Типы и характеристики редукторов

Механика - это именно та наука, без которой сегодня просто немыслим стабильный технический прогресс человечества. Любая машина содержит в себе в той или иной степени механизмы, обеспечивающие нормальное ее функционирование. И во многих этих агрегатов непременно значится устройство под названием редуктор цилиндрический.

Определение

Разберемся подробнее с этим широко распространенным универсальным механическим приспособлением. Итак, редуктор цилиндрический - это механизм, состоящий из заключенный в корпус и зачастую работающий в масляной ванне. Что подразумевается под словом «цилиндрический»? Это означает, что оси валов редуктора расположены параллельно друг другу. По количеству передач механизм может быть одноступенчатым, двухступенчатым, трёхступенчатым и т. д.

Назначение

Абсолютно каждый редуктор цилиндрический в первую очередь служит для понижения частоты вращения и, соответственно, повышения вращающего момента ведомого вала по сравнению с валом ведущим. Говоря иными словами, редуктор снижает вала электродвигателя.

Достоинства

Редуктор цилиндрический обладает следующими неоспоримыми преимуществами:

  • Достаточно высоким коэффициентом полезного действия.
  • Способностью выдерживать большую нагрузку и при этом практически с нулевыми потерями передавать на расстояние большие мощности.
  • Способностью безотказно функционировать даже при неравномерных нагрузках, а также при любом количестве запусков и остановок.
  • Отсутствием самоторможения (в отличие от червячных аналогов), и потому есть возможность проворачивать выходной вал от руки.
  • Высочайшим показателем надежности.
  • Низким уровнем тепловыделения.
  • Широким выбором механизма по передаточному числу.

Отрицательные качества

Редуктор цилиндрический одноступенчатый (как и многоступенчатый) имеет такие недостатки:



Классификация

Редуктор цилиндрический двухступенчатый, одноступенчатый и многоступенчатый по расположению зубьев разделяются:

  • На прямозубые.
  • Косозубые.
  • Шевронные.
  • С круговым зубом.

В зависимости от профиля зубьев редукторы могут быть эвольвентные с зацеплением Новикова и циклоидальные.

По окружной скорости дифференциация будет следующая:

  • Тихоходные (окружная скорость не превышает 3 м/с).
  • Среднескоростные (окружная скорость находится в пределах от 3 до 15 м/с).
  • Скоростные (величина окружной скорости составляет от 15 до 40 м/с).
  • Быстроходные (скорость свыше 40 м/с).

Устройство

Цилиндрический редуктор, чертеж которого приведен ниже, в общей конфигурации состоит из:

  • Корпуса.
  • Валов.
  • Подшипников.
  • Системы смазки.

В механике то которое имеет меньшее число зубьев, называют шестерней, а с большим количеством зубьев - колесом.

Монтаж

Редуктор цилиндрический одноступенчатый и многоступенчатый имеет одинаковый принцип установки, который заключается в соблюдении нескольких правил, а именно:



Правила ввода в эксплуатацию

Редуктор цилиндрический двухступенчатый, как и, собственно говоря, любой другой редуктор, должен начинать свою работу на основе таких требований:

  • Концы валов зачищаются от коррозии или грязи.
  • Откручивают маслоспускной винт и определяют отсутствие/наличие конденсата.
  • Заливку масла в картер осуществлять через мелкоячеистый фильтр с целью исключить вероятность попадания абразивных частиц вовнутрь редуктора. При этом температура этого масла не должна быть ниже 20 градусов Цельсия.
  • Желательно также от руки прокрутить валы и послушать работу зубчатого зацепления.

Основными параметрами, которыми следует руководствоваться при выборе цилиндрического редуктора, являются его и межосевое расстояние.

Цилиндрический двухступенчатый редуктор - наиболее распространенный вариант применяемых ныне редукторов (около 65 %). Передаточные числа этих механизмов находятся в пределах от 8 до 40. В тех случаях, когда есть острая необходимость улучшить работу нагруженной тихоходной ступени, применяются редукторы с быстроходной ступенью раздвоенного типа.



Цилиндрические редукторы состоят из цилиндрических зубчатых передач, т. е. оси валов зубчатых колес в них параллельны. Благодаря своей долговечности, широкому диапазону передаваемых вращающих моментов, простоте изготовления и обслуживания они широко распространены в машиностроении.

Одноступенчатые редукторы типа «Ц » применяют при передаточных числах u ≤ 6,3 . Зацепление в большинстве случаев косозубое, поскольку это позволяет увеличить нагрузочную способность зубчатых колес, а также снизить шум при работе передачи.

Двухступенчатые редукторы выполняют по развернутой (рис. 1, б, в ), раздвоенной (рис. 1, г ) и сосной (рис. 1, д ) схемам. Диапазон передаточных чисел у таких редукторов u = 6,3…50 .

Наиболее распространены цилиндрические двухступенчатые горизонтальные редукторы типа «Ц2 » (рис. 3 ), выполненные по развернутой схеме. Они конструктивно просты, технологичны, имеют малую ширину. Недостатком этих редукторов является