Как определить высоту зуба зная модуль. Быстрое моделирование шестерней по параметрам. Модуль. Стандартные модули зубчатых колес. Размеры зубчатой рейки

Данная статья носит характер образовательный и вспомогательный для людей занимающихся моделизмом и творчеством в различных кружках или дома самостоятельно. Статья не претендует на звание научного трактата и вся предоставленная в ней информация носит лишь ознакомительный характер для понимания и определения такой важной характеристики как "модуль шестерни"

Отрицательный знак указывает на обратный смысл вращения двух зубчатых колес, которые касаются. Диаметр зубчатого колеса связан с количеством зубьев через ступень или модулем зубчатого колеса. Таким образом, колеса могут правильно сцепляться между ними, необходимо, чтобы шаг или модуль, т.е. расстояние между гребнями, одинаковы для обоих. Поскольку набор передач не является усилителем или сервосистемой, закон сохранения энергии заставляет выходную мощность из системы равна входящему, меньше потерь на трение.

Связь между парами дается непосредственно из соотношения между зубами. Опять же, меньший знак выражает передачу обратной пары для обычных передач. Зубчатые передачи изготавливаются путем вытягивания цилиндра с соответствующим зубом или путем вырезания зубов с помощью специальных фрезерных станков с зубчатыми колесами.

Ведущие и ведомые шестерни в коробках передач и редукторах для различных радиоуправляемых моделей имеют определенное количество зубьев с конкретным модулем и шагом (pitch).

Модуль является самым главным параметром. Через него выражаются все остальные параметры. Он стандартизирован во всем мире и определяется из прочностного расчёта зубчатых передач.

Расположение зубьев Зубцы зубьев могут быть размещены несколькими способами. Снаружи это классическая отделка шестерни, придающая шестерке оборванную форму, при этом зубы обращены наружу. Внутри это расположение шестерни оставляет гладкий внешний край, в то время как внутри зубчатых колес, которые направлены на ось бокового зубчатого колеса, эта компоновка принимает форму, похожую на корону короля на шестерню.

Типы зубчатых передач Зубчатые передачи могут иметь различные механизмы. Простой зубчатый диск. Наиболее распространенным типом зубчатого колеса является прямое зубчатое колесо. Зубчатое колесо плоское, ось зуба выступает в радиальном направлении от центра вращения зубчатой ​​передачи, а зубчатые выступы пересекаются поперек плоскости вращения и параллельны друг другу. Эти шестерни могут соответствовать только параллельным осям и также страдают от проблемы игры: когда вращение происходит в одном направлении, зуб нажимает на одну сторону соответствующего зуба другого колеса, а если поворот обратный, противоположная сторона должна нажать на соответствующую и это включает момент, когда зубы движутся без передачи движения.

Для тех моделистов, которым покажется сложными все точные выкладки и расчеты достаточно будет в своей практике постройки различных моделей руководствоваться простыми правилами, которые будут звучать примерно так. Для любых шестеренчатых передач важно подбирать ведомые и ведущие шестерни с одинаковым модулем. При этом число зубьев в любой из подбираемых шестерен (ведомая или ведущая в шестеренчатой передаче) можно варьировать подбирая нужное соотношение мощности и оборотов, но характеристика "модуль шестерни" должна оставаться одинаковой для любых шестеренок входящих в непосредственное зацепление друг с другом. Проще говоря понятие модуль шестерни это международная стандартная характеристика обозначения формы зубца любой шестеренки (тут заложены и эвольвента и размеры по высоте и т.д.). Если модули шестерен совпадают, а количество зубьев и диаметры например различные, то можете быть уверены в том, что при правильной установке (зазоры, соосность и т.д.) эти две шестеренки будут работать правильно. Но если параметр модуля различный у шестерен участвующих в передаче, то как их не выставляй они все равно будут "выедать" одна другую и со временем шестеренчатая передача выйдет из строя.

