней степени или спортивные модификации автомобилей.

Еще один механизм дифференциала, относящийся к группе Speed sensitive – героторный дифференциал. Здесь роль блокировки, в отличие от вискомуфты, играет масляный насос и фрикционные пластины, которые монтируются между корпусом дифференциала и шестерней-сателлитом полуосей. Но принцип действия во многом схож с таковым у вискомуфты: при возникновении разницы в угловых скоростях ведущих колес насос нагнетает масло на фрикционные пластины, которые под давлением блокируют корпус дифференциала и шестерню полуоси до тех пор, пока скорости вращения колес не сравняются. Как только это происходит, насос перестает работать и блокировка отключается.

Дифференциалы, относящиеся к группе Torque sensitive, тоже имеют разную конструкцию. К примеру, есть механизм, в котором используется фрикционный дифференциал. Его особенностью является разность угловых скоростей вращения колес при движении автомобиля на прямой и в повороте. При езде по прямой дороге угловая скорость обоих колес одинаковая, а при прохождении поворота ее значение различно для каждого колеса. Это достигается за счет установки между корпусом дифференциала и шестерней-саттелитом фрикциона, который способствует улучшению передачи крутящего момента на колесо, утратившее сцепление с дорогой.

Еще один тип дифференциалов — с гипоидным (червячным или винтовым) и косозубым зацеплением. Их условно делят на три группы.

Первая – с гипоидным зацеплением, в которой у каждой полуоси есть собственные шестерни-сателлиты. Они объединятся между собой при помощи прямозубого зацепления, причем ось шестерни располагается по отношению к полуоси перпендикулярно. При возникновении разницы в угловых скоростях ведущих колес, шестерни полуосей расклиниваются, образуется трение между корпусом дифференциала и шестернями. Происходит частичная блокировка дифференциала и крутящий момент передается на ту ось, угловая скорость вращения которой меньше. Как только угловые скорости колес выровняются, происходит деактивация блокировки.

Вторая – с косозубым зацеплением, в которой у каждой полуоси также есть свои шестерни-сателлиты (они винтовые), но их оси располагаются параллельно полуосям. А объединяются эти агрегаты между собой при помощи косозубого зацепления. Сателлиты в этой механизме установлены в специальных нишах на корпусе дифференциала. Когда угловая скорость вращения колес различается, происходит расклинивание шестерен, и они, сопрягаясь с шестернями в нишах корпуса дифференциала, частично блокируют его. При этом крутящий момент направляется на ту полуось, скорость вращения которой меньше.

Третья – с косозубыми шестернями полуосей и винтовыми шестернями сателлитов, которые располагаются параллельно друг другу. Такой тип используется в конструкции межосевого дифференциала. Благодаря планетарной конструкции дифференциала, имеется возможность посредством частичной блокировки смещать крутящий момент на ту ось, угловая скорость вращения колес которой меньше. Диапазон такого смещения весьма широк – от 65/35 до 35/65. При установлении равнозначной угловой скорости вращения колес передней и задней оси дифференциал разблокируется.

Эти группы дифференциалов получили самое широкое применение в автомобилестроении: их устанавливают как на «гражданские» модели, так и на спортивные.

Дифференциал как автомобильный механизм скоро отметит двухвековой юбилей, однако его конструкция за эти долгие годы хоть и совершенствовалась, но сохранила ключевые особенности. Что же такое дифференциал, и какую роль он выполняет в автомобиле?

1. Что такое дифференциал?

Д ифференциал в автомобиле – это механизм, который позволяет передавать мощность и, следовательно, вращение от коробки передач к колесам, разделяя поток этой мощности на два, для каждого из колес одной оси, с возможностью изменять соотношение передаваемой к ним мощности, и, следовательно, позволяя колесам вращаться с разной скоростью. Проще говоря, дифференциал разделяет 100% мощности, передаваемой коробкой передач, на два потока для каждого из колес на одной оси, и эти потоки могут перераспределяться в зависимости от условий движений от 50:50 до 100:0.

2. Для чего нужен дифференциал?

Основное предназначение дифференциала – обеспечить возможность вращения колес на одной оси с разной скоростью с сохранением неразрывного потока крутящего момента. Для автомобиля это важно прежде всего в поворотах: ведь при движении по дуге колеса на внешней стороне поворота проходят больший путь, чем колеса на внутренней, а значит, должны вращаться с большей скоростью для сохранения стабильности машины.

Если же колеса на оси будут соединены жестко, то внутреннее колесо в повороте будет пробуксовывать. Для заднеприводного автомобиля это повышает риск заноса, а для переднеприводного радикально ухудшает управляемость и контроль автомобиля в повороте. Таким образом, обеспечение свободного и независимого вращения колес на одной оси с сохранением постоянства передачи на них крутящего момента от двигателя было одной из принципиальных задач с момента создания автомобиля – и это задача была успешно решена.

3. Как устроен дифференциал?

Дифференциал являет собой частный случай планетарной передачи. Физически он обычно представляет собой набор из четырех шестерней, вращение к которым передается пятой – ведомой шестерней главной передачи, объединенной с корпусом дифференциала, выполняющим роль водила. Главная передача – это набор из двух шестерней: ведущая получает вращение от КПП и передает его ведомой. Ведомая же шестерня главной передачи передает вращение через корпус на шестерни-сателлиты, а они, в свою очередь, находятся в зацеплении с солнечными шестернями, жестко закрепленными на приводных полуосях колес.

Когда автомобиль движется по прямой, шестерни-сателлиты неподвижны, и скорость вращения шестерни главной передачи равна скоростям вращения солнечных шестерней: колеса вращаются с одинаковой скоростью. В повороте же шестерни-сателлиты начинают вращаться, обеспечивая разницу скоростей солнечных шестерней и, следовательно, колес на внешней и внутренней стороне поворота.

4. Каковы недостатки дифференциала?

Главным недостатком дифференциала одновременно является его главное преимущество – возможность передавать до 100% мощности на одно из колес. Исходя из этого, в условиях, когда одно колесо имеет недостаточное сцепление с поверхностью, основная часть мощности будет передаваться именно на него. Таким образом, порой даже имея одно колесо на поверхности с достаточным сцеплением, автомобиль не может тронуться с места.

Для устранения этой проблемы были разработаны разнообразные конструкции – дифференциалы с повышенным внутренним сопротивлением (так называемые самоблоки) и дифференциалы с принудительной блокировкой, ручной или автоматизированной. В зависимости от конструкции и назначения они могут как изменять перераспределение потока мощности в пользу колеса с хорошим сцеплением с поверхностью, так и полностью замыкать дифференциал, заставляя колеса на оси вращаться с одинаковой скоростью. Разные типы таких дифференциалов мы рассмотрим в отдельных материалах.