Система изменения степени сжатия. Система изменения степени сжатия топливной смеси современного двс. Особенности системы изменения сжатия

Тесно связана с к.п.д. В бензиновых двигателях степень сжатия ограничивается областью детонационного сгорания. Эти ограничения имеют особое значение для работы двигателя на полных нагрузках, в то время как на частичных нагрузках высокая степень сжатия не вызывает опасности детонации. Для увеличения мощности двигателя и повышения экономичности желательно снижать степень сжатия, однако если степень сжатия будет малой для всех диапазонов работы двигателя, это приведет к снижению мощности и увеличению расхода топлива на частичных нагрузках. При этом значения степени сжатия, как правило, выбираются намного ниже тех величин, при которых достигаются наиболее экономичные показатели работы двигателей. Заведомо ухудшая экономичность двигателей, это особенно сильно проявляется при работе на частичных нагрузках. Между тем, снижение наполнения цилиндров горючей смесью, увеличение относительного количества остаточных газов, уменьшение температуры деталей и т.п. создают возможности для повышения степени сжатия при частичных нагрузках с целью повышения экономичности двигателя и увеличения его мощности. Чтобы решить такую компромиссную задачу, разрабатываются варианты двигателей с изменяющейся степенью сжатия.

Повсеместное применение в конструкциях двигателей сделало направление этой работы еще более актуальным. Дело в том, что при наддуве значительно увеличиваются механические и тепловые нагрузки на детали двигателя, в связи с чем их приходится усиливать, повышая массу всего двигателя в целом. При этом, как правило, срок службы деталей, работающих при более нагруженном режиме, сокращается, а надежность двигателя снижается. В случае перехода на переменную степень сжатия рабочий процесс в двигателе при наддуве можно организовать так, что за счет соответствующего снижения степени сжатия при любых давлениях наддува максимальные давления рабочего цикла (т.е. эффективность работы) будут оставаться неизменными или будут изменяться незначительно. При этом, несмотря на увеличение полезной работы за цикл, а, следовательно, и мощности двигателя, максимальные нагрузки на его детали могут не увеличиваться, что позволяет форсировать двигатели без внедрения изменений в их конструкцию.

Очень существенным для нормального протекания процесса сгорания в двигателе с изменяющейся степенью сжатия является правильный выбор формы камеры сгорания, обеспечивающей наиболее короткий путь распространения пламени. Изменение фронта распространения пламени должно быть очень оперативным, чтобы учитывать различные режимы работы двигателя при эксплуатации автомобиля. Учитывая применение дополнительных деталей в кривошипно-шатунном механизме, необходимо также разрабатывать системы с малым коэффициентом трения, чтобы не потерять преимуществ при применении изменяющейся степени сжатия.

Один из наиболее распространенных вариантов двигателя с изменяющейся степенью сжатия показан на рисунке.

Рис. Схема двигателя с изменяющейся степенью сжатия:
1 – шатун; 2 – поршень; 3 – эксцентриковый вал; 4 - дополнительный шатун; 5 – шатунная шейка коленчатого вала; 6 – коромысло

На частичных нагрузках дополнительный 4 занимает крайнее нижнее положение и поднимает зону рабочего хода поршня. Степень сжатия при этом максимальна. При высоких нагрузках эксцентрик на валу 3 поднимает ось верхней головки дополнительного шатуна 4. При этом увеличивается надпоршневой зазор и уменьшается степень сжатия.

В 2000 году в Женеве был представлен экспериментальный бензиновый двигатель фирмы SAAB с изменяемой степенью сжатия. Его уникальные особенности позволяют достигать мощности в 225 л.с. при рабочем объеме в 1,6 л. и сохранять расход топлива сравнимого с вдвое меньшим двигателем. Возможность бесшагового изменения рабочего объема позволяет двигателю работать на бензине, дизельном топливе или на спирте.

Цилиндры двигателя и головка блока выполнены как моноблок, т. е. единым блоком, а не раздельно как у обычных двигателей. Отдельный блок представляет собой также блок-картер и шатунно-поршневая группа. Моноблок может перемещаться в блок-картере. Левая сторона моноблока при этом опирается на расположенную в блоке ось 1, служащую шарниром, правая сторона может приподниматься или опускаться при помощи шатуна 3 управляемого эксцентриковым валом 4. Для герметизации моноблока и блок-картера предусмотрен гофрированный резиновый чехол 2.

Рис. Двигатель с изменяющейся степенью сжатия SAAB:
1 – ось; 2 – резиновый чехол; 3 – шатун; 4 – эксцентриковый вал.

Степень сжатия изменяется при наклоне моноблока относительно блок-картера посредством гидропривода при неизменном ходе поршня. Отклонение моноблока от вертикали приводит к увеличению объема камеры сгорания, что вызывает снижение степени сжатия.

При уменьшении угла наклона степень сжатия повышается. Максимальная величина отклонения моноблока от вертикальной оси – 4%.

На минимальной частоте вращения коленчатого вал и сбросе подачи топлива, а также при малых нагрузках, моноблок занимает самое нижнее положение, в котором объем камеры сгорания минимален (степень сжатия – 14). Система наддува отключается, и воздух поступает в двигатель напрямую.

Под нагрузкой, за счет поворота эксцентрикового вала, шатун отклоняет моноблок в сторону, и объем камеры сгорания увеличивается (степень сжатия – 8). При этом сцепление подключает нагнетатель, и воздух начинает поступать в двигатель под избыточным давлением.

Рис. Изменение подачи воздуха в двигатель SAAB при различных режимах:
1 – дроссельная заслонка; 2 – перепускной клапан; 3 – сцепление; а – на малой частоте вращения коленчатого вала; б – на нагрузочных режимах

Оптимальная степень сжатия рассчитывается блоком управления электронной системы с учетом частоты вращения коленчатого вала, степени нагрузки, вида топлива и др. параметров.

В связи с необходимостью быстрого реагирования на изменение степени сжатия в данном двигателе пришлось отказаться от турбокомпрессора в пользу механического наддува с промежуточным охлаждением воздуха с максимальным давлением наддува 2,8 кгс/см2.

Расход топлива для разработанного двигателя на 30% меньше, чем у обычного двигателя такого же объема, а показатели по токсичности отработавших газов соответствуют действующим нормам.

Французская фирма МСЕ-5 Development, разработала для концерна «Пежо-Ситроен», двигатель с изменяемой степенью сжатия VCR (Variable Compression Ratio). В этом решении применена оригинальная кинематика кривошипно-шатунного механизма.

В данной конструкции передача движения от шатуна на поршни осуществляется через двойной зубчатый сектор 5. С правой стороны двигателя расположена опорная зубчатая рейка 7, на которую опирается сектор 5. Такое зацепление обеспечивает строго возвратно-поступательное движение поршня цилиндра, который соединен с зубчатой рейкой 4. Рейка 7 соединена с поршнем 6 управляющего гидроцилиндра.

В зависимости от режима работы двигателя по сигналу блока управления двигателем изменяется положение поршня 6 управляющего цилиндра, связанного с рейкой 7. Смещение рейки управления 7 вверх или вниз изменяет положение ВМТ и НМТ поршня двигателя, а вместе с ними и степени сжатия от 7:1 до 20:1 за 0,1 с. В случае необходимости имеется возможность изменения степени сжатия для каждого цилиндра в отдельности.

Рис. Двигатель с изменяемой степенью сжатия VCR:
1 – коленчатый вал; 2 – шатун; 3 – зубчатый опорный ролик; 4 – зубчатая рейка поршня; 5 – зубчатый сектор; 6 – поршень управляющего цилиндра; 7 – опорная зубчатая рейка управления.

Идея создания бензинового мотора, где степень сжатия в цилиндрах была бы величиной непостоянной, не нова. Так, при разгоне, когда требуется наибольшая отдача двигателя, можно на несколько секунд пожертвовать его экономичностью, уменьшив степень сжатия, - это позволит предотвратить детонацию, самопроизвольное возгорание топливной смеси, которое может возникнуть при высоких нагрузках. При равномерном движении степень сжатия, напротив, желательно повысить, чтобы добиться более эффективного сгорания топливной смеси и снижения расхода горючего - в этом случае нагрузка на мотор невелика и опасность возникновения детонации минимальна.

В общем, в теории все просто, однако реализовать эту идею на практике оказалось не так уж легко. И японские конструкторы стали первыми, кто сумел довести замысел до серийного образца.

Суть разработанной корпорацией Nissan технологии в том, чтобы, в зависимости от требуемой отдачи мотора, непрерывно изменять максимальную высоту подъема поршней (так называемую верхнюю мертвую точку - ВМТ), что в свою очередь приводит к уменьшению или росту степени сжатия в цилиндрах. Ключевой деталью этой системы является особое крепление шатунов, которые соединяются с коленчатым валом через подвижный блок коромысел. Блок в свою очередь связан с эксцентриковым управляющим валом и электромотором, который по команде электроники приводит этот хитрый механизм в движение, меняя наклон коромысел и положение ВМТ поршней во всех четырех цилиндрах одновременно.