Это означает, что на мгновение после применения входящего вращения нет исходящего вращения, поэтому были разработаны альтернативные решения для устранения проблемы, когда это необходимо. даже полые колеса звездочек, в которых зубчатая структура сформирована на внутренней поверхности цилиндра, вырезанного в самом колесе. Для этих колес диаметр короны условно отрицателен, так как в этом случае передаваемая скорость приравнивается к диаметру водителю. этот способ дает преимущество приближения к параллельной оси короны и свиньи доли не имеет.

Производители и бренды, выпускающие тюнинг и запчасти для автомоделей, часто (но не всегда) используют дюймовую маркировку ведущих и ведомых шестерен В ней указывается количество зубьев на 1 дюйм диаметра.
Например: шестерня с 32 pitch будет иметь 32 зуба на 1 дюйм диаметра, а шестерня с 64 pitch будет иметь 64 зуба на 1 дюйм диаметра. То есть, чем больше значение модуля, тем ближе зубья друг к другу

Спиральное зубчатое колесо Спиральное колесо является улучшением по сравнению с простым. Зубы разрезаются под определенным углом относительно плоскости, так что упорная поверхность между зубьями больше и контакт происходит мягко, исключая характерную распорку простых передач. При проектировании угла зубов можно соединить шестерни с наклонными или даже перпендикулярными осями. Недостатком этого решения является получение результирующей силы вдоль оси шестерни, которая должна поддерживаться специальным шарикоподшипником Другим недостатком является большее трение между зубами, вызванное большей поверхностью контакта, которое должно быть уменьшено за счет использования смазочных материалов.

Различия между модулями для визуального сравнения вы можете оценить по следующей иллюстрации:

На фото представлены ведущие шестерни с одинаковым количеством зубьев 21, но разными модулями.


Самым ходовым модулем для радиоуправляемых автомоделей является модуль 48 Pitch.

В редукторах , и обычно используют шестерни с метрической маркировкой
При метрической маркировке, чем больше модуль, тем крупнее зуб.
Различия между метрическими модулями для визуального сравнения вы можете оценить по следующей иллюстрации:

Можно представить, что это шестерня состоит из двух отдельных колес с геликоидальными колесами, зеркально расположенных рядом друг с другом, так что осевые силы они взаимно калечат. Конические колеса В конических колесах обод колеса гладкий, а гребни пальцев лежат на поверхности идеального конуса. Таким образом, две шестерни могут быть фланкированы под определенным углом между осями. Если наклон зубьев каждого колеса равен 45 °, угол между осями составляет 90 °. Эта система используется, например, между планетариями и спутниками в дифференциале автомобилей.

Поэтому покупая и заказывая запчасти в магазинах или через интернет, всегда обращайте внимание не только на количество зубьев, но и на указанные в характеристиках товара значения модуля шестерни (pitch) или (module). Эта величина модуля должна обязательно быть одинаковой у всех шестерен в зацеплении, а также обратите внимание на величину диаметра посадки шестерни на вал. При этом материалы, из которых изготовлены шестерни, могут быть абсолютно различными от пластика до высокопрочной стали.
На фото показан пример редуктора автомодели в сборе. Модуль ведущей шестерни (Pinion Gear) и ведомой шестерни (Spur Gear) – 48 Pitch.

Гипоидная и шестеренная корона Гипоидная корона - это специальная коническая передача, в которой зубы вращаются параллельно плоскости вращения колеса. Он предназначен для малогабаритной параллельной или маленькой шестерни звездочки, это решение используется в угловом шлифовальном станке. Вариант этой системы используется в различных выхлопных системах для механических часов. Другой вариант, гипоидный конический крутящий момент, образован короной и шестерней, оси которой не лежат на одной плоскости, поэтому средний угол спины коронки намного ниже, чем у шестерни.


На фото показан пример редуктора в сборе для радиоуправляемой модели самолета паркового класса. Модуль ведущей шестерни (Pinion Gear) и ведомой шестерни (Spur Gear) – 0.4 Module.


При покупке в магазинах радиоуправляемых моделей или на сайтах различных продавцов в интернете еще можно разобраться и все несколько раз перепроверить.

Этот конический крутящий момент введен в поле автомобиля для многих преимуществ: он бесшумный, передает больше крутящего момента с большим охватом между зубцами обоих элементов, что позволяет уменьшить высоту туннеля, где передаточный вал мотоцикл спереди и сзади, увеличивая способность автомобиля занять, увеличивая свет между землей и коробкой дифференциала.

