А не спеши ты ДВС хоронить: настоящее и будущее двигателя внутреннего сгорания. Двигатель внутреннего сгорания: будущее есть

Очевидно, что двигатель внутреннего сгорания недостаточно экономичен и по сути имеет невысокий КПД . Это заставляет ученых искать альтернативы – в частности, создавать доступный электрический или водородный транспорт. Однако последние разработки показывают, что ДВС можно сделать по-настоящему эффективным. За счет чего это осуществимо и что мешает применять такие технологии на практике уже сейчас?

Двигатель внутреннего сгорания без преувеличения раскрутил мотор научно-технического прогресса. Автомобильный транспорт является важнейшим средством перевозки пассажиров и грузов. В США сегодня на 1000 человек приходится почти 800 автомобилей, а к 2020 году в России этот показатель составит около 350 машин на тысячу населения.

Подавляющее большинство из более миллиарда автомобилей на планете все еще используют двигатель внутреннего сгорания (ДВС), изобретенный в XIX веке. Несмотря на все технологические ухищрения и «умную» электронику, коэффициент полезного действия современных бензиновых двигателей все еще «топчется» вокруг отметки в 30%.

Самые экономичные дизельные ДВС имеют КПД в 50%, то есть даже они половину топлива выбрасывают в виде вредных веществ в атмосферу.

Естественно, говорить об экономичности ДВС не приходится, особенно если учесть, что современные автомобили сжигают по 10–20 литров горючего на 100 км пути. Не удивительно, что ученые по всему миру пытаются создать доступные электрические и водородные авто. Однако и концепция двигателя внутреннего сгорания не исчерпала потенциал модернизации.

Благодаря последним достижениям в области электроники и материалов, появилась возможность создать по-настоящему эффективный ДВС.

Экомотор

Инженеры компании EcoMotors International творчески переработали конструкцию традиционного ДВС. Он сохранил поршни, шатуны, коленвал и маховик, однако новый двигатель на 15–20% эффективнее, кроме того намного легче и дешевле в производстве. При этом двигатель может работать на нескольких видах топлива, включая бензин, дизель и этанол.


Рис. 1. В целом двигатель EcoMotors имеет элегантную простую конструкцию, в которой на 50% меньше деталей, чем в обычном моторе.

Добиться этого удалось с помощью использования оппозитной конструкции двигателя, в которой камеру сгорания образуют два поршня, двигающихся навстречу друг другу . При этом двигатель двухтактный и состоит из двух модулей по 4 поршня в каждом, соединенных специальной муфтой с электронным управлением.

Двигателем полностью управляет электроника , благодаря чему удалось добиться высокого КПД и минимального расхода топлива. Например, в пробке и других случаях, когда полная мощность двигателя не нужна, работает только один модуль из двух, что уменьшает расход топлива и шум.

Также мотор оснащен управляемым электроникой турбокомпрессором , который утилизирует энергию выхлопных газов и вырабатывает электроэнергию. В целом двигатель EcoMotors имеет элегантную простую конструкцию, в которой на 50% меньше деталей, чем в обычном моторе. У него нет блока головки цилиндров, он сделан из обычных материалов и издает меньше шума и вибраций.

При этом двигатель получился очень легким: на 1 кг веса он выдает мощность больше 1 л.с (на практике он приблизительно в 2 раза легче традиционного двигателя такой же мощности). Более того, изделие EcoMotors легко масштабируется: достаточно добавить несколько модулей и двигатель малолитражки превращается в мотор мощного грузовика.

Опытный двигатель EcoMotors EM100 при размерах 57,9х 104,9х47 см весит 134 кг и выдает мощность 325 л.с. при 3,500 оборотах в минуту (на дизтопливе), диаметр цилиндров – 100 мм. Расход топлива у пятиместного автомобиля с мотором EcoMotors планируется чрезвычайно низкий – на уровне 3–4 л на 100 км .

Экономия во всем

Компания Achates Power поставила себе цель разработать ДВС с расходом топлива 3–4,5 л на 100 км для автомобиля размером с Ford Fiesta. Пока их экспериментальный дизельный двигатель демонстрирует гораздо больший аппетит, но разработчики надеются уменьшить расход. Однако главное в данном моторе исключительно простая конструкция и низкая себестоимость . Согласимся, что экономия на топливе мало чего стоит, если она обошлась ценой многократного удорожания мотора.


Рис. 2. Двигатель Achates Power имеет предельно простую конструкцию.

Двигатель Achates Power имеет предельно простую конструкцию. Это двухтактный оппозитный дизельный мотор, в котором два поршня движутся навстречу друг другу, образуя камеру сгорания. Таким образом отпадает необходимость в головке блока цилиндров и сложном газораспределительном механизме. Большинство деталей мотора изготавливаются с помощью несложных производственных процессов и не требуют дорогих материалов. В целом, двигатель содержит намного меньше деталей и металла, чем обычный.

В настоящее время на испытаниях мотор Achates Power демонстрирует экономичность на 21% большую, чем лучшие «традиционные» дизельные двигатели. Более того, он имеет модульную конструкцию, большую удельную мощность (соотношение вес/л.с.). Также благодаря особой форме верхней части поршня создается вихревой поток особой формы, обеспечивающий отличное перемешивание топливовоздушной смеси, эффективный теплоотвод и уменьшающий время сгорания.

В результате двигатель не только соответствует военным спецификациям армии США, но и превосходит по характеристикам двигатели, которые сегодня устанавливаются на боевую технику.

Простой способ

Американская компания Transonic Combustion решила не создавать новый двигатель, а добиться внушительной (25–30%) экономии топлива с помощью новой системы впрыска.

Высокотехнологичная система впрыска TSCiTM не требует радикальных переделок двигатели и, по сути, представляет собой набор инжекторов и специальный топливный насос.


Рис. 3. Процесс сгорания TSCiTM использует непосредственный впрыск бензина в виде сверхкритической жидкости и специальную систему зажигания.

Процесс сгорания TSCiTM использует непосредственный впрыск бензина в виде сверхкритической жидкости и специальную систему зажигания.

Сверхкритическая жидкость это состояние вещества при определенной температуре и давлении, когда оно не является ни твердым телом, ни жидкостью, ни газом . В таком состоянии вещество приобретает интересные свойства, например, не имеет поверхностного натяжения, и образует мелкодисперсные частицы в процессе фазового перехода. Кроме того сверхкритическая жидкость обладает способностью быстрого переноса массы. Все эти свойства крайне полезны в двигателе внутреннего сгорания, в частности, сверхкритическое топливо быстро смешивается, не имеет крупных капель, быстро сгорает с оптимальным тепловыделением и высокой эффективностью цикла.

Электронный клапан

Компания Grail Engine Technologies разработала уникальный двухтактный двигатель с очень заманчивыми характеристиками.

Так, при потреблении 3–4 литров на «сотню», двигатель выдает 200 л.с. Мотор с мощностью 100 л.с. весит менее 20 кг, а мощностью 5 л.с. – всего 11 кг! При этом Grail Engine, в отличие от обычных двухтактных моторов, не загрязняет топливо маслом из картера, а значит, соответствует самым жестким экологическим стандартам.