Разница степени сжатия в зависимости от положения ВМТ поршня. На левой картинке мотор находится в экономичном режиме, на правой - в режиме максимальной отдачи. A: когда требуется изменение степени сжатия, электромотор поворачивает и перемещает рычаг привода. B: приводной рычаг поворачивает управляющий вал. C: когда вал вращается, он действует на рычаг, связанный с коромыслом, изменяя угол наклона последнего. D: в зависимости от положения коромысла, ВМТ поршня поднимается или опускается, таким образом изменяя степень сжатия.

В результате при разгоне степень сжатия уменьшается до 8:1, после чего мотор переходит в экономичный режим работы со степенью сжатия 14:1. Его рабочий объем при этом меняется от 1997 до 1970 см 3 . «Турбочетверка» нового Infiniti QX50 развивает мощность 268 л. с. и крутящий момент в 380 Нм - ощутимо больше, чем 2,5‑литровый V6 предшественника (его показатели - 222 л. с. и 252 Нм), расходуя при этом на треть меньше бензина. Кроме того, VC-Turbo на 18 кг легче атмосферной «шестерки», занимает меньше места под капотом и достигает максимума крутящего момента в зоне более низких оборотов.

Кстати, система регулировки степени сжатия не только повышает эффективность работы мотора, но и снижает уровень вибраций. Благодаря коромыслам шатуны при рабочем ходе поршней занимают почти вертикальное положение, в то время как у обычных двигателей они ходят из стороны в сторону (из-за чего шатуны и получили свое название). В результате даже без уравновешивающих валов этот 4‑цилиндровый агрегат работает так же тихо и плавно, как V6.

Но изменяемое положение ВМТ при помощи сложной системы рычагов - не единственная особенность нового мотора. Меняя степень сжатия, этот агрегат также способен переключаться между двумя рабочими циклам: классическим Отто, по которому функционирует основная масса бензиновых двигателей, и циклом Аткинсона, встречающимся в основном у гибридов. В последнем случае (при высокой степени сжатия) из-за большего хода поршней рабочая смесь сильнее расширяется, сгорая с большей эффективностью, в результате растет КПД и снижается расход бензина.

Помимо двух рабочих циклов, этот мотор также использует две системы впрыска: классический распределенный MPI и непосредственный GDI, который повышает эффективность сгорания топлива и позволяет избежать детонации при высоких степенях сжатия. Обе системы работают попеременно, а при высоких нагрузках - одновременно. Положительный вклад в повышение КПД двигателя вносит и особое покрытие стенок цилиндров, которое наносится методом плазменного напыления, а затем закаливается и хонингуется. В результате получается ультрагладкая «зеркальная» поверхность, на 44 % уменьшающая трение поршневых колец.

Еще одна уникальная особенность мотора VC-Turbo - это интегрированная в его верхнюю опору система активного подавления вибраций Active Torque Road, основой которой является возвратно-поступательный актуатор. Эта система управляется датчиком ускорений, фиксирующим колебания двигателя и в ответ генерирует гасящие вибрации в противофазе. Активные опоры в Infiniti впервые использовали в 1998 году на дизельном моторе, но та система оказалась слишком громоздкой, поэтому не получила распространения. Проект пролежал под сукном до 2009 года, пока японские инженеры не взялись за его усовершенствование. На то, чтобы решить проблему избыточного веса и размеров гасителя колебаний, ушло еще 8 лет. Но результат впечатляет: благодаря ATR 4‑цилиндровый агрегат нового Infiniti QX50 работает на 9 дБ тише, чем V6 его предшественника!

Мы привыкли к тому, что степень сжатия и рабочий объем являются неизменными конструктивными параметрами автомобильного двигателя. Похоже, от этой привычки вскоре придется отвыкать. Тенденции развития моторостроения указывают на то, что будущее за двигателями с «изменяемыми неизменными». И это отнюдь не туманная перспектива – речь идет о будущем, которое стоит на пороге и уже стучится в дверь.

Пролог

Почти 15 лет тому назад шведский концерн SAAB, известный эксперт в области моторных технологий, в очередной раз возмутил спокойствие мировой автомобильной общественности. На мотор-шоу 2000 года в Женеве он продемонстрировал сенсационный результат многолетней работы над проектом SVC (SAAB Variable Compression) – прототип искрового двигателя с механическим нагнетателем и переменной степенью сжатия. Общественность «возмутили» как фантастические мощностные характеристики агрегата, так и его скромный аппетит. Рядная «пятерка» объемом 1,6 л развивала номинальную мощность и максимальный крутящий момент, характерные для 3-литрового двигателя V-6 (225 л.с./5800 мин-1 и 333 Нм/4000 мин-1 соответственно). При испытаниях SVC-мотора в составе автомобиля SAAB 9-5 расход топлива в комбинированном цикле составил всего 8,3 л/100 км.


Столь великолепная комбинация компактности, тяговых характеристик, расхода топлива и соответственно токсичных выбросов сулила в наступившем XXI веке радужные перспективы и шведскому концерну, и всему мировому автопрому. Недаром SVC-концепт тут же был удостоен нескольких наград от устроителей женевской выставки и ряда автомобильных изданий. В восторженных комментариях многих серьезных автоспециалистов высказывалось мнение, что начало массового производства SVC-двигателей – дело двух-трех лет. Меж тем минуло уже без малого 15, а «саабов» с чудо-моторами нет как нет. Страсти вокруг нашумевшего SVC-проекта улеглись, свежей информации о его дальнейшей судьбе не найти. Горячие головы из числа поклонников SAAB «катят бочки» на руководство GM – мол, те специально заморозили проект, который грозил вбить кол в производство многолитровых «джи-эмовских» «бормотографов» и пустить под откос целую отрасль их американской промышленности. В общем, история любопытная. Можно сказать, детективная. Чтобы в ней объективно разобраться, нужно вначале понять, в чем суть идеи изменения неизменного.

На пальцах

Из теории тепловых машин, начало которой было положено в первой половине XIX века французским ученым и инженером Сади Карно, известно, что эффективность идеального термодинамического цикла (его термический КПД) увеличивается с ростом степени сжатия (в) рабочего тела. Влияние степени сжатия на эффективность реальных тепловых машин – автомобильных ДВС – не столь однозначное. Теоретически обоснованному, «беспредельному» повышению степени сжатия препятствуют одновременно растущие механические потери на трение и газообмен, тепловые и механические нагрузки на детали двигателя, особенности автомобильных топлив и ряд других. Поэтому применительно к ДВС (определенной конструкции) можно говорить об оптимальном значении степени сжатия, при которой достигается максимум эффективного КПД, отвечающего за топливную экономичность и высокие мощностные характеристики. Точнее, о диапазоне оптимальных величин в, поскольку на разных режимах работы двигателя степень воздействия ограничивающих факторов различна и наиболее эффективная работа может достигаться при разных степенях сжатия.

Возьмем, к примеру, атмосферные искровые двигатели с внешним смесеобразованием. Исследования показывают, что оптимальная степень сжатия для таких моторов лежит в пределах 13-15. Дальнейшее увеличение в не приводит к заметному улучшению показателей двигателя из-за роста механических потерь. В то же время этот параметр у современных бензиновых двигателей обычно составляет величину порядка 10, т.е. существенно меньше оптимальной. Причина –стремление избежать детонации, опасность которой возникает прежде всего на режимах полной нагрузки, при высоких значениях давления и температуры в камере сгорания. Известно, что двигатель городского автомобиля работает с полностью открытым дросселем не более 10% времени эксплуатации. Это означает, что большую его часть он не добирает в мощности и неэкономно расходует топливо. Будь степень сжатия регулируемой, на режимах холостого хода и частичных нагрузок двигатель мог бы работать с оптимальной в, и только на мощностных режимах она уменьшалась бы до безопасного уровня. Подсчитано, что эта мера позволила бы снизить потребление бензина примерно на 10%. Не очень много, но и не мало, если принять во внимание огромное количество эксплуатируемых «бензиномобилей». Суммарная экономия нефти и сокращение выбросов в атмосферу были бы весьма ощутимыми.

Переменная степень сжатия сослужила бы добрую службу и дизельным двигателям. Современные дизели, большинство которых турбированные, также имеют степень сжатия, отличную от оптимальной. При конструировании дизелей ее выбирают из условия обеспечения устойчивого холодного пуска двигателя. В зависимости от конструкции мотора в может принимать значения от 16 до 24, что выше оптимума. Излишне высокая степень сжатия, обусловленная приемлемыми пусковыми характеристиками, препятствует увеличению давления наддува, т.е. повышению удельной мощности дизелей. Одно из следствий высокой степени сжатия – большое максимальное давление в камере сгорания. При наддуве оно еще больше возрастает, что грозит превышением допустимых нагрузок на детали двигателя, снижением его ресурса и даже разрушением. Возможность гибко регулировать степень сжатия турбодизелей позволила бы без проблем запускать двигатель при высокой в, а на мощностных режимах снижать ее вплоть до 10-11, одновременно увеличивая давление наддува. Так можно значительно повысить мощность, не опасаясь превысить предельное давление сгорания.


Отмеченные преимущества, которые сулят возможность регулирования степени сжатия, что называется, лежат на поверхности. Но все это цветочки, ягодки – впереди.