Стойка и шестерня Система стойки и звездочки позволяет преобразовывать линейное вращение. Шестерня - это простое зубчатое колесо, а стойка - произвольно отрезанный режущий инструмент. Его можно считать эквивалентным бесконечному колесу луча. Эта система используется в автомобилях чтобы преобразовать поворот рулевого колеса в боковое движение органов, действующих на колеса.

На фото представлены ведущие (сверху) и ведомые (ниже) шестерни разных фирм производителей в упаковках.


Буквой T обозначено общее количество зубьев на шестерне (от англ. Tooth - Зуб). Буквой P обозначено значение шага зубьев Pitch. Непосредственно значение модуля обозначено словом Module. Причем Вам при покупке пары для имеющейся у вас шестерни необходимо помнить правило: Единый Pitch для пары шестерней или единый модуль это не важно. Важно если вы подбираете пару для шестеренчатой передачи зная значение Pitch, то и продавцу задаете вопрос употребляя значение (Pitch), а если у вам известен модуль (Module), то и заказывать у продавца парную шестерню необходимо используя значение именно модуль шестерни - Module.

А вот как быть в том случае когда шестеренка уже требует замены или планового апгрейда (Upgrade) для увеличения скажем мощности. Или имеется обломок (часть шестерни) присланный, например, другом моделистом из другого региона России с просьбой достать точно такую же или "примерно такую". Для этих "сложных" случаев можно воспользоваться информацией приведенной ниже, чтобы точно определить нужный модуль шестерни перед покупкой ее в магазине или перед заказом через интернет из "забугорного" сайта. Для этой задачи необходимо вооружится необходимыми знаниями и точным измерительным инструментом (особенно если шестеренка маленькая).

Тот же принцип используется в некоторых стойках с зубчатыми колесами, где поезда способны преодолевать сильные наклоны благодаря контакту между зубчатым колесом, выступающим под колесом локомотив и длинную стойку, сплошную на трассе, помещенную в рельсы того же самого. Секторная передача Секторальная передача - это просто сектор общего зубчатого колеса, например четверть или половина окружности, который аналогично связан с осью. Конечно, эта передача работает только на зубчатой ​​части и не может превышать пределы сектора. где вам не нужно вращать 360 °, но важно сохранить вес и пространство.

Итак, начнем понемногу.

Модуль зацепления (модуль шестерни) - это отношение делительного диаметра шестерни к числу зубьев, выраженное в миллиметрах. То есть модуль шестерни равен числу миллиметров диаметра приходящееся на один зуб.


m - модуль (обозначается в англоязычных магазинах на упаковочном пакетике как module)
d - делительный диаметр (диаметр, измеренный по половине высоты зуба)
z - число зубьев (в англоязычных магазинах обозначается буквой T фрезеровкой или литьем на самой шестеренке и, как правило, на упаковочном пакетике с товаром)
p - шаг зубьев (в англоязычных магазинах обозначается как pitch иногда как P на упаковочном пакетике с товаром)

Например, если делительный диаметр d=120 мм, а число зубьев равно 60, то модуль будет равен 2 мм.
Модуль так же является и показателем высоты самого зуба - она равна 2 x m.
Например, если модуль шестерни равен 2 мм, то высота зуба будет равна 4 мм.

Некруглые шестерни Некруглые шестерни представляют собой специальные зубчатые колеса, специально предназначенные для специальных применений. В то время как на обычной передаче вы пытаетесь максимизировать передачу энергии с постоянным коэффициентом, в некруглой передаче цель состоит в том, чтобы иметь переменное передаточное отношение во время вращения или смещения оси или других функций. Форма шестерни может иметь любую форму, подходящую для этой цели, ограниченную воображением изобретателя или инженера.

Колеса с минимальными колебаниями в соотношении могут иметь почти круглую форму, или ось может не соответствовать геометрии колеса. Параллельные зубы обычно используются для этих передач, в частности, в связи с осложнениями мотоциклов. для обычных фрезерных передач, но обычно для сплавления, спекания или резки с плиты. Особенно это касается текстильных машин и автоматических коробок передач.