Сам двигатель состоит из простых деталей, в основном изготавливаемых способом отливки. Секрет выдающихся характеристик кроется в схеме работы Grail Engine. Во время движения поршня вверх, внизу создается отрицательное давления воздуха и через специальный углепластиковый клапан воздух проникает в камеру сгорания. В определенной точке движения поршня начинает подаваться топливо, затем в верхней мертвой точке с помощью трех обычных электросвечей происходит зажигание топливно-воздушной смеси, клапан в поршне закрывается. Поршень идет вниз, цилиндр заполняется выхлопными газами. По достижении нижней мертвой точки поршень опять начинает движение вверх, поток воздуха вентилирует камеру сгорания, выталкивая выхлопные газы, цикл работы повторяется.


Рис. 4. Секрет выдающихся характеристик кроется в схеме работы Grail Engine.

Компактный и мощный Grail Engine идеально подходит для гибридных автомобилей, где бензиновый мотор вырабатывает электроэнергию, а электромоторы крутят колеса.

В такой машине Grail Engine будет работать в оптимальном режиме без резких скачков мощности, что существенно повысит его долговечность, снизит шум и расход топлива. При этом модульная конструкция позволяет присоединять к общему коленвалу два и более одноцилиндровых Grail Engine, что дает возможность создания рядных двигателей различной мощности.

Новые модели авто появляются каждый год – но по каким-то причинам на них не стоят вышеописанные экономичные и простые двигатели. Действительно, двигателями новой конструкции интересуются все: от вездесущего инвестора Билла Гейтса до Пентагона. Однако автопроизводители не спешат устанавливать новинки на свои машины. Видимо, все дело в том, что крупные автоконцерны сами производят двигатели и, естественно, не желают делиться прибылью со сторонними разработчиками.

Но в любом случае жесткие экологические стандарты и электромобили заставят автопроизводителей внедрять новые технологии, гораздо более важные для здоровья людей и всей планеты, чем мультимедийные системы и дизайнерские изыски.

Добросовестно работают на благо человека. Совершенствование моторов происходит постоянно. То конструкторы борются за увеличение мощности, то снижают массу двигателя. На развитие моторостроения оказывают влияние такие факторы, как перепады цен на нефть и ужесточение экологических норм. Несмотря на все эти сложности, являются основным источником энергии для автомобилей.

В последнее время появилось много новых разработок, которые направлены на совершенствование традиционных моторов. Некоторые их них находятся уже на стадии внедрения, другие новинки имеются только в виде опытных образцов. Однако пройдет немного времени и часть этих инноваций будут реализованы в новых машинах.

Лазеры вместо свечей зажигания

Еще недавно лазеры считались фантастическими приборами, о которых обычные люди узнавали из фильмов о марсианах. Но уже сегодня имеются разработки, направленные на замену лазерными устройствами. Традиционные свечи имеют один недостаток. Они не дают мощной искры, которая способна поджечь топливную смесь с большим количеством воздуха и малой концентрацией топлива. Повышение мощности приводило к быстрому износу электродов. Очень перспективно выглядит применение лазеров для воспламенения обедненной топливной смеси. Среди преимуществ лазерных свеч следует отметить возможность регулировки мощности и угла зажигания. Это позволит сразу не только повысить мощность двигателя, но сделать процесс сгорания более эффективным. Первые керамические лазерные приборы разработали инженеры в Японии. Они имеют диаметр 9 мм, что подходит для целого ряда автомобильных моторов. Новинка не потребует существенной доработки силовых агрегатов.

Инновационные роторные двигатели



В ближайшем будущем из могут пропасть поршни, распредвалы, клапаны. Ученые Мичиганского университета работают над созданием принципиально новой конструкции автомобильного мотора. Силовой агрегат будет получать энергию под действием взрывных волн, поддерживающих движение. Одной из основных деталей новой установки является ротор, в корпусе которого имеются радиальные каналы. При быстром вращении ротора топливная смесь проходит по каналам и мгновенно заполняет свободные отсеки. Конструкция позволяет заблокировать выходные порты, и горючая смесь не вытекает во время сжатия. Так как топливо попадает в отсеки очень быстро, происходит образование ударной волны. Она проталкивает порцию топливной смеси в центр, где происходит воспламенение, а затем и выхлоп отработанных газов. Благодаря такому оригинальному решению исследователям удалось сократить потребление топлива на 60%. Снизилась и масса мотора, что привело к созданию легкого автомобиля (400 кг). Достоинством нового мотора будет и малое количество трущихся деталей, поэтому ресурс двигателя должен увеличиться.

Разработка Scuderi



Сотрудники компании Scuderi подготовили свою версию двигателя будущего. Он имеет два типа поршневых цилиндров, что позволяет более эффективно использовать образующуюся энергию.
Уникальность разработки заключается в соединении двух цилиндров при помощи перепускного канала. В результате один из поршней создает компрессию, а во втором цилиндре происходит воспламенение топливной смеси и выброс газов.
Такой способ позволяет использовать экономнее выработанную энергию. Компьютерные модели показывают, что расход топлива в двигателе Scuderi будет меньше на 50%, чем у традиционных ДВС.

Двигатель с тепловым разделением

Повысить КПД двигателя Scuderi удалось благодаря тепловому разделению мотора на 2 части. В обычном четырехтактном двигателе остается нерешенной одна проблема. Разные такты лучше работают в определенных температурных диапазонах. Поэтому ученые решили разделить двигатель на два отсека и поставить между ними радиатор. Работа мотора будет происходить по следующей схеме. В холодных цилиндрах будет происходить впуск топливной смеси и ее сжатие. Таким образом достигается максимальная эффективность в холодных условиях. Процесс сгорания и выхлоп газов происходит в горячих цилиндрах. Предположительно данная технология обеспечит экономию топлива в пределах 20%. Ученые планируют доработать данный вид мотора и добиться 50%-ной экономии.

Мотор Skyactiv-G от Mazda



Японская компания Мазда всегда стремилась создавать инновационные двигатели. Например, некоторые серийные автомобили оснащаются роторными силовыми агрегатами. Теперь конструкторы автоконцерна основательно занялись экономией топлива. Уже в следующем году планируется выпустить автомобиль с двигателем Skyactiv-G. Он будет первой моделью из семейства Skyactiv. На малолитражной версии Mazda2 будет устанавливаться спортивный двигатель Skyactiv-G объемом 1,3 л. Распределять крутящий момент будет вариаторная коробка передач. Силовая установка отличается высокой степенью сжатия, благодаря чему достигается экономия топлива в пределах 15%. Разработчики утверждают, что средний расход бензина составит около 3л/100 км.



Оппозитными моторами комплектовали свои машины разные автопроизводители. Данная конструкция не лишена изъянов, над которыми инженеры продолжают работать. Как известно, в оппозитном двигателе цилиндры расположены горизонтально, и поршни перемещаются в противоположных направлениях. Конструкторы EcoMotors разместили в каждом цилиндре по два поршня, которые направлены друг к другу. Коленчатый вал находится между цилиндрами, а для перемещения поршней в одном цилиндре используются шатуны разной длины. Такое расположение поршневой группы позволило снизить вес двигателя, так как не требуются массивные головки блока цилиндров. Существенно меньше и ход поршней в оппозитном агрегате, чем в традиционном бензиновом моторе. По мнению инженеров EcoMotors, автомобиль с двигателем OPOC должен потреблять около 2 л бензина на 100 км пути.