Два «дауна»

Не секрет, что появлением многих современных технологий в моторостроении мы обязаны борьбе за сокращение потребления топлива и уменьшения выбросов в атмосферу углекислого газа и прочих продуктов сгорания углеводородных топлив. Несмотря на достигнутые успехи, борьба отнюдь не закончена. Впереди двигате-листов ожидают новые вызовы, обусловленные еще более жесткими экологическими нормами и возрастающими требованиями к ездовым характеристикам автомобилей. Ответом на новые вызовы становятся новые стратегии развития автомобильных двигателей. Большинство специалистов в области моторостроения сходятся во мнении, что в ближайшей перспективе особенно актуальными будут две взаимосвязанные стратегии: downsizing и downspeeding. Название первой в русской транскрипции произносится «даунсайзинг» и означает «снижение размеров», наименование второй, звучащее как «даунспидинг», означает «снижение частоты вращения». Уделим внимание обоим «даунам», поскольку они непосредственно касаются темы разговора.


«Даунсайзинг» подразумевает движение в двух направлениях: повышение мощности и крутящего момента двигателя без увеличения его рабочего объема или сокращение литража при неизменных выходных характеристиках. В обоих случаях увеличиваются удельные показатели двигателя, в частности литровая мощность, что служит достижению главной цели – уменьшению расхода топлива. Другими словами, речь идет о разработке компактных и одновременно мощных моторов. Такие агрегаты эффективнее используют топливо (особенно при частичных нагрузках) благодаря меньшим потерям на газообмен и трение, а также меньшим утечкам тепла от рабочего тела в стенки камеры сгорания.


Еще больше уменьшить насосные потери и потери на трение можно, если у компактного мотора прибавка в мощности будет достигаться не за счет повышения частоты вращения коленчатого вала, а вследствие прироста крутящего момента во всем диапазоне оборотов. Этого можно достичь путем увеличения коэффициента наполнения и среднего эффективного давления в цилиндре (см. шпаргалку 2). Таким образом, стратегия «снижения размеров» становится еще более выигрышной, если ее дополнить «даунспидингом».

Нужно отметить, что идея повышения удельных характеристик двигателей ненова. На протяжении всей истории развития автомобильные двигатели постоянно совершенствовались, становились компактнее и мощнее. Другое дело, что сейчас эта тенденция стала приоритетной и появились технологические возможности, позволяющие получить на этом направлении качественный скачок. Стратегии снижения размеров и частоты вращения актуальны как для бензиновых, так и дизельных двигателей, но у искровых моторов потенциал развития в этих направлениях существенно выше. Для достижения намеченных целей в двигателе с искровым зажиганием планируется использовать несколько уже апробированных технологий:


Полностью регулируемый газораспределительный механизм с четырьмя клапанами на цилиндр (VVA);

Непосредственный впрыск топлива (GDI);

Принудительный наддув воздуха (СН).

Но ключом к успеху в деле создания компактного, мощного и экономичного бензинового двигателя является технология изменяемой степени сжатия (Variable Compression Ratio, или VCR). Ведь для получения ощутимого прироста литровой мощности потребуется наддув высокого давления. При этом многократно возрастет опасность возникновения детонации на нагрузочных режимах. Чтобы ее избежать, обычно форсированные двигатели с фиксированной степенью сжатия «разжимают» – уменьшают величину ε на несколько единиц (вплоть до 7-8), и она еще более отдаляется от оптимума. Расплатой за это становится неустойчивая работа и прожорливость «разжатого» двигателя на режимах холостого хода и частичных нагрузок. Технология VCR позволит высокофорсированному двигателю работать предельно эффективно на любых режимах. Для этого нужно лишь научиться плавно регулировать £ в диапазоне от 14 до 7. Полный контроль над детонацией в условиях наддува высокого давления даст возможность уменьшить литраж двигателей до 50%, сохранив их мощностные характеристики.

Благодаря гибкому регулированию степени сжатия можно будет воздействовать на параметры физических процессов в двигателе, влияющие на потребление топлива и эмиссию токсичных компонентов:

Давление и температуру в конце такта сжатия;

Максимальное давление и температуру сгорания;

Степень расширения и индикаторный КПД;

Объем камеры сгорания;

Температуру отработавших газов.

Вместе с экстремальным «даунсайзингом» это открывает колоссальные возможности экономии энергоресурсов и уменьшения выбросов в атмосферу углекислого газа. Так, по сведениям из разных источников, компактные VCR-двигатели с наддувом будут потреблять топлива на 20-40% меньше в сравнении с традиционными атмосферными моторами эквивалентной мощности. К примеру, экономия топлива двигателя SVC составила около 30%. На такую же величину сократятся и выбросы «парникового газа».

Технология регулируемой степени сжатия позволит использовать различные сценарии управления двигателем, способствующие снижению в выхлопе концентрации токсичных веществ. Например, при пуске холодного двигателя можно будет намеренно уменьшить индикаторный КПД. Вызванное этим повышение температуры отработавших газов ускорит прогрев катализатора и одновременно сократит эмиссию окислов азота. На режиме максимальной мощности VCR-технология позволит уменьшить тепловые нагрузки в камере сгорания и выпускной системе, не прибегая к обычно применяющемуся способу охлаждения – обогащению смеси и связанному с ним повышенному выбросу СО и НС. Такого рода меры позволят обеспечить возрастающие экологические требования к двигателям без усложнения и удорожания систем очистки отработавших газов. По мнению специалистов, благодаря технологии изменяемой степени сжатия искровые моторы смогут нокаутировать дизели и вернуть утраченное лидерство по экономичности и экологии.


Возможность изменения неизменного греет душу тем, кто ратует за использование альтернативных видов топлива. Регулируемая в широких пределах степень сжатия значительно упрощает задачу создания многотопливного двигателя, способного одинаково эффективно работать на бензине, природном газе или спиртобензиновой смеси Е-85, особенно популярной в Швеции и Штатах. Наконец, VCR-технология открывает дорогу для внедрения новых и совершенствования существующих перспективных технологий двигателестроения: использования адаптивного цикла Аткинсона, формирования расслоенных зарядов топливовоздушной смеси, сжигания сверхбедных смесей и ряда других.

Полный перечень потенциальных преимуществ ДВС с регулируемой степенью сжатия этим не исчерпывается, но и упомянутого достаточно, чтобы понять, чем обусловлен интерес большинства автопроизводителей к разработкам в этом направлении.

Просто было на бумаге...

Идея создания ДВС с изменяемой степенью сжатия овладела умами моторостроителей не вчера. Можно сказать, что в последнее время она лишь переживает свое второе рождение. Первое случилось еще на заре XX века, так что идея изменения неизменного ненамного моложе самих двигателей внутреннего сгорания. Примерно к середине прошлого столетия уже были разработаны и запатентованы (в виде схем или конструкций) практически все известные на сегодня способы, позволяющие варьировать степень сжатия в ДВС. Некоторые из предложенных решений в силу разных причин так и остались на бумаге, некоторые были воплощены в железе. Часть из созданных VCR-двигателей была доведена до уровня экспериментальной отработки, и лишь единицы выпускались мелкими сериями и устанавливались на автомобили. Существуют и такие «воплощения», которые уже почти сто лет применяются и будут применяться в ДВС, но не для транспортных целей. Подробнее об этом будет рассказано далее. Вначале посмотрим, в каких направлениях развивалась идея изменения неизменного.

Принципиально определить эти направления несложно. Для этого нужно припомнить, что геометрическая степень сжатия – это отношение максимального и минимального объема цилиндра, когда поршень находится в НМТ и ВМТ соответственно (см. шпаргалку 1). Из приведенного выражения для в видно, что воздействовать на степень сжатия можно путем изменения объема камеры сжатия (V), рабочего объема двигателя (Vh) или обоих параметров одновременно. Причем при постоянном рабочем объеме варьировать степень сжатия можно только за счет объема камеры сжатия. Анализ конструктивной схемы традиционного ДВС с кривошипно-шатунным механизмом (КШМ) дает основные способы воздействия на высоту камеры сжатия (hc):

1) изменение остова двигателя (расстояния от оси вращения коленвала до свода камеры сжатия);

2) изменение высоты поршня;

3) изменение длины шатуна;

4) изменение радиуса кривошипа.

Важно отметить, что в последнем случае – при изменении радиуса кривошипа – вместе со степенью сжатия будет меняться и рабочий объем двигателя (величина хода поршня). Возможность одновременного воздействия на оба геометрических параметра ДВС весьма заманчива. Особенно если они будут подчиняться обратной зависимости – с увеличением степени сжатия рабочий объем будет уменьшаться, и наоборот. Это позволит, например, уменьшить литраж двигателя на режимах пуска и частичных нагрузок и при этом работать с высоким индикаторным и механическим КПД за счет большой в и сокращения насосных потерь. С повышением нагрузки и ростом давления наддува двигатель будет «разжиматься» и одновременно «увеличиваться» в размерах. Так можно будет получить и высокую номинальную мощность, и максимальную топливную экономичность в каждой точке нагрузочной характеристики мотора.


Уменьшать или увеличивать объем камеры сжатия можно не только путем изменения ее высоты. Учтем прочие способы воздействия на величину У отдельным, пятым пунктом. Получившийся перечень также не будет полным без еще одного, шестого пункта. Дело в том, что приведенные выше соображения касались двигателей, в которых поступательное движение поршня преобразуется во вращение коленвала с помощью КШМ. В технике известно множество других преобразующих механизмов, в том числе и таких, которые позволяют управлять движением поршней и воздействовать на степень сжатия и рабочий объем. Их использование в конструкции VCR-двигателей также может быть весьма перспективным.