Надеемся эта информация поможет многим моделистам в определении, того какая именно шестеренка им необходима.

Приветствую!

Вопрос о моделировании шестерней поднимался неоднократно, но решения либо подразумевали использование серьезных платных программ, либо были слишком упрощенными и им не хватало инженерной строгости.
В этой статье я постараюсь с одной стороны, дать сухую мэйкерскую инструкцию, как смоделировать шестерню по нескольким легко измеряемым параметрам, с другой, не обойду и теорию.

Муфта «червячно-зубчатого червячного винта» предназначена для передачи крутящего момента и крутящего момента с высоким соотношением между двумя непересекающимися перпендикулярными осями, что влияет на наклон резьбы винта и количество зубьев коронки. Передача движения обычно обеспечивается винтом, что позволяет поддерживать статическую ситуацию на выходе системы. Однако есть пары, где винт и головка имеют наклон резьбы и зубьев, чтобы обеспечить обратимость. возможность наличия зубчатого венца в качестве «проводника», способного передавать движение к винту.

В качестве примера возьмем шестерню от дроссельной заслонки автомобиля:

Это классическая цилиндрическая прямозубая шестерня с эвольвентным зацеплением (точнее, это две таких шестерни).
Принцип эвольвентного зацепления: Для нас важно, что подавляющее большинство встречающихся в быту шестерней имеют именно эвольвентное зацепление.
Для изучения параметров шестерней воспользуемся программой с остроумным названием Gearotic . Мощнейшая узкоспециализированная программа для моделирования и анимирования всевозможных шестерней и передач.
Бесплатная версия не дает экспортировать сгенерированные шестерни, но нам и не надо. Непосредственно моделировать будем позже.
Итак, запускаем Gearotic

Недостатком этого механизма является то, что он имеет выход. Эпициклоидные системы На этой иллюстрации используется серия эпициклоидальных передач для увеличения скорости. Спутник планетарий вращается с момента поступления, солнечная шестерня составляет выход, а внутренняя зубчатая коронка фиксирована. Обратите внимание на красные метки до и после того, как вход прошел поворот на 45 ° почасовое чувство Планетарные или планетарные передачи и спутники представляют собой систему из одной или нескольких передач, называемых спутниками, установленных на спутниковой системе, называемой шасси, вращающейся вокруг центральной шестерни, называемой солнечной; Все это расположено внутри зубчатого колеса, внутренне называемого короной.


Слева в поле Gears нажимаем Circular, попадаем в редактор шестерней:


Рассмотрим предлагаемые параметры:


Ось вращения крыши и солнца совпадает. Один из этих элементов поддерживается фиксированным, другой - входным и третьим выходом. Коэффициент передачи определяется количеством зубьев, а также тем, какой элемент фиксирован, и это используется при некоторых изменениях скорости. Название происходит от того факта, что движение спутниковой передачи подобно тому, которое должно было иметь планеты Солнечной системы в системе Птолемеев, где было выдвинуто предположение о существовании движений, называемых эпициклами.

Случай имеет место, когда наземная плоскость неподвижна и шестерня представляет собой вход. Спутники вращаются с коэффициентом, определяемым количеством зубьев в каждом колесе. Другая возможность заключается в том, что коронка фиксирована, причем входной сигнал подается на планетарный и выходной шестерни. Это максимальное отношение, получаемое из эпициклической системы, и часто используется в тракторах и строительной технике для обеспечения момента крутящего момента смонтированные на колесах. Несколько эпициклоидных блоков могут быть соединены последовательно, с каждым планетарным интегралом со следующей шестерней, благодаря чему достигается компактный редукторный узел с очень высокими коэффициентами и выровненными входными и выходными валами.

Первые два столбца Wheel и Pinion

Wheel - это будет наша шестерня, а Pinion - ответная часть, которая нас в данном случае не интересует.