Силовой агрегат Pinnacle



Еще одна перспективная разработка сделана на базе оппозитного двигателя. В моторе Pinnacle два поршня двигаются навстречу друг другу, находясь в одном цилиндре. Между ними и происходит воспламенение топливной смеси. Двигатель имеет два коленчатых вала и одинаковой длины шатуны. Данная конструкция позволяет получить колоссальную экономию энергии при низкой себестоимости силового агрегата. Предполагается, что эффективность бензинового двигателя удастся увеличить на 50%. По всей планете ученые ищут новые подходы к созданию мощных, экономных и экологичных моделей ДВС. Отдельные разработки выглядят достаточно перспективно, у других будущее не такое безоблачное. Однако только время рассудит, кто будет купаться во славе, а чьи разработки попадут на пыльные полки архива.

А меня интересует такой вопрос. В гугле нашел очень мало об этом. В 20-х годах прошлого века СССР закупал в Америке большое кол-во 6-цилиндровых бензиновых моторов Геркулес, которые ставились на советские грузовики. Потом вроде Ярославский моторный завод начал делать их. Не может ли кто-нибудь помочь с информацией по этому вопросу? Собственно, меня интересуют отзывы о работе этого мотора.

Вот тут то что я надыбал в инете, но это общие сведения, а меня интересуют отзывы о его работе.

Одним из первых уникальных автобусов-гигантов, построенных ЯАЗом, стал «ЯА-1» 1932 года. Он базировался на трехосном шасси (задняя тележка была использована от грузового автомобиля «ЯГ-10») и американском двигателе Hercules мощностью 103 л.с.

На автобусе «ЯА-2» стоял американский двигатель «Геркулес УХС-3», развивающий 103 - 105 л.с. Он отличался от двигателя автобуса «ЯА-1» только расточкой цилиндров.

Первый отечественный тяжелый автомобиль Я-3 Ярославского завода был создан на основе американского 3-тонного грузовика «Уайт» и предназначался для использования в Красной Армии, 1925 год. Достаточно широкое применение в 1920-е годы в первых автомобилях ярославского завода иностранных агрегатов на короткое время вывело его продукцию в лидеры по использованию новинок мирового уровня. Почти все ярославские машины служили в Красной Армии, но в довоенные времена их количество там было ничтожным.

В 1929 году имела место попытка установки на один из экземпляров Я-4 американского двигателя «Геркулес» (Негcules) , но не того 93-сильного варианта, которыми затем комплектовали серийные «пятитонки» Я-5, а 60-сильного мотора, которым оснащались грузовики «Автокар» (Autoсar SA), с 1930 года выпускавшиеся на московском автозаводе под индексами АМО-2 и АМО-3.

Я-5 (1929-1932 гг.) - второй модернизированный, облегченный и наиболее мощный 5-тонный грузовик, ставший на многие годы базовым автомобилем Ярославского завода. На нем применялся американский 6-цилиндровый двигатель «Геркулес YXC» (7022 см3, 93,5 л.с.), обеспечивавший машине полной массой 9750 кг вполне приличную скорость 50 км/ч. Механическая 4-ступенчатая коробка тоже была американской – небольшой компании «Браун-Лайп» (Brown-Lipe) из города Сиракьюз (штат Нью-Йорк).

В 1929 году был выпущен грузовик «Я-5», в котором стоял американский двигатель «Геркулес». Этот силач с греческим названием, но с американскими деталями выдавал 93 лошадиных силы, позволял гнать по дорогам на скорости 53 километра в час и перевозить пять тонн различного груза. Этот грузовик в то время оказался наиболее успешным – его выпускали аж до 1934 года, и всего с конвейера сошло более 2200 штук. Его поддержал более дорогой в производстве, но и более мощный грузовик «Я-8» - в нём уже стоял отечественный двигатель, и грузовик легко перевозил восемь тонн груза. Но произвели этого чудо отечественной инженерной мысли всего лишь в количестве девяти сотен штук. Причина проста – на этот грузовик хотели установить отечественный экспериментальный двигатель «Ко-Джу», что было аббревиатурой от Коба-Джугашвили в честь Сталина. Этот двигатель установили на шасси «Я-5» и решили испытать в пробеге, где участвовали другие автомобили, но уже с иностранными двигателями. К сожалению, «Ко-Джу» показал хорошие эксплуатационные характеристики и общие результаты – но не лучшие. А двигатель с именем Вождя должен был демонстрировать неизменно самые лучшие результаты. Двигатель отправили на доработку, и уже хотели массово выпускать «Я-8» с этим двигателем под капотом, как началась война – и важнее стали танки, а не мирные грузовики. Во время войны ЯАЗ не простаивал – в 1943 году завод выпускал гусеничные тягачи «Я-11», а в конце этого же года «Я-12», приводимые в движение танковым дизелем. Но с переломом войны в нашу пользу, завод начал снова выпускать грузовики.

Освоению серийного выпуска автобусов «ЯА-2» помешало отсутствие денег на покупку за океаном американских моторов, а советская автопромышленность только-только собиралась начать выпуск мощных двигателей для автобусов и тягачей.

Вообще называть ЯГ-10 отечественным автомобилем можно лишь условно, так как для него использовались импортные силовые агрегаты Геркулес, да и базовый Я-5 представлял собой несколько модернизированный Уайт-TAD.