За почти вековой период, прошедший с момента зарождения идеи, инженеры-изобретатели не оставили без внимания ни одно из указанных направлений. Отметим некоторые из достигнутых ими результатов.

Изменение остова двигателя

Один из первых VCR-двигателей, устроенных по этому принципу, был создан в 20-е годы прошлого века талантливым британским инженером и исследователем сэром Гарри Рикардо. Сэр Рикардо разработал свой одноцилиндровый мотор с регулируемой степенью сжатия для изучения свойств моторных топлив и явления детонации. Он же впоследствии ввел в обиход понятие октанового числа топлива. В двигателе Рикардо величина остова изменялась за счет перемещения цилиндра и головки блока относительно неподвижных картера и коленчатого вала. Цилиндр соединялся с картером при помощи гайки с трапецеидальной резьбой – перемещение цилиндра достигалось ее поворотом. Изменение расстояния между коленчатым и распределительным валами компенсировалось промежуточным роликом в цепном приводе распредвала. Аналогичную схему имеют большинство двигателей, входящих в состав исследовательских установок, в том числе и самых современных. Их широко используют для изучения всевозможных физических процессов в ДВС. Забегая вперед, скажем, что и в многоцилиндровом SVC-концепте также использован принцип варьирования остова за счет смещения моноблока, включающего цилиндры и ГВЦ.


Известно немало схем двигателей, в которых, напротив, коленчатый вал имеет возможность перемещаться относительно цилиндра. В немецком патенте 1968 года описан двигатель Varimax, в котором опоры коленвала вывешены внутри картера на раме. Раму с двух сторон поддерживают вертикальные штанги – с одной стороны неподвижные, с другой – регулируемые. Смещение оси коленчатого вала достигается изменением длины регулируемых штанг. Чаще для перемещения вала предлагается установить его коренные подшипники в эксцентриковые втулки. По такой схеме устроен один из VCR-двигателей, разработанных специалистами известной исследовательской фирмы из Германии FEV Motorentechnik. Втулки имеют зубчатые венцы, в зацепление с которыми входят шестерни, расположенные на едином валу.

Общий недостаток упомянутых конструкций – снижение жесткости остова двигателя, его «станового хребта», за счет неизбежного использования дополнительных соединений между картером, коленвалом и цилиндром. Механизмы, отвечающие за изменение высоты остова, подвергаются большим нагрузкам от газовых и инерционных сил.

Конструкции с подвижным коленчатым валом к тому же страдают от недостаточной жесткости опор и серьезных проблем, связанных с совмещением оси «колена» с осью первичного вала КПП. Таким образом, то, что не является критичным для стационарных лабораторных установок, представляет немалые проблемы на пути создания надежных изделий для транспортных машин.

Изменение высоты поршня

На первый взгляд изменение высоты поршня кажется наиболее привлекательным методом воздействия на степень сжатия. Действительно, в отличие от других этот способ требует минимальных изменений в архитектуре базового двигателя. Конструкция поршня с изменяющейся высотой была предложена в 1952 году Британским научно-исследовательским институтом двигателей. Поршень состоит из двух частей – «тела» с юбкой и подвижной головки, выполненной в виде стакана. Контактная поверхность между телом и головкой уплотнена, во внутреннюю полость между ними по каналам в шатуне подается моторное масло. Изменение его количества приводит к вариации высоты поршня. С увеличением высоты надпоршневой зазор сокращается, степень сжатия растет, и наоборот. Подача масла регулируется с помощью системы клапанов.

Вслед за британцами в этом же направлении работали двигателисты концернов Ford и Mercedes-Benz и предложили свои варианты «телескопических» поршней. Они отличались несколько иной схемой подачи масла и организацией уплотнения подвижной головки. Поршни использовали в конструкции двигателей, выпускаемых небольшими сериями. Диапазон изменения степени сжатия у разных двигателей был различным. Например, на автомобилях М-В S-класса он составлял 11-14, за счет этого эффективный КПД двигателей возрастал на 5%.

Наиболее заметного успеха в этом направлении достигла американская корпорация Continental. На протяжении ряда лет она выпускала дизель специального назначения AVCR-1100 с регулируемой высотой поршней. Степень сжатия в нем изменялась в пределах от 10 до 22. Увеличение высоты поршня от минимума до максимума происходило за 60-65 циклов или примерно за 3 с, потому что оно возможно лишь в течение небольшого периода времени, пока действующие на поршень силы инерции превышают силу противодавления газов. Низкое быстродействие – не самый значительный недостаток конструкций с телескопическими поршнями. Механизм с прецизионными элементами вынужден работать в условиях больших температур и нагрузок. Одно из вероятных следствий этого – коксование масла и потеря подвижности головки поршня. К тому же реализация способа связана с существенным увеличением массы поршней со всеми вытекающими последствиями.

Изменение длины шатуна и радиуса кривошипа

В разное время было предложено большое количество конструкций шатунов с изменяемой длиной. Большая часть из них основывалась на тех же решениях, что применялись для изменения высоты поршней. Тело шатуна изготавливалось телескопическим, его длина изменялась с помощью механических или гидравлических устройств. Таким конструкциям свойственны те же недостатки, что и телескопическим поршням. Более того, надежность конструкции оказывалась еще ниже из-за того, что шатун, в отличие от поршня, подвержен большим изгибающим нагрузкам. В нескольких патентах предлагалось изменять длину шатуна путем размещения эксцентриковых элементов в верхней или нижней головках. Практическая реализация этих способов оказалась настолько сложной, что они так и остались чистыми идеями.


Применение эксцентрикового механизма также рассматривалось в качестве средства для изменения радиуса кривошипа. В этом направлении дальше всех продвинулась голландская инжиниринговая фирма Gomecsys. В предложенной ею конструкции вокруг шатунной шейки размещается подвижная эксцентриковая втулка с зубчатым венцом. Ее угловое положение изменяется за счет поворота ответной зубчатой шестерни большого диаметра с внутренним зацеплением. По такому принципу построены и исследуются 2- и

4-цилиндровый моторы – прототипы GoEngine. Разработанный механизм одновременно обслуживают два цилиндра. Поэтому он подходит только для двигателей с определенной схемой – четным числом цилиндров, из которых два соседние работают синхронно. В других случаях количество зубчатых пар, масса и габариты двигателя возрастают чрезмерно. Одно это уже значительно сужает возможности его практического применения.

Изменение объема камеры сжатия

Альтернативные способы изменения объема камеры сжатия главным образом сводятся к устройству разделенной камеры, состоящей из двух сообщающихся частей – основной и дополнительной. Объем дополнительной камеры варьируется перемещением ее свода, которое осуществляется гидравлическими, механическими или электрическими устройствами. При этом изменяется суммарный объем камеры сгорания и соответственно степень сжатия.

Одной из первых подобную систему освоила французская фирма Hispano-Suiza. В авиационном дизельном двигателе V8 модели HS-103 применяли вихревую камеру переменного объема, подвижный свод которой перемещался под действием гидравлики. Похожее устройство регулирования степени сжатия в искровом двигателе было запатентовано концерном Ford. Отличие состояло в том, что в этой конструкции подвижная часть дополнительной камеры перемещалась при помощи профилированного кулачка. Наконец, по этому же принципу варьировалась степень сжатия в концепт-двигателе ALVAR, авторство которого принадлежит концерну Volvo. Здесь сводами дополнительных камер сжатия служили днища небольших вторичных поршней, которые приводились в действие от вала, расположенного в ГБЦ.

Способ разделения камеры сжатия привлекателен тем, что необходимые изменения ограничиваются только конструкцией головки. С другой стороны, ГБЦ (особенно современного многоклапанного двигателя) и без того достаточно плотно «упакована». Так что размещение в ней дополнительного элемента представляет большую проблему. Наличие «аппендикса» в камере сгорания неизбежно нарушает процесс смесеобразования и сгорания, что приводит к ухудшению экологических характеристик мотора. Наконец, регулирующий механизм работает в зоне максимальных тепловых и механических нагрузок, что не может не сказаться на его надежности.

На этом этапе можно сделать некоторые промежуточные выводы. Они, к сожалению, не очень утешительны. Для двигателей с традиционным КШМ были предложены и в различной степени опробованы всевозможные варианты регулирования степени сжатия. Большинство из них позволяло решить поставленную задачу по изменению в, но ни один не оказался безусловно предпочтительным и пригодным для широкого применения на серийных моторах из-за трудностей в изготовлении или обеспечении приемлемой работоспособности. Это побудило инжене-ров-двигателистов вспомнить о других типах механизмов, преобразующих поступательное движение во вращение.

Применение не традиционных преобразующих механизмов

Данное направление работ по созданию VCR-двигателя без натяжки можно назвать популярным. Им занимались и продолжают интенсивно заниматься многие автоконцерны – Ford, Mercedes-Benz, Nissan, Peugeot/Citroen – и моторные исследовательские компании: немецкая FEV Motorentechnik, британская Mayflower и французская МСЕ-5 Development. Fla протяжении многих лет аналогичные разработки ведутся и в ННАМИ. Попробуем понять причину интереса к этой тематике.