Teeth - количество зубьев
Mods - модификаторы формы зуба. Самый простой способ понять, что они делают - поварьировать их. Не все параметры применяются автоматически. После изменения нужно нажимать кнопку ReGen. В нашем случае (как и в большинстве других) оставляем эти значения по умолчанию.
Галка Planetary - выворачивает шестерню зубьями внутрь (коронная шестерня).
Галка Rght Hnd (Right Hand) - меняет направление скоса у косозубых шестерней.

Блок Size Params

DP (Diametral Pitch) - число зубьев, деленное на диаметр делительной окружности (pitch diameter) Неинтересный для нас параметр, т.к. измерять диаметр делительной окружности неудобно.

Module (модуль) - важнейший для нас параметр. Вычисляется по формуле M=D/(n+2), где D - внешний диаметр шестерни (легко измеряемый штангенциркулем), n - число зубьев.

Pressure Angle (угол профиля) - острый угол между касательной к профилю в данной точке и радиусом - вектором, проведенным в данную точку из центра колеса.

Существуют типичные значения этого угла: 14.5 и 20 градусов. 14.5 используется гораздо реже и в основном на очень маленьких шестернях, которые на FDM-принтере всё равно отпечатаются с большой погрешностью, так что на практике можно смело ставить 20 градусов.

Rack Fillet - сглаживание основания зуба. Оставляем 0.

Блок Tooth Form

Оставляем Involute - эвольвентное зацепление. Epicylcoidal - циклоидное зацепление, используемое в точном приборостроении, например, в часовых механизмах.

Face Width - толщина шестерни.

Блок Type

Spur - наша прямозубая шестерня.

Helical - косозубая шестерня:


Knuckle - честно говоря, не знаю, как такая по-русски называется:

Herringbone - шевронная шестерня:


Bevel - коническая шестерня:


Вернемся к нашей шестерне.
Большое колесо имеет 47 зубьев, внешний диаметр 44.6 мм, диаметр отверстия 5 мм, толщину 6 мм.
Модуль будет равен 44.6\(47+2)=0.91 (округлим до второго знака).
Вносим эти данные:


Слева расположена таблица параметров. Смотрим Outside Diam (внешний диаметр) 44.59 мм. Т.е. вполне в пределах погрешности измерения штангенциркуля.

Таким образом мы получили профиль нашей шестерни, выполнив всего одно простое измерение и посчитав количество зубьев.
Укажем толщину (Face Width) и диаметр отверстия (Shaft Dia в верхней части экрана). Жмем Add Wheel to Proj для получения 3d-визуализации:


Увы, бесплатная версия не дает экспортировать результат, поэтому придется задействовать другие инструменты.

Устанавливаем FreeCAD
Кто не владеет Фрикадом - не волнуйтесь, глубоких знаний не потребуется. Скачиваем плагин FCGear .
Находим папку, куда установился Фрикад. В папке Mod создаем папку gear и помещаем в нее содержимое архива.
После запуска Фрикад в выпадающем списке должен появиться пункт gear:


Выбираем его, затем Файл - Создать
Нажимаем на иконку involute gear вверху экрана, затем выделяем появившуюся шестерню в дереве слева и переходим на вкладку "Данные" в самом низу:


В этой таблице параметров

teeth - количество зубьев
module - модуль
height - толщина (или высота)
alpha - угол профиля
backlash - значение угла для косозубых шестерней (мы оставляем 0)

Остальные параметры являются модификаторами и, как правило, не используются.
Вносим наши значения:


Добавим еще одну шестерню.
Укажем высоту 18 мм (общая высота нашей исходной шестерни), количество зубьев - 10, модуль 1.2083 (диаметр 14.5 мм)


Осталось сделать отверстие. Перейдем на вкладку Part и выберем Создать цилиндр. В Данных укажем радиус 2.5 мм и высоту 20 мм


Удерживая клавишу Ctrl выделим в дереве шестерни и нажмем Создать объединение нескольких фигур на панели инструментов.
Затем, опять же удерживая Ctrl, выделим сначала получившуюся единую шестерню, а затем цилиндр и нажмем Выполнить обрезку двух фигур


P.S. Хотел еще немного поговорить об экзотических случаях, но статья получилась большой, так что наверное, в другой раз.