Однако с самого начала производства ЯГ-10 его главной проблемой стал двигатель, а вернее, его отсутствие. Собственного производства двигателей ЯГАЗ в то время не имел. Если в 1929-1931 годах Я-5 и Я-6 оснащались импортными 93,5-сильными моторами Hercules-YXC, то в 1932 году их поставки прекратились. Видимо, те, кто принимал это решение, руководствовались благими намерениями: лучше стимулировать развитие их отечественного производства, чем закупать моторы за валюту.
Была ли реальная возможность для этого? Безусловно. После реконструкции Ярославского завода на нем планировалось выпускать не менее 100 ЯГ-10 в год. Воплощение этого замысла требовало завершить модернизацию завода и, главное, построить цех для выпуска автомобильных двигателей. Но, увы, для автопрома вообще и для ЯГАЗа в частности какой-либо двигатель мощнее 73 л.с. (от ЗИС-5) до войны так и не был освоен. Хотя и армия, и промышленность остро нуждались в мощном грузовике, все силы двигателестроения были сосредоточены на танках и авиации.
При желании можно было даже просто скопировать тот же Геркулес или Континенталь (как это сделали на ГАЗе с мотором Додж-Д5, известным у нас затем как ГАЗ-11), но даже до этого руки не дошли. И если двухосные ЯГ-4 и ЯГ-6 еще как-то работали на маломощных (для них) двигателях АМО-3 и ЗИС-5, то для ЯГ-10 такой вариант был совсем неприемлем. Отсутствие силового агрегата стало главной причиной весьма ограниченного количества выпущенных ЯГ-10. Хотя военное ведомство и забронировало сразу же все оставшиеся в распоряжении завода Геркулесы именно для ЯГ-10, уже в 1934-1935 годах их запас иссяк.
Откуда же брались двигатели для последующих машин? Когда нужда в ЯГ-10 в той или иной отрасли становилась чрезвычайной, закупки двигателей производились вновь, и эпизодическое мелкосерийное производство продолжалось. Причем закупки не были централизованными, а совершались по принципу "кто как сможет". Так, весьма солидная организация "Азнефть" по обственным заказам ввозила американские двигатели специально для их установки на ярославские "трехоски".
Конечно, все помнят фильм "Место встречи изменить нельзя". И фразу, которая прозвучала из уст шофёра Копытина: "У "Студера" мотор – втрое!" Да, грузовик, на котором удирал Фокс со своим дружком, был "Студебеккер", или "Студер", как его называли водители. Название "Студебеккер" хорошо знакомо тем, кто читал "Золотой телёнок" ("Кто такой Студебеккер? Это ваш родственник Студебеккер? Папа ваш Студебеккер?"). Фирма в своё время в Америке была достаточно известной, но у нас это название ассоциируется прежде всего со знаменитым грузовиком, поставлявшимся в СССР в 1941 – 45 гг по Ленд-Лизу. Грузовик действительно знаменитый. Он был самым массовым из тех, что поставляли союзники, его поставки составили больше 100 тыс. штук.
Заглянем под капот Студебеккера. На автомобиле стоял рядный шестицилиндровый нижнеклапанный карбюраторный двигатель "Геркулес" (моторы этой фирмы в 1928-32гг устанавливались на ярославских грузовиках). Он очень похож на двигатель грузовика ЗиС-150. У них даже был одинаковый диаметр цилиндра – 101,6мм (4 дюйма). Но у "Студебеккера" был несколько меньший, на четверть дюйма, ход поршня (4 1/4 дюйма вместо 4 1/2) . Мощность двигателя составляла 95 л.с. при 2500 об/мин.
Что любопытно, впускной клапан открывался не до ВМТ, а через два градуса после неё. Степень сжатия – 5,82 (у ЗиС-150 – 6,0). Но двигатель требовал бензин с ОЧ 70-72 (ЗиС-150 довольствовался А-66). Интересна конструкция верхней головки шатуна. Она разрезная и имеет болт для крепления поршневого пальца.
В системе смазки был применён фильтр тонкой очистки, включённый параллельно (у ЗиС-150 был ещё и фильтр грубой очистки). Следует отметить, что состояние фильтра рекомендовалось проверять через 800-1000км при помощи специального приспособления, ввёрнутого вместо стяжного болта. Для проверки пропускной способности устанавливали давление 40 фунт/кв.дюйм и замеряли количество масла, пропускаемое фильтром за одну минуту.
А вообще, для смазки двигателя применялись следующие масла: летом – М-160 SAE-30, зимой – М-120 SAE-20. Эти обозначения, ставшие сейчас такими привычными, тогда мало кто знал...
Система питания включала в себя карбюратор фирмы "Картер" (карбюраторы этой фирмы применялись на первых "Москвичах"). Карбюратор достаточно традиционной конструкции, с пневматическим торможением топлива (на ЗиС-5 и первых ЗиС-150 ставили карбюратoры компенсационного типа). Карбюратор был оснащён регулятором максимального числа оборотов двигателя, отрегулированным на 2620 об/мин.
Электрооборудование. Как и на советских довоенных автомобилях, номинальное напряжение бортовой сети составляло 6В (послевоенные грузовики получили 12-вольтовое электрооборудование). Аккумулятор "Студебеккера" имел ёмкость 153 А*Ч (у ГАЗ-51 и ЗиС-150 было по два 6-вольтовых аккумулятора). Все приборы электрооборудования – фирмы Авто-Лайт. На старых моделях применялись генераторы с максимальным током 25А, на новых – более мощные, на 40А. Соответственно применялись и разные реле-регуляторы. Стартер – с механическим ножным приводом имел мощность 1,5л.с. Для 6-вольтового прибора это немало. Сигнал, как и на других грузовиках, вибрационного типа. Прерыватель-распределитель имел лишь центробежный автомат опережения зажигания. Свечи зажигания - с резьбой 14мм (как у ЗиС-150, у ГАЗ-51 – 18мм). С "массой" автомобиля соединялся "плюс" источников тока (у "Студебеккеров", приспособленных для установки радиостанций, с "массой" соединяли "минус"). В СССР до 1960 года у всех автомобилей также был "плюс" на "массе", затем с "массой" стали соединять отрицательный вывод источников тока. Сделано это было с целью уменьшения коррозии кузова.
Вот таким был этот легендарный грузовик, оружие Победы, самый масссовый из всех Ленд-Лизовских грузовиков, любимый водителями. Любили его за надёжность, прочность (при грузоподъёмности 3,5 тонны он перевозил 5 тонн), удобство эксплуатации, высокий по тем временам уровень комфорта, хорошую проходимость. Его конструкция и опыт эксплуатации оказали влияние на создание первых советских послевоенных грузовиков: ГАЗ-51, ЗиС-150, ЗиС-151. Фраза Копытина, подчёркивающая уважение к грузовику, была символичной...

Сту́дэбе́йкэр» модели US6 (англ. Studebaker, в СССР и затем России устоялось произношение «Студебекер» или «Студебеккер», иногда просто «Студер») - трёхосный грузовой автомобиль фирмы Studebaker Corporation, выпускавшийся с 1941 по 1945 годы. Был самым массовым транспортным средством, поставлявшимся Советскому Союзу по ленд-лизу. Отличался повышенной проходимостью и грузоподъёмностью (по сравнению с отечественными грузовиками). Также, в отличие от советских грузовиков, имел полный привод - на все три оси. Кроме полноприводной модели US6x6 в Красную армию поставлялся US6x4 с колёсной формулой 6x4.
Всего было выпущено около 197 тысяч грузовиков (из них более 20 тысяч модификации US6x4 с неведущей передней осью). Примерно 100 тысяч из них были поставлены в СССР во время Второй мировой войны, по договору ленд-лиза; остальные ушли другим союзникам, в основном Франции и Великобритании.
Грузовики Studebaker не состояли на оснащении американской армии. Это произошло из-за того, что их двигатель Hercules JXD не проходил по принятым в те времена стандартам, вследствие чего «Студэбейкэр» проиграл конкурс компаниям «General Motors» и «International Harvester». Поэтому вся выпускающаяся продукция шла в другие страны.