Полистав увесистый томик ТММ (теория механизмов и машин, на студенческом сленге – тут моя могила), можно обнаружить огромное количество кинематических схем механизмов, которые, в принципе, возможно использовать в ДВС для передачи движения от поршня к коленчатому валу. Кривошипно-шатунный механизм – простейший из них, в чем состоит его неоспоримое достоинство. В соответствии с классификацией KIJJM является одноэлементным преобразующим механизмом, поскольку поршень связан с кривошипом единственным звеном – шатуном. Внимание двигателистов привлекли трехэлементные механизмы, которые при относительной простоте потенциально способны обеспечить важное преимущество – гибкое управление движением поршня. Трехэлементные устройства подразделяют на две большие группы – балансирные и траверсные. В первых связанное с шатуном звено (балансир) вращается, во вторых оно совершает сложное плосеое движение и называетсв траверсой. Балансирные механизмы соединяются с кривошипом тягой, треверсные – самой траверсой.

Было запатентовано и экспериментально отработано множество конструкций балансирных ДВС. Большинство из них представляли собой 2-тактные двигатели с противоположным движением поршней. Исследования показали, что ставка на балансирные механизмы себя не оправдывает. Хотя балансирные двигатели демонстрировали достаточно высокую надежность, они имели значительно большие габариты по сравнению с традиционными, ненамного превосходя их по возможности регулирования движения поршней. Гораздо более обнадеживающие результаты были получены в ходе экспериментальной отработки траверсных механизмов. Было доказано, что при определенных условиях они способны обеспечить следующие преимущества:

Приемлемый диапазон регулирования степени сжатия (ε = 7–15);

Возможность одновременного регулирования степени сжатия и рабочего объема, причем по оптимальному алгоритму;

Возможность сведения к минимуму дисбаланса двигателя за счет оптимизации закона перемещения поршней и использования массы дополнительных элементов;

Небольшие нагрузки на органы управления VCR-механизмом и, как следствие, достаточно высокое быстродействие;

Отсутствие экзотических деталей, использование традиционных для двигателестроения технологий.

Именно поэтому траверсный механизм взят за основу большинством из упомянутых выше разработчиков VCR-двигателей. Это не означает, что все они движутся «след в след». Используются разные кинематические схемы и различные конструктивные решения. Выражение «при определенных условиях» было употреблено ранее неслучайно. Действительно, преимущества траверсных механизмов присущи им отнюдь не «по определению». Они достигаются только тогда, когда геометрические и конструктивные параметры всех звеньев оптимизированы с точки зрения закона движения поршня, уравновешенности механизма и прочности. На текущем этапе эти вопросы являются основным предметом исследования.

Помимо этого отрабатываются различные варианты привода механизма и алгоритма автоматического управления степенью сжатия.

Тем временем фирма MCE-5 ведет работы в другом направлении. В предложенной ею конструкции VCR-двигателя используется КШМ, но нетрадиционным способом. Верхняя головка шатуна соединена не с поршнем, а с осью зубчатого колеса, которое, в свою очередь, связано со штангой, жестко прикрепленной к поршню. Решение на первый взгляд не бесспорное, но, по заявлениям разработчиков, обладающее рядом достоинств. Утверждается, что механизм позволяет регулировать степень сжатия в широких пределах, обеспечивает минимальные потери на трение ввиду отсутствия бокового давления поршня на стенки цилиндра, исключительно надежен и имеет большой ресурс.

Проверить это мы сможем в следующей статье, которая будет посвящена наиболее перспективным проектам ДВС с «изменяемыми неизменными».

Уникальную информацию по устройству, эксплуатации и ремонту систем турбонаддува смотрите на сайте turbomaster.ru

Редакция благодарит доктора технических наук Георга Тер-Мкртичьяна за помощь в подготовке статьи.

  • Сергей Самохин

«Изменяемая степень сжатия» - технология, которая обеспечит будущее бензиновому двигателю еще лет на 30-50, а по характеристикам позволит ему значительно опередить дизельные моторы. Когда же появятся эти агрегаты и чем они лучше уже существующих?

Впервые мотор с изменяемой степенью сжатия засветился на Женевском автосалоне в 2000 году (см. ). Тогда его представила компания Saab. Самый высокотехнологичный на то время двигатель Saab Variable Compression (SVC) с пятью цилиндрами имел рабочий объем 1,6 л, но развивал немыслимую для такого литража мощность 225 л. с. и крутящий момент 305 Нм. Превосходными оказались и другие характеристики - расход топлива при средних нагрузках снизился на целых 30%, на столько же уменьшился показатель выбросов СО2. Что касается СО, СН, NОx и т. д., то они, по утверждению создателей, соответствуют всем существующим и планируемым на ближайшее будущее нормам токсичности. К тому же изменяемая степень сжатия дала возможность этому мотору работать на различных марках бензина - от А-76 до А-98 - практически без ухудшения характеристик и без детонации. Несколько месяцев спустя подобный силовой агрегат представила и компания FEV Motorentechnik. Это был 1,8-литровый двигатель Audi A6, в котором показатель расхода топлива снизили на 27%.

Однако из-за сложности конструкции эти моторы в то время так и не пошли в серию, а с целью повышения коэффициента полезного действия (КПД) двигатель внутреннего сгорания усовершенствовали путем внедрения непосредственного впрыска топлива, изменяемой геометрии впускного тракта, интеллектуальных турбонаддувов и т. д. Параллельно велась активная работа над созданием гибридных силовых установок, электромобилей, развитием водородных топливных ячеек и новых способов хранения водорода. Тем не менее, потенциал, заложенный в моторы с изменяемой степенью сжатия, не давал покоя многим инженерам. В результате появилось множество механизмов реализации этой идеи «в металле».

Наиболее близким к ее осуществлению сегодня является французский проект двигателя MCE-5, который стартовал еще в 1997 году. Родившаяся тогда концепция имела массу недостатков, устранять которые пришлось почти десять лет. В этом году данный мотор презентовали «в металле», как и саабовский в 2000-м на Женевском автосалоне.

овинка с четырьмя цилиндрами имеет объем 1,5 л и выдает при этом максимальную мощность 160 кВт (218 л. с.) и крутящий момент 300 Нм. Помимо изменяемой степени сжатия, двигатель оснащен непосредственным впрыском, системой изменения фаз газораспределения и укладывается во все перспективные экологические нормы.

Как изменяют степень сжатия

В MCE-5 диапазон контроля степени сжатия находится в пределах 7-18 (7:1-18:1). Более того, контроль и изменение степени сжатия происходит индивидуально в каждом цилиндре.

Механизм этот довольно сложный. Главная деталь - двухсторонняя урезанная шестерня-сектор, серединой посаженная на укороченный шатун кривошипно-шатунного механизма (КШМ). В свою очередь, шестерня-сектор с одной стороны входит в зацепление с шатуном поршня, а с другой - с шатуном механизма изменения объема камеры сгорания. Принцип работы этой конструкции очень прост - шестерня-сектор на оси шатуна является своего рода коромыслом. И если это коромысло наклонять в одну или другую сторону, у поршня будет меняться положение верхней мертвой точки (ВМТ), а соответственно, и объем камеры сгорания. А так как величина хода поршня постоянная, изменяется степень сжатия (отношение объема цилиндров к объему камеры сгорания). За наклон коромысла отвечает гидромеханическая конструкция, которой управляет электроника. Она также состоит из поршня с шатуном, нижний конец которого входит в зацепление с коромыслом (шестерней-сектором) с другой стороны. Объем над и под этим поршнем соединен с системой смазки, а в самом поршне, названном масляным, есть специальный клапан, пропускающий масло из верхней части в нижнюю. Управляют им с помощью эксцентрикового вала, который при содействии червячной передачи приводит в движение электромотор системы Valvetronic (BMW). Для изменения степени сжатия от 7 до 18 требуется менее 100 миллисекунд.

Объем камеры сгорания корректируется по принципу изменения пропускной способности масляных клапанов. При их открытии масляный поршень уходит вверх и камера сгорания увеличивается.

Ресурс - надежность

Конструктивно новый мотор стал сложнее. По теории вероятности, его надежность должна снизиться, однако создатели отрицают это. Они утверждают, что доводили двигатель очень долго и все хорошо рассчитали и проверили. Ресурс этого агрегата увеличится, так как на поршень уже не будут действовать боковые и ударные нагрузки, происходящие у классического ДВС из-за шатуна, ось которого располагается под углом к оси поршня (кроме ВМТ и НМТ). В новом моторе усилие поршня и жестко «привязанного» к нему шатуна передается только в вертикальной плоскости, соответственно, давление на стенки цилиндров небольшое, поэтому трущиеся поверхности этих деталей изнашиваются значительно меньше. Такие особенности конструкции двигателя также обеспечили снижение шумности его работы. А кроме того, значительно тише стала работать поршневая группа и снизились потери энергии на трение - это еще плюс несколько процентов в пользу КПД мотора.

Другие способы изменения объема камеры сгорания:

Конструктивная особенность работы первого заявленного мотора с изменяемой степенью сжатия - головка 1 и верхняя часть блока 2 цилиндров были подвижными и с помощью специального кривошипа 3 перемещались вверх-вниз относительно коленвала 4 с неподвижной осью и нижней части блока цилиндров.