Марка: Hercules JXD
Тип: Бензиновый
Объём: 5 242 см3
Максимальная мощность: 95 л.с., при 2500 об/мин
Конфигурация: рядный, шестицилиндровый
Цилиндров: 6
Клапанов: 12
Ход поршня: 107,95 мм
Диаметр цилиндра: 101,6 мм
Cтепень сжатия: 5,82

16 - 17 января 1931 года состоялось заседание комиссии под председательством начальника технического управления Управления механизации и моторизации РККА Г.Г.Бокиса, на котором были выданы два технических задания на проектирование танков сопровождения пехоты с использованием удачных конструктивных решений Виккерса Е.
ВАММ им. И.В.Сталина начала разработку «Танка малой мощности» (ТММ) в двух вариантах - ТММ-1 и ТММ-2. По сравнению с английской машиной у него несколько изменили конструкцию корпуса из-за установки 6-цилиндрового американского двигателя жидкостного охлаждения «Геркулес» мощностью 95 л. с. вместо 4-цилиндрового английского «Армстронг-Сиддлей». В ходе испытаний танков ТММ-1 и ТММ-2 в первой половине 1932 года они не продемонстрировали никаких преимуществ перед Виккерсом. Более того, коробка передач и механизм поворота ТММ-2 оказались хуже, чем у Виккерс». Двигатель Геркулес из-за неудачного режима работы сильно перегревался , а маневренность танка заметно ухудшилась. В сентябре 1932 года все работы по этим машинам были прекращены.

Почему Геркулес вдруг начал сильно перегреваться?

НЕФОРМАЛЫ

Многие из нас, наверное, знают, что двигатель внутреннего сгорания, был изобретен достаточно давно, дело это было аж в позапрошлом веке. За время прошедшее с того момента было предложено множество оригинальных конструкторских решений, казалось бы, способных перевернуть все понятия двигателестроения. Переворота все же не произошло, и наш хороший знакомый - кривошипно-шатунный поршневой двигатель не спеша, завоевал весь мир. Однако о неформалах мира двигателей поговорить все-таки стоит.

Роторно-волновой двигатель

Одну из оригинальных конструкций двигателя внутреннего сгорания предложили наши соотечественники. Конструкция эта достаточно не обычна и называется - роторно-волновой двигатель. Давайте сперва разберемся, из каких элементов эта хитрая конструкция состоит и как она работает, а потом поговорим обо всех преимуществах и недостатках.

Конструкция

Основой для двигателя служит корпус(1), достаточно не обычной формы, на внутренних поверхностях которого выполнены специальные винтовые каналы. Внутри корпуса находится полый ротор(2), имеющий на своей поверхности такие же винтовые каналы. Пустотелый ротор и вал отбора мощности(3), соединены между собой с помощью шарнира равных угловых скоростей (ШРУСа)(4). Обратите внимание, что в правой части полого ротора находится механизм, состоящий из блока шестерен(5) и эксцентрика (6). Благодаря нему ротор имеет возможность совершать обкатывание по винтовой поверхности корпуса. Весь же двигатель условно делится на три основные части: компрессорный отсек(А), камера сгорания(Б) и расширительный отсек(В).

Как работает роторно-волновой двигатель?

От конструкции двигателя плавно переходим к рассмотрению рабочего процесса Двухгипотрохоидного РВД, где двухзаходный корпус работает в совокупности с однозаходным ротором, а заключается он в следующем. Как только вал отбора мощности начинает совершать вращательные движения в полости, находящиеся между винтовыми каналами ротора и корпуса, в компрессорном отсеке, начинает засасываться воздух. Так как мы рассматриваем совместную работу двухзаходного корпуса и однозаходного ротора, то за один оборот вала отбора мощности в комперссорный отсек будет попадать две порции воздуха.

После того как воздух был захвачен и отсечен от окружающей среды, он направляется по винтовому каналу в камеру сгорания, испытывая всестороннее сжатие. Туда могут быть добавлены дизельные присадки . Это обусловлено тем, что высота винтовых каналов ротора и корпуса уменьшается, приближаясь к камере сгорания. После того как воздух прошел стадию сжатия он поступает непосредственно в камеру сгоранию, одновременно с этим происходит впрыск топлива.

Для поджигания горючей смеси в камере сгорания предусмотрена свеча, правда, она необходима только для первого воспламенения. Так как в дальнейшем сжигание смеси будет происходить только за счет горячих газов, оставшихся в камере сгорания. После того как произошло превращения топливной смеси в горячий газ, последний направляется в винтовые каналы расширительного отсека, имея в своем арсенале огромное давление и температуру.

Расширительная камера представляет собой полную противоположность компрессорной камере - высота каналов по ходу движения газов у нее только увеличивается. За счет этого и происходит полезная работа, так как, расширяясь, газы, заставляют вращаться ротор. Правда часть полученной мощности теряется при сжатии очередной порции воздуха необходимой для "огненного сердца".

Достоинства роторно-волнового двигателя

Следует сказать о том, что выше мы рассмотрели наиболее упрощенную конструкцию роторно-волнового двигателя. Существуют двигатели такого типа с пятизаходным корпусом и четырехзаходным ротором. Причем такие многозаходные конструкции могут играть роль редукторов, так как при четырех обкатываниях ротора по винтовой поверхности корпуса выходной вал совершит только один полный оборот. То есть сам двигатель позволяет поднять крутящий момент в четыре раза, что согласитесь не так уж и мало.

Еще одно преимущество двигателя скрывается в минимальном количестве пар трения. Фактически трение присутствует только в подшипниках, на которых закреплен вал отбора мощности да в ШРУСе. А как же потери связанные с тем, что ротор обкатывается по корпусу, спросите вы? Эти потери просто отсутствуют, волны ротора "расходятся" на минимально возможном расстоянии с волнами корпуса. К достоинствам следует отнести и малую массу такого типа двигателей. Ведь посмотрев на схему, вы не обнаружите ни газораспределительного механизма, ни тяжелого маховика, ни коленчатого вала. Так как ротор сам по себе является простейшим газораспределительным механизмом, а маховик роторно-волновому двигателю не нужен, потому что в нем просто-напросто отсутствует знакопеременное движение. Благодаря малому количеству деталей и их небольшой массе роторно-волновой двигатель способен развивать обороты в диапазоне от 3000 до 30000 об/мин.

О всеядности этого двигателя поговорить следует отдельно. Ведь в принципе высокооктановое топливо роторно-волновому двигателю необходимо только в момент запуска, как только камера сгорания прогреется, то в нее можно фактически подавать любую горючую жидкость, главное чтобы в процессе горения выделялись горячие газы необходимые для вращения ротора.

Недостаток роторно-волнового двигателя

У этого типа двигателей есть один существенный минус, который в принципе и мешает его мировому распространению - это высокая технологичность, а соответственно и еще большая себестоимость готовой продукции. Так что большое количество плюсов перекрывается одним жирным минусом.

Бесшатунный поршневой двигатель

Идея создания бесшатунного поршневого двигателя родилась в нашей стране достаточно давно. События происходили на рубеже трицатых-сороковых годов в конструкторском бюро, где занимались вопросами разработки и постройки авиационных двигателей. Один из конструкторов этого закрытого предприятия предложил тогда отойти от привычной для нас схемы двигателя внутреннего сгорания, где поршень и коленчатый вал соединены между собой с помощью шатуна. Конструктором этим был С. Баландин, а разработал он новый тип двигателя внутреннего сгорания - бесшатунный ДВС, который позже назвали двигателем Баландина.

Как работает бесшатунный поршневой двигатель?

Для того чтобы понять, как работает это чудо инженерной мысли, сперва взгляните на рисунок. Двигатель состоит из следующих частей: 1,2,3,4 - поршни, 5,6 - подшипники, 7,8 - консольные валы, с опорами для коленчатого вала, 9,10,11,12 - шестерни механизма синхронизации, 13 - коленчатый вал, 14,15 - ползун, 16 - вал отбора мощности.

Теперь давайте посмотрим, как все эти составные части взаимосвязано работают. Итак, представьте, что в камеру сгорания первого цилиндра попадает топливно-воздушная смесь, сначала происходит ее постепенное сжатие, а за тем возгорание. Резко возросшее давление горячих газов заставляет перемещаться поршень 1 и жестко связанный с ним ползун 14 вниз. Зародившееся движения сразу же выводит из состояния покоя коленчатый вал 13, так как все возрастающее давления со стороны ползуна заставляет его вращаться вокруг опор, которые расположены на консольных валах 7 и 8. В свою очередь достаточно сложное планетарное вращения коленчатого вала 13, моментально заставляет совершать вращательные движения и консольные валы 7,8. В результате этих хитросплетений взаимных перемещений, возникает крутящий момент, который через синхронизирующие шестерни 9,10,11,12 передается на вал отбора мощности 16.

Конструкция, рассмотренная нами выше, по теории Баландина должна была иметь высокий механический КПД равный приблизительно 94-м процентам, в то время как обычный, то есть шатунный двигатель внутреннего сгорания мог похвастаться только 85-и процентным КПД. Кроме высокого КПД двигатель должен был обладать следующими ниже преимуществами. Во-первых, это уменьшение нагрузки на поршни, так как в отличие от шатунного двигателя, они во время движения не перекашивются, вследствие чего и отсутствует трение поршня о стенку цилиндра. Во-вторых, есть возможность использования подпоршневого объема для нагнетания воздуха, либо для организации рабочего процесса. В-третьих, существует возможность отказа от маховика, так как поршни и ползуны обладают достаточной массой, а значит и инерционностью.

Казалось бы, сколько много у этого двигателя преимуществ по сравнению с шатунным, но почему же он до сих пор не был запущен в серийное производство? А дело все в следующем. Проблемы с этой конструкцией начались почти сразу же после постройки первых прототипов. Они категорически сопротивлялись работать, "первенцев" заклинивало практически после первых оборотов коленчатого вала. Но после того как эта проблема была решена, дело тогда было в задире поршней, начались новые неприятности - двигатель отказывался нарабатывать положенный моторесурс. На сей раз, виной всему стал чрезвычайно сильный износ направляющих ползунов. Тогда же столкнулись и с трудностью подачи смазки к ползунам и их направляющим.

Множество проблем связанных с доводкой двигателя привели к тому, что большое число конструкторов первоначально подхвативших идею Баландина, отказались от дальнейших работ в этой области. Да плюс ко всему прочему двигатель был очень сложен с технологической точки зрения. Так как в моторе использовалось множество взаимосвязанных элементов, то и допуски на размеры этих деталей должны были быть минимальны, а иначе работоспособность двигателя была бы под большим вопросом. Следует так же сказать, что большинство моторостроительных предприятий в нашей стране не могло похвастаться высокоточным оборудованием необходимым для производства бесшатунных двигателей. Но если даже представить, что производство этих необычных агрегатов и было бы освоено, то цифры их себестоимости удивляли, я думаю, не меньше чем конструкторские решения.

Двигатель Кушуля

В современном мире стало модно быть, экологически чистым. Буквально все твердят об экологической чистоте. Первым делом этот вопрос сказался на автомобильном транспорте, не даром большинство современных автомобилей соответствуют нормам Евро 4. Даже в нашей природа не любивой стране были введены нормы Евро 2. Деньги на совершенствование экологической безопасности автомобилей тратятся огромные, они идут на совершенствование систем впрыска, разработку новейших нейтрализаторов, а так же производство новейших видов топлива. Обо всем выше сказанном знают, наверное, многие, а вот о том, что разработкой экологически чистого двигателя в 60-х годах прошлого столетия занимался профессор Кущуль работающий в Ленинградском институте авиационного приборостроения, знают единицы.

Двигатель, построенный профессором при первом взгляде, напоминал обычный 6-ти цилиндровый V образный двигатель с малым углом развала цилиндров. Но это только при первом взгляде. На самом деле были и кардинальные отличия. Двигатель состоял: из хорошо знакомых нам поршней 1,2, шатунов не стандартной конструкции - 3,4, маховика - 5, блока цилиндров 6. Отличительной особенностью данного двигателя было перепускное окно 7, соединяющее между собой параллельные цилиндры.

Для того чтобы понять все достоинства и недостатки двигателя Кушуля давайте рассмотрим его рабочий процесс. Впуск - поршни, как и на "обычном" двигателе идут вниз, но вся разница в том, что один цилиндр "питается" сильно переобогащенной топливно-воздушной смесью, а второму перепадает только чистый воздух и ни грамма топлива. Сжатие - поршни идут вверх, сжимая находящееся внутри цилиндров "добро". Причем поршни идут с небольшой разницей, первый впереди второго на 20-30 градусов. То есть когда в первом цилиндре происходит зажигание топливно-воздушной смеси, поршень 2 находится в 30-40 градусах от в.м.т.. Рабочий ход - поршень 1 начинает движение вниз под действием расширяющихся газов, в то время как поршень 2 еще продолжает свое движение вверх и сжимает находящийся в цилиндре воздух. Через некоторое время поршни выстроятся "в линию", и давление над поршнями 1 и 2 будет иметь примерно одинаковое значение. Но рабочий ход продолжается и поршень 1 движется вниз, давление горячих газов над ним при этом уменьшается, а поршень 2 все еще продолжает двигаться вверх и сжимать находящийся в цилиндре воздух. Из-за большой разницы давлений, воздух, находящийся во втором цилиндре начинает перетекать в первый через перепускное окно с огромной скоростью. Новая порция воздуха позволяет полностью сгореть топливу, попавшему в первый цилиндр. После того как поршень 2 прошел в.м.т. в нем так же начинается рабочий ход. Горячие газы в этот момент времени одновременно воздействуют на два поршня сразу. Выпуск - открываются выпускные клапаны, оба поршня идут вверх, выбрасывая в атмосферу продукты сгорания, все как у обычного двигателя, но с одной оговоркой. Процесс выпуска у двигателя Кушуля не очень то и громогласен, виной всему низкое давление отработанных газов - топливо попало в один цилиндр, а расширение горячих газов произошло в двух. Кстати говоря, здесь прослеживается и еще одно достоинство этого двигателя - достаточно высокий КПД, так как энергия горячих газов максимально возможно использована в недрах мотора, а выброс отработанных газов происходит при относительно низком давлении и температуре.

Главный козырь этого двигателя, ради чего он в принципе и создавался, низкий выброс вредных веществ, благодаря наиболее полному сгоранию топлива. К преимуществам можно так же отнести возможность работы на различных видах топлива и экономичность.