Зачем менять степень сжатия


В классическом бензиновом ДВС на разных режимах работы в цилиндры подается неодинаковое количество воздуха. Соответственно, в конце такта сжатия давление существенно отличается. Повышенное (при максимальных оборотах коленвала и больших нагрузках, когда дроссельная заслонка полностью открыта) может стать источником детонационного сгорания, результат - перегрев и повышенные нагрузки на детали цилиндро-поршневой группы. Чтобы избежать этого, камеры сгорания всех моторов делают объемными - с небольшим запасом, из расчета исключения повышенного давления в критичных режимах. Но двигатели в основном работают в режиме частичных нагрузок, когда давление в конце такта сжатия меньше, чем максимально возможное. Соответственно, не используется часть давления, «потерянная» из-за большей (на данных режимах) камеры сгорания. А чтобы этого не было, нужно изменять объем камеры сгорания, т. е. степень сжатия, в зависимости от режима работы двигателя. Это, собственно, и есть ответ на вопрос, почему моторы с изменяемой степенью сжатия имеют лучшие характеристики и столь перспективны.

Юрий Дацык
Фото МСЕ

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Изобретение относится к машиностроению, прежде всего к тепловым машинам, а именно к поршневому двигателю внутреннего сгорания (ДВС) с переменной степенью сжатия. Технический результат изобретения заключается в усовершенствовании кинематики механизма передачи усилий поршневого ДВС, таким образом, чтобы обеспечивать возможность регулирования степени сжатия при одновременном снижении реакции в опорах и сил инерции второго порядка. ДВС согласно изобретению имеет подвижно установленный в цилиндре поршень, который шарнирно соединен с шатуном. Движение шатуна передается на кривошип коленчатого вала. При этом, с целью обеспечения возможности управляемого изменения степени сжатия и хода поршня, между шатуном и кривошипом предусмотрено передаточное звено, которое выполнено с возможностью управления его движением с помощью управляющего рычага. Передаточное звено выполнено в виде поперечного рычага, соединенного с кривошипом посредством шарнира, который расположен в промежуточном положении на участке между двумя опорными точками. В одной из опорных точек поперечный рычаг соединен с шатуном, а в другой - с управляющим рычагом. Управляющий рычаг также шарнирно соединен с дополнительным кривошипом или эксцентриком, которые осуществляют управляющие движения, смещая ось качения управляющего рычага, чем обеспечивают изменение степени сжатия ДВС. Помимо этого ось качения управляющего рычага может совершать непрерывное циклическое движение, синхронизированное с вращением коленчатого вала. При этом, в случае соблюдения определенных геометрических соотношений между отдельными звенья механизма передачи усилий, могут быть уменьшены нагрузки на них и повышена плавность работы ДВС. 12 з.п. ф-лы, 10 ил.

Рисунки к патенту РФ 2256085

Настоящее изобретение относится к машиностроению, прежде всего к тепловым машинам. Изобретение относится, в частности, к поршневому двигателю внутреннего сгорания (ДВС), имеющему поршень, который подвижно установлен в цилиндре и который шарнирно соединен с шатуном, движение которого передается на кривошип коленчатого вала, при этом между шатуном и кривошипом предусмотрено передаточное звено, которое выполнено с возможностью управления его движением с помощью управляющего рычага с целью обеспечить управляемое перемещение поршня, прежде всего обеспечить возможность изменения степени сжатия и хода поршня, и которое выполнено в виде поперечного рычага, который соединен с кривошипом шарниром, который расположен в промежуточном положении на участке между опорной точкой, в которой поперечный рычаг соединен с шатуном, и опорной точкой, в которой поперечный рычаг соединен с управляющим рычагом, и на некотором удалении от линии, соединяющей между собой обе эти опорные точки, в которых поперечный рычаг соединен с управляющим рычагом и шатуном соответственно.

Из работы Wirbeleit F.G., Binder К. и Gwinner D., "Development of Piston with Variable Compression Height for Incrising Efficiency and Specific Power Output of Combustion Engines", SAE Techn. Pap., 900229, известен ДВС подобного типа с автоматически регулируемой степенью сжатия (ПАРСС) за счет изменения высоты поршня, который состоит из двух частей, между которыми сформированы гидравлические камеры. Изменение степени сжатия осуществляется автоматически путем изменения положения одной части поршня относительно другой за счет перепуска масла из одной такой камеры в другую с помощью специальных перепускных клапанов.

К недостаткам этого технического решения относится то, что системы типа ПАРСС предполагают наличие механизма регулирования степени сжатия, расположенного в высокотемпературной и весьма нагруженной зоне (в цилиндре). Опыт работы с системами типа ПАРСС показал, что на переходных режимах, в частности при разгоне автомобиля, работа ДВС сопровождается детонацией, поскольку гидравлическая система управления не позволяет обеспечить быстрое и одновременное по всем цилиндрам изменение степени сжатия.

Стремление вынести механизм регулирования степени сжатия из высокотемпературной и механически нагруженной зоны привело к появлению иных технических решений, предполагающих изменение кинематической схемы ДВС и введение в нее дополнительных элементов (звеньев), управлением которых обеспечивается изменение степени сжатия.

Так, например, у Jante A., "Kraftstoffverbrauchssenkung von Verbrennungsmotoren durch kinematische Mittel", Automobil-Industrie, № 1 (1980), с.с.61-65, описан ДВС (кинематическая схема которого показана на фиг.1), у которого между кривошипом 15 и шатуном 12 установлены два промежуточных звена - дополнительный шатун 13 и коромысло 14. Коромысло 14 совершает качательное движение с центром качания в шарнирной точке Z. Регулирование степени сжатия осуществляется за счет изменения положения точки А путем поворота эксцентрика 16, закрепленного на корпусе. Эксцентрик 16 поворачивается в зависимости от нагрузки двигателя, при этом центр качания, расположенный в шарнирной точке Z, перемещается по дуге окружности, изменяя таким образом положение верхней мертвой точки поршня.

Из работы Christoph Bolling и др., "Kurbetrieb fur variable Verdichtung", MTZ 58 (11) (1997), Сс.706-711, известен также двигатель типа FEV (кинематическая схема которого показана на фиг.2), у которого между кривошипом 17 и шатуном 12 установлен дополнительный шатун 13. Шатун 12, кроме того, связан с коромыслом 14, которое совершает качательное движение с центром качания в шарнирной точке Z. Регулирование степени сжатия осуществляется за счет изменения положения шарнирной точки Z путем поворота эксцентрика 16, закрепленного на корпусе двигателя. Эксцентрик 16 поворачивается в зависимости от нагрузки двигателя, при этом центр качания, расположенный в шарнирной точке Z, перемещается по дуге окружности, изменяя таким образом положение верхней мертвой точки поршня.

Из заявки DE 4312954 А1 (21.04.1993) известен двигатель типа IFA (кинематическая схема которого показана на фиг.3), у которого между кривошипом 17 и шатуном 12 установлен дополнительный шатун 13. Шатун 12, кроме того, связан с одним из концов коромысла 14, второй конец которого совершает качательное движение с центром качания в шарнирной точке Z. Регулирование степени сжатия осуществляется за счет изменения положения шарнирной точки Z путем поворота эксцентрика 16, который закреплен на корпусе двигателя. Эксцентрик 16 поворачивается в зависимости от нагрузки двигателя, при этом центр качания, расположенный в шарнирной точке Z, перемещается по дуге окружности, изменяя таким образом положение верхней мертвой точки поршня.

К недостаткам, присущим двигателям вышеописанных конструкций (известным из работы Jante А., из работы Christoph Bolling и др. и из заявки DE 4312954 А1), следует отнести в первую очередь недостаточно высокую плавность их работы, обусловленную высокими силами инерции второго порядка при возвратно-поступательном движении масс, что связано с особенностями кинематики механизмов и приводит к чрезмерному увеличению общей ширины или общей высоты силового агрегата. По этой причине такие двигатели практически не пригодны для их использования в качестве двигателей для транспортных средств.

Регулирование степени сжатия в поршневом ДВС позволяет решить следующие задачи:

Повысить среднее давление Ре путем увеличения давления наддува без увеличения максимального давления сгорания сверх заданных пределов за счет уменьшения степени сжатия по мере увеличения нагрузки двигателя;

Снизить расход топлива в диапазоне малых и средних нагрузок за счет увеличения степени сжатия по мере уменьшения нагрузки двигателя;

Повысить плавность работы двигателя.

Регулирование степени сжатия позволяет в зависимости от типа ДВС достичь следующих преимуществ (для ДВС с принудительным (искровым) зажиганием):

При сохранении достигнутого уровня экономичности двигателя при малых и средних нагрузках обеспечивается дальнейшее повышение номинальной мощности двигателя за счет увеличения давления наддува при уменьшении степени сжатия (см. фиг.4а, где кривые, обозначенные позицией х, относятся к обычному двигателю, а кривые, обозначенные позицией у, относятся к двигателю с переменной степенью сжатия);

При сохранении достигнутого уровня номинальной мощности двигателя обеспечивается снижение расхода топлива при малых и средних нагрузках за счет увеличения степени сжатия до допустимого по детонации предела (см. фиг.4б, где кривые, обозначенные позицией х, относятся к обычному двигателю, а кривые, обозначенные позицией у, относятся к двигателю с переменной степенью сжатия);

При сохранении достигнутого уровня номинальной мощности двигателя повышается экономичность при малых и средних нагрузках, а также снижается уровень шума двигателя при одновременном снижении номинальной частоты вращения коленчатого вала (см. фиг.4в, где кривые, обозначенные позицией х, относятся к обычному двигателю, а кривые, обозначенные позицией у, относятся к двигателю с переменной степенью сжатия).