Как всегда не обошлось и без ложки дегтя. Все недостатки "вылезли" в процессе ходовых испытаний построенного Кушулем двигателя, который был имплантирован в "тело" легендарной "Волги". Недостатков было не много, но они были достаточно существенны. Первое - большая масса агрегата, с ней пытались бороться, применяя облегченные детали, но срок их службы бал значительно меньше чем у массивных. Второе - несбалансированная работа двигателя, так как в каждый момент времени работало по два цилиндра, то двигатель был аналогичен трехцилиндровому мотору. Балансионный вал в конструкции этого двигателя предусмотрен не был, хотя сейчас практически все трехцилиндровые двигатели работают в паре с "балансиром".

Как и в других случаях, конструкция этого двигателя не "пошла" по технологическим причинам. Обычный двигатель был намного проще в производстве, чем двигатель Кушуля. А как все тогда хорошо начиналось.

Роторно-поршневой дизель

О роторно-поршневых двигателях Ванкеля я думаю, слышали многие. Свою известность в нашей стране этот тип двигателей получил, благодаря двум автомобильным компаниям - это "ВАЗ" и "Mazda". Хотя двигать первой фирмы является, честно говоря, копией двигателя второй. "Mazda" безусловно пролила много пота и крови доводя конструкцию роторно-поршневого двигателя до совершенства, и ей, следует сказать, это удалось сделать. Хотя если заглянуть в историю, то в роторно-поршневом буме, который был примерно сорок лет назад, поучаствовали, наверное, все компании, которые хоть как-то были связаны с разработкой двигателей. В этот период было сделано очень много интересных роторно-поршневых двигателей. Об одном из них мы с вами и поговорим - это роторно-поршневой дизельный двигатель, сконструированный знаменитой компанией "Роллс-Ройс".

На рисунке показан двухступенчатый роторно-поршневой дизель "Роллс-Ройс". Основой для двигателя служил корпус 8 в котором находилось две рабочие полости. В полости 3 был расположен ротор ступени высокого давления 5, а в полости 1 - ротор ступени низкого давления 7. Кроме того, что роторы имели разный размер, один был меньше другого в три раза, они еще отличались и формой рабочей поверхности - маленький имел специальные выемки, большой же этим похвастаться не мог. Оба ротора синхронно вращались в одном направлении, так как были связанны шестеренчатой передачей. Вал отбора мощности состыковывался с эксцентриковым валом ротора 7. В корпусе имелись две полости - 2,6, которые соединяли между собой ступени высокого и низкого давления, а так же два окна - 9 и 10, соответственно выпускное и впускное. Форсунка 4 находилась в верхней части корпуса и подавала "тяжелое" топливо в ступень высокого давления.

Этот двигатель работал следующим образом. Ротор 7 своей гранью отсекал от окружающей среды порцию воздуха, попавшую в секцию низкого давления через впускное окно 10. Затем воздух перемещался по каналу 2 в секцию высокого давления, испытывая небольшое сжатие, но лишь до того момента пока грань ротора 5 не пересекала перепускной канал. После того как воздух оказался в полости между ротором 5 и корпусом 8 он испытывал сильное всестороннее сжатия и постепенно переносился в рабочую зону форсунки 4. После впрыска топлива в предварительно сжатый воздух, происходило сгорание. Образовавшиеся газы расширялись лишь в секции высокого давления, но только до тех пор, пока грань ротора 5 не открыла доступ к перепускному каналу 6. После этого расширение уже происходило в двух секциях, до того момента пока грань ротора 7 не открывала выпускное окно 9.

Многие из вас наверняка зададутся вопросом: " А для чего необходимо было делать двигатель двухсекционным?" Двухсекционность в первую очередь была необходима, для того чтобы организовать дизельный цикл в роторно-поршневом двигателе. Во-вторых, было в два раза уменьшено давление приходящиеся на эксцентриковые валы роторов, соответственно это дало увеличение ресурса двигателя.

При конструировании этого необычного двигателя компанией "Роллс-Ройс" было решено громадное количество технических задач. Большие проблемы были связаны с подбором идеальной формы выемок выполненных в рабочей поверхности ротора ступени высокого давления. Много времени заняли вопросы, связанные с подшипниками ротора и радиальными уплотнениями. Так как в дизельном двигатели нагрузки на эти элементы намного больше, чем, в двигателе, работающем на бензине.

После того как двигатель окончательно был доведен до ума, фирме "Роллс-Ройс" пришлось сделать трудное для себя решение. А именно - закрыть этот проект. Так как двигатель хоть и радовал своими положительными чертами, сюда можно отнести все плюсы дизельных двигателей и прибавить компактность Р.П.Д., но был достаточно сложен в производстве, имел высокую себестоимость и что самое важное малый ресурс.

Максим УТЕШЕВ

FreeValve, как может работать двигатель без распредвала

Уверен, что многие из наших читателей знают о существования компании под названием. Koenigsegg. Но также мы уверены, что вы почти ничего не слышали о её дочерней фирме под названием FreeValve.

Если это действительно так, то добро пожаловать в мир высоких автотехнологий. Скандинавы разработали и претворяют в жизнь чрезвычайно интересный продукт, новый (это не преувеличение) тип двигателя в котором нет таких привычных для всех кто связан с автомобилями деталей, таких как распредвал двигателя.

Если взглянуть в прошлое, в 80-е года, топовой и самой продвинутой технологией стала система управления клапанами типа VTEC, 90-е года отличились разработкой и применением продвинутой системой впрыска топлива, чуть позже кульминацией развития прямого впрыска стали поздние 2000-е. Будущее за технологией FreeValve, "без системы распредвалов" приводящего клапаны в движение в ДВС. Но действительно ли это ? Давайте посмотрим вместе.


Как и любая другая технологическая революция, который должен (или обязан?) изменить расстановку сил в технологиях создания двигателей внутреннего сгорания. Основной принцип звучит просто и гениально, вместо определённой привязки к определенной, статической формуле, новая технология предлагает гибкость в процессе работы мотора.

Технологии изменяемого открытия клапанов существуют уже относительно давно, было сделано множество прототипов от разных автопроизводителей, существуют даже похожие серийные версии от BMW, но ни одна из них не может сравниться с возможностями, которые предлагает новый тип двигателя, разработанный скромной скандинавской компанией. Гениальность продвигаемой системы также не в последнюю очередь заключается в том, что она не подразумевает серьёзных изменений в конструкции самого двигателя. Тем не менее эта кажущаяся простота не помогла избежать FreeValve дороговизны и . Закон бизнеса, новинки стоят всегда немалых денег.

Мотор FreeValve на 30% мощнее, в два раза экологичнее и на 20-50% экономичнее обычного распредвального двигателя

Как и другие инженеры, сосредоточившиеся и изменяемой степени сжатия, а также изменяемого объёма, парни из FreeValve работали над тем, что называется топовой мировой технологией мотора, стоящей на острие атаки прогресса.

В ходе исследований, компания Koenigsegg выяснила, что технология привода клапанов имеет огромный потенциал развития, решение было логичным, разработать реальную систему, основанную на теоретическом опыте, таким образом для достижения амбициозных целей произошло объединение с дочерней компанией Cargine, впоследствии переименованной в FreeValve.

Вступление закончилось. Переходим к подробностям.


Давайте перейдем к изучению всех нюансов FreeValve технологии, которая не так давно была публично раскрыта для общественности.

В чем разница между системой без распредвалов и классической технологией привода клапанов

Из названия и описания технологии становится понятным, что речь действительно идет о двигателе, в котором отсутствуют распределительные валы. На самом деле необычный подход к инженерии внутримоторных технологий, главный секрет которых заключается в том, что двигателю не нужны эти валы, поскольку клапаны рассчитаны на индивидуальную работу, каждый по отдельности. Каждый клапан не связан жестко с соседними клапанами, отсюда проистекает название- «свободные клапаны», FreeValve.

Главная мысль заключается в том, чтобы работа двигателя внутреннего сгорания стала более эффективной во всех фазах работы. Стандартные распределительные валы ввиду заложенных в них конструктивных особенностей являются крайне компромиссными вариантами, что зачастую приводит к определенным «жертвам», повышенный расход топлива в угоду мощности или низкий крутящий момент на высоких оборотах в угоду пиковой мощности и т.д..

Инженеры получили возможность сделать двигатель эффективным при любых оборотах и на всех режимах работы, не опасаясь провалов на холостом ходу, посредственной динамики или высокого расхода топлива.

Звучит как недосягаемая мечта, но нет ничего невозможного, возможно все, что возможно себе представить. Дочерняя компания Кёнигсегг добилась высоких результатов, создав вполне рабочий, практически серийный экземпляр своей разработки, которую они долгие годы возили от выставки к выставке, представляя на разных своих новинках. Вместо распредвалов, каждый клапан приводится в движение отдельным приводом, работу которых в свою очередь контролирует электроника.

Насколько хороша новинка и насколько она дороже обычной системы привода клапанов?


Разработчики утверждают, что система без распредвалов использует на 10% меньше энергии, чем традиционные решения привода. Эти проценты в стандартной схеме двигателя обычно уходят на преодоление трения, привод и работу всей верхней части «головы» мотора, то есть всех этих многочисленных систем. Эффективность использования такого двигателя как несложно догадаться будет на 10% лучше, но гораздо больший выигрыш станет очевидным .

Двигатель может работать в четырех циклах: стандартный- Отто, сложный- Миллера и экономный-Аткинсона. Также двигатель способен воспроизводить цикл Хедмана с изменяемой степенью сжатия

Например, в двигателе с искровым зажиганием, (читайте, в бензиновом моторе) с установленным FreeValve можно смело снять , а экономичность даже у мощного бензинового двигателя станет сродни дизельному варианту.

В результате полученный силовой агрегат станет дешевле эквивалентного дизельного мотора, говорят в FreeValve. На дизельные двигатели также могут быть установлены новомодные электронные приводы клапанов, что в теории должно чуть снизить расход мотора и серьезно повысить экологичность его выхлопа.

Стоимость новой технологии. Если взять в расчет науку экономику, то получается, что первые 10- 100 тыс. двигателей, построенных по этой технологии, будут стоить дороже обычных типов силовых агрегатов, но в конечном итоге, когда производство будет поставлено на промышленный поток и при достижении определённой «критической массы», стоимость новых типов моторов начнет постепенно снижаться и в итоге сравняется со стоимостью стандартного ДВС.

При этом такие моторы будут более эффективными, чем традиционные модели, будут меньше расходовать горючего при увеличении мощности и станут показывать гораздо более приемлемые показатели полки крутящего момента.

Что произойдет, если система покажет себя несостоятельной?


Приверженцам классической схемы двигателей и тем людям, которые с опаской принимают все обновления и технических новшеств, наверное, интересно, насколько все будет плохо, при поломке новомодной системы. И вообще, а надежная ли она?

Отрицать глупо, любой, даже самый надежный девайс может выдать неприятную осечку, также не стоит забывать про конструктивные дефекты, которые могут быть не выявлены на начальном этапе разработки. Итог предсказуем, дорогая поломка. Но и здесь у FreeValve есть небольшой утешительный козырь в рукаве.

Невероятно, но этот двигатель сможет нормально выполнять свои рабочие функции даже при поломке одного или нескольких приводов клапанов, разумеется это скажется на пиковой мощности на высоких оборотах, но как уверяют разработчики, разница будет незначительна.

Предусмотрен аварийный вариант работы двигателя,заключается он в том, что даже если 75% приводов клапанов выйдут из строя, автомобиль сможет самостоятельно добраться до СТО, невероятная живучесть. Тестирования продолжаются..., но самое главное, чего разработчики все еще никак не могут побороть, это как раз выносливость такого типа привода. В нем все хорошо, но камень преткновения, состоит в том, что долго система не выхаживает. Однако это временное явление и его удастся нейтрализовать, ведь инженеры по теоретическим расчётам выяснили, надежность такой системы может быть сопоставима со стандартным двигателем ДВС. Смоделированы сотни-миллионов циклов работы приводов, ощутимого износа обнаружено не было. Осталось применить знания на практике и можно выезжать.

Шведская компания сравнивает текущую технологию распределительного вала, с игрой на пианино двумя руками, каждая из которых привязана к противоположным концам метлы. Использование каждого пальца по отдельности, как делают пианисты, позволит перейти к индивидуальному управлению клапанами.

Из вышесказанного можно сделать вывод:

1. На данный момент технология явно сырая. Двигатель не способен пройти столько же, сколько ходят без серьезных проблем моторы с обычной системой распредвалов.

2. Но даже на этом этапе разработки, система показала себя с лучшей стороны. Ни один мотор со стандартной системой газораспределения не способен хоть как-то нормально работать, если перестанут работать 75% клапанов (представим это гипотетически). Более того, перестань функционировать в нормальном режиме хотя бы один из клапанов на обычных ДВС, вы потеряете больше, чем пиковую мощность на высоких оборотах. То есть в плане поломок, если уж что-то произошло с ГРМ, скандинавская технология явно обходит все другие типы моторов.

Еще один плюс. На революционном двигателе, как утверждают инженеры, работающие над проектом, невозможна встреча клапанов с поршнями в случае обрыва ремня/растяжения цепи ведь ее здесь просто-напросто нет.

Технические нюансы. FreeValve- более, чем полностью изменяемые фазы газораспределения?


Если ответить кратко, по существу, то да, это больше чем двигатель с изменяемыми фазами газораспределения, потому что каждый конкретный клапан может иметь различные «подъемы», как по времени, так и в позиции открытия. Также он может открываться и закрываться с разной скоростью, изменяя частоту, за этим в онлайн режиме следит система бортовых компьютеров высчитывая необходимый режим хода клапана в соответствии с режимом работы двигателя с точностью подъема вплоть до 1/10 миллиметра.

Как видно приводы (актуаторы) способны делать это с необычайной точностью, значительно превосходя показатели работы в обычном двигателе.