Аналогично ДВС с искровым зажиганием регулирование степени сжатия в дизельном двигателе может вестись в трех следующих равноправных направлениях:

При неизменном рабочем объеме и номинальной частоте вращения мощность двигателя повышают за счет увеличения давления наддува. В этом случае повышается не экономичность, а мощность транспортного средства (см. фиг.5а, где кривые, обозначенные позицией х, относятся к обычному двигателю, а кривые, обозначенные позицией у, относятся к двигателю с переменной степенью сжатия);

При неизменном рабочем объеме и номинальной мощности повышают среднее давление Ре при снижении номинальной частоты вращения. В этом случае при сохранении мощностных характеристик транспортного средства повышается экономичность двигателя за счет повышения механического КПД (см. фиг.5б, где кривые, обозначенные позицией х, относятся к обычному двигателю, а кривые, обозначенные позицией у, относятся к двигателю с переменной степенью сжатия);

Существующий двигатель большого рабочего объема на заменяют на двигатель малого рабочего объема, но той же мощности (см. фиг.5в, где кривые, обозначенные позицией х, относятся к обычному двигателю, а кривые, обозначенные позицией у, относятся к двигателю с переменной степенью сжатия). В этом случае повышается экономичность двигателя в диапазоне средних и полных нагрузок, а также уменьшается масса и габариты двигателя.

В основу настоящего изобретения была положена задача усовершенствовать кинематику поршневого ДВС таким образом, чтобы при малых конструктивных затратах обеспечивать возможность регулирования степени сжатия при одновременном снижении реакции в опорах и сил инерции второго порядка.

В отношении поршневого ДВС указанного в начале описания типа эта задача решается согласно изобретению благодаря тому, что длина стороны, расположенной между опорной точкой, в которой поперечный рычаг соединен с управляющим рычагом, и опорной точкой, в которой поперечный рычаг соединен с шатуном, длина стороны, расположенной между опорной точкой, в которой поперечный рычаг соединен с управляющим рычагом, и шарниром, которым поперечный рычаг соединен с кривошипом, и длина стороны, расположенной между опорной точкой, в которой поперечный рычаг соединен с шатуном, и шарниром, которым поперечный рычаг соединен с кривошипом, удовлетворяют в пересчете на радиус кривошипа следующим соотношениям:

Согласно одному из предпочтительных вариантов выполнения предлагаемого в изобретении поршневого ДВС поперечный рычаг выполнен в виде треугольного рычага, в вершинах которого расположены опорные точки, в которых поперечный рычаг соединен с управляющим рычагом и шатуном, и шарнир, которым поперечный рычаг соединен с кривошипом.

Предпочтительно, чтобы длина l шатуна и длина k управляющего рычага, а также расстояние е между осью вращения коленчатого вала и продольной осью цилиндра удовлетворяли в пересчете на радиус г кривошипа следующим соотношениям:

В том случае, когда управляющий рычаг и шатун расположены по одну сторону поперечного рычага, расстояние f между продольной осью цилиндра и точкой шарнирного соединения управляющего рычага с корпусом ДВС и расстояние р между осью коленчатого вала и указанной точкой шарнирного соединения предпочтительно должны удовлетворять в пересчете на радиус r кривошипа следующим соотношениям:

В том же случае, когда управляющий рычаг и шатун расположены по разные стороны поперечного рычага, расстояние f между продольной осью цилиндра и точкой шарнирного соединения управляющего рычага и расстояние р между осью коленчатого вала и указанной точкой шарнирного соединения предпочтительно должны удовлетворять в пересчете на радиус г кривошипа следующим соотношениям:

В соответствии со следующим предпочтительным вариантом выполнения предлагаемого в изобретении поршневого ДВС точка шарнирного соединения управляющего рычага имеет возможность перемещения по управляемой траектории.

Предпочтительно также предусмотреть возможность фиксации точки шарнирного соединения управляющего рычага в различных регулируемых угловых положениях.

В соответствии еще с одним предпочтительным вариантом выполнения предлагаемого в изобретении поршневого ДВС предусмотрена возможность регулирования углового положения точки шарнирного соединения управляющего рычага в зависимости от характеризующих режим работы ДВС величин и рабочих параметров ДВС.

Согласно еще одному предпочтительному варианту выполнения предлагаемого в изобретении поршневого ДВС предусмотрена возможность синхронизированного с вращением коленчатого вала движения точки шарнирного соединения управляющего рычага по управляемой траектории.

В другом предпочтительном варианте выполнения предлагаемого в изобретении поршневого ДВС предусмотрена возможность синхронизированного с вращением коленчатого вала движения точки шарнирного соединения управляющего рычага по управляемой траектории и возможность регулирования фазового сдвига между движением этой точки и вращением коленчатого вала в зависимости от характеризующих режим работы ДВС величин и рабочих параметров ДВС.

В соответствии со следующим предпочтительным вариантом выполнения предлагаемого в изобретении поршневого ДВС предусмотрена возможность синхронизированного с вращением коленчатого вала движения точки шарнирного соединения управляющего рычага по управляемой траектории, при этом предусмотрена возможность изменения передаточного отношения между движением указанной точки и вращением коленчатого вала.

Предлагаемый в изобретении поршневой ДВС 1 показан на фиг.6а и 6б и имеет корпус 2 с цилиндром 3 и установленным в нем поршнем 4, шатун 6, который шарнирно соединен одним концом с поршнем 4, кривошип 8 коленчатого вала, установленного в корпусе 2, прицепной шатун 10, называемый также управляющим рычагом 10 и шарнирно соединенный одним его концом с корпусом 2, и треугольный поперечный рычаг 7, который одной его вершиной шарнирно соединен со вторым концом шатуна 6, второй его вершиной шарнирно соединен с кривошипом 8, а третьей его вершиной шарнирно соединен с прицепным шатуном 10. Для регулирования степени сжатия ось качания прицепного шатуна 10, т.е. точка Z его шарнирного соединения имеет возможность перемещения по управляемой траектории, определяемой, например, эксцентриком или дополнительным кривошипом 11.

В зависимости от положения оси качания прицепного шатуна предлагаемый в изобретении поршневой ДВС имеет два варианта конструктивного исполнения (см. фиг.6а и 6б):

В первом варианте (фиг.6а) горизонтальная плоскость, в которой лежит ось качания прицепного шатуна 10, т.е. точка Z его шарнирного соединения расположена выше точки соединения кривошипа 8 с поперечным рычагом 7 при нахождении кривошипа в его верхней мертвой точке или, иными словами, прицепной шатун 10 и шатун 6 расположены по одну сторону поперечного рычага 7;

Во втором варианте (фиг.6б) горизонтальная плоскость, в которой лежит ось качания прицепного шатуна 10, т.е. точка Z его шарнирного соединения расположена ниже точки соединения кривошипа 8 с поперечным рычагом 7 при нахождении кривошипа в его верхней мертвой точке или, иными словами, прицепной шатун 10 и шатун 6 расположены по разные стороны поперечного рычага 7.

Изменение положения точки Z шарнирного соединения прицепного рычага, т.е. его оси качания, позволяет за счет простого управляющего движения, осуществляемого дополнительным кривошипом, соответственно регулирующим эксцентриком, изменять степень сжатия. Помимо этого точка Z шарнирного соединения прицепного рычага, т.е. его ось качания может совершать непрерывное циклическое движение, синхронизированное с вращением коленчатого вала.

Как показано на фиг.7, предлагаемый в изобретении поршневой ДВС обладает значительными преимуществами перед известными системами (описанными у Jante А., у Christoph Bolling и др. и в DE 4312954 А1), а также перед обычным кривошипно-шатунным механизмом (СМ) касательно плавности его работы.

Однако указанные преимущества могут быть достигнуты только при соблюдении определенных геометрических соотношений, а именно, при правильном подборе длин отдельных элементов и их положений относительно оси коленчатого вала.

Согласно настоящему изобретению важное значение имеет определение размеров отдельных элементов (по отношению к радиусу кривошипа) и координат отдельных шарниров механизма передачи усилий, чего можно достичь за счет оптимизации такого механизма путем кинематического и динамического анализа. Цель оптимизации подобного, описываемого девятью параметрами механизма (фиг.8) состоит в уменьшении сил (нагрузки), действующих на его отдельные звенья, до минимально возможного уровня и в повышении плавности его работы.

Ниже со ссылкой на фиг.9 (9а и 9б), где изображена кинематическая схема ДВС, показанного на фиг.6 (6а и 6б соответственно), поясняется принцип работы регулируемого кривошипно-шатунного механизма. В процессе работы ДВС его поршень 4 совершает в цилиндре возвратно-поступательное движение, которое передается на шатун 6. Движение шатуна 6 передается через опорную (шарнирную) точку В на поперечный рычаг 7, свобода перемещения которого ограничена за счет его соединения с прицепным шатуном 10 в опорной (шарнирной) точке С. Если точка Z шарнирного соединения прицепного шатуна 10 неподвижна, то опорная точка С поперечного рычага 7 может совершать движение по дуге окружности, радиус которой равен длине прицепного шатуна 10. Положение такой круговой траектории движения опорной точки С относительно корпуса двигателя определяется положением точки Z. При изменении положения точки Z шарнирного соединения прицепного шатуна изменяется положение круговой траектории, по которой может перемещаться опорная точка С, что позволяет влиять на траектории движения других элементов кривошипно-шатунного механизма, прежде всего на положение в.м.т. поршня 4. Точка Z шарнирного соединения прицепного шатуна предпочтительно перемещается по круговой траектории. Однако точка Z шарнирного соединения прицепного шатуна может также перемещаться и по любой иной заданной управляемой траектории, при этом возможна также фиксация точки Z шарнирного соединения прицепного шатуна в любом положении траектории ее перемещения.

Поперечный рычаг 7 шарниром А соединен также с кривошипом 8 коленчатого вала 9. Этот шарнир А движется по круговой траектории, радиус которой определяется длиной кривошипа 8. Шарнир А занимает промежуточное положение, если смотреть вдоль линии, соединяющей между собой опорные точки В и С поперечного рычага 7. Наличие кинематической связи опорной точки С с прицепным шатуном 10 позволяет влиять на ее поступательное движение вдоль продольной оси 5 поршня 4. Перемещение опорной точки В вдоль продольной оси 5 поршня определяется траекторией движения опорной точки С поперечного рычага 7. Влияние на перемещение опорной точки В позволяет управлять возвратно-поступательным движением поршня 4 через шатун 6 и тем самым регулировать положение в.м.т. поршня 4.

В показанном на фиг.9а варианте прицепной шатун 10 и шатун 6 расположены по одну сторону поперечного рычага 7.

Поворотом выполненного в виде дополнительного кривошипа 11 регулирующего звена из показанного на фиг.9а примерно горизонтального положения, например, в обращенное вертикально вниз положение позволяет сместить положение в.м.т. поршня 4 вверх и тем самым увеличить степень сжатия.

На фиг.9б показана кинематическая схема выполненного по другому варианту ДВС, отличающаяся от показанной на фиг.9а схемы лишь тем, что прицепной шатун 10 вместе с выполненным в виде дополнительного кривошипа 11, соответственно регулирующего эксцентрика регулирующим звеном и шатун 6 расположены по разные стороны поперечного рычага 7. Во всем остальном принцип действия показанного на фиг.9б кривошипно-шатунного механизма аналогичен принципу действия показанного на фиг.9а кривошипно-шатунного механизма, у которого прицепной шатун 10 и шатун 6 расположены по одну сторону поперечного рычага 7.

На фиг.10 показана еще одна кинематическая схема кривошипно-шатунного механизма поршневого ДВС, на которой представлены положения определенных точек этого кривошипно-шатунного механизма и на которой штриховкой обозначены оптимальные области, в пределах которых с учетом упомянутых выше оптимальных областей значений для длин и положений элементов кривошипно-шатунного механизма могут перемещаться опорная точка В шарнирного соединения поперечного рычага 7 с шатуном 6, опорная точка С шарнирного соединения поперечного рычага 7 с прицепным шатуном 10 и точка Z шарнирного соединения прицепного шатуна 10. Для обеспечения особо плавной работы ДВС с исключительно малой нагрузкой на отдельные элементы и звенья его кривошипно-шатунного механизма геометрические параметры (длина и положение) элементов и звеньев этого кривошипно-шатунного механизма должны удовлетворять определенным, предпочтительным соотношениям. Длины сторон a, b и с треугольного поперечного рычага 7, где а обозначает длину стороны, расположенной между опорной точкой В шатуна и опорной точкой С прицепного шатуна, b обозначает длину стороны, расположенной между шарниром А кривошипа и опорной точкой С прицепного шатуна, а с обозначает расстояние между шарниром А кривошипа и опорной точкой В шатуна, можно описать следующими неравенствами в зависимости от радиуса г, который равен длине кривошипа 8:

Длина l шатуна 6, длина k прицепного шатуна 10 и расстояние е между осью вращения коленчатого вала 9 и продольной осью 5 цилиндра 3, которая одновременно является и продольной осью поршня, перемещающегося в этом цилиндре, согласно предпочтительному варианту удовлетворяют следующим соотношениям:

Для показанного на фиг.9а варианта, в котором шатун 6 и прицепной шатун 10 располагаются по одну сторону поперечного рычага 7, также можно задать оптимальное соотношение размеров. При этом расстояние f между продольной осью 5 цилиндра и точкой Z шарнирного соединения прицепного рычага 10 к его регулирующему звену, а также расстояние р между осью коленчатого вала и указанной точкой Z шарнирного соединения согласно предпочтительному варианту удовлетворяют следующим соотношениям:

При расположении прицепного шатуна и шатуна по разные стороны поперечного рычага оптимальное расстояние f между продольной осью поршня и точкой Z шарнирного соединения прицепного рычага к его регулирующему звену, а также оптимальное расстояние р между осью коленчатого вала и указанной точкой Z шарнирного соединения можно выбирать исходя из следующих соотношений:

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Поршневой двигатель внутреннего сгорания (ДВС), имеющий поршень (4), который подвижно установлен в цилиндре и который шарнирно соединен с шатуном (6), движение которого передается на кривошип (8) коленчатого вала (9), при этом между шатуном (6) и кривошипом (8) предусмотрено передаточное звено, которое выполнено с возможностью управления его движением с помощью управляющего рычага (10) с целью обеспечить управляемое перемещение поршня, прежде всего обеспечить возможность изменения степени сжатия и хода поршня, и которое выполнено в виде поперечного рычага (7), который соединен с кривошипом (8) шарниром (А), который расположен в промежуточном положении на участке между опорной точкой (В), в которой поперечный рычаг (7) соединен с шатуном (6), и опорной точкой (С), в которой поперечный рычаг (7) соединен с управляющим рычагом (10), и на некотором удалении от линии, соединяющей между собой обе эти опорные точки (В, С), в которых поперечный рычаг (7) соединен с управляющим рычагом (10) и шатуном (6) соответственно, отличающийся тем, что длина стороны (а), расположенной между опорной точкой (С), в которой поперечный рычаг (7) соединен с управляющим рычагом (10), и опорной точкой (В), в которой поперечный рычаг (7) соединен с шатуном (6), длина стороны (b), расположенной между опорной точкой (С), в которой поперечный рычаг (7) соединен с управляющим рычагом (10), и шарниром (А), которым поперечный рычаг (7) соединен с кривошипом (8), и длина стороны (с), расположенной между опорной точкой (В), в которой поперечный рычаг (7) соединен с шатуном (6), и шарниром (А), которым поперечный рычаг (7) соединен с кривошипом (8), удовлетворяют в пересчете на радиус (r) кривошипа следующим соотношениям:

6. Поршневой ДВС по п.4 или 5, отличающийся тем, что точка (Z) шарнирного соединения управляющего рычага (10) имеет возможность перемещения по управляемой траектории.

7. Поршневой ДВС по п.4 или 5, отличающийся тем, что предусмотрена возможность регулирования положения точки (Z) шарнирного соединения управляющего рычага (10) с помощью опирающегося на шарнир дополнительного кривошипа.

8. Поршневой ДВС по п.4 или 5, отличающийся тем, что предусмотрена возможность регулирования положения точки (Z) шарнирного соединения управляющего рычага (10) с помощью эксцентрика.

9. Поршневой ДВС по п.4 или 5, отличающийся тем, что предусмотрена возможность фиксации точки (Z) шарнирного соединения управляющего рычага (10) в различных регулируемых угловых положениях.

10. Поршневой ДВС по п.4 или 5, отличающийся тем, что предусмотрена возможность регулирования углового положения точки (Z) шарнирного соединения управляющего рычага (10) в зависимости от характеризующих режим работы ДВС величин и рабочих параметров ДВС.

11. Поршневой ДВС по п.4 или 5, отличающийся тем, что предусмотрена возможность синхронизированного с вращением коленчатого вала движения точки (Z) шарнирного соединения управляющего рычага (10) по управляемой траектории.

12. Поршневой ДВС по п.4 или 5, отличающийся тем, что предусмотрена возможность синхронизированного с вращением коленчатого вала (9) движения точки (Z) шарнирного соединения управляющего рычага (10) по управляемой траектории и возможность регулирования фазового сдвига между движением этой точки (Z) и вращением коленчатого вала (9) в зависимости от характеризующих режим работы ДВС величин и рабочих параметров ДВС.

13. Поршневой ДВС по п.4 или 5, отличающийся тем, что предусмотрена возможность синхронизированного с вращением коленчатого вала (9) движения точки (Z) шарнирного соединения управляющего рычага (10) по управляемой траектории, при этом предусмотрена возможность изменения передаточного отношения между движением указанной точки (Z) и вращением коленчатого вала (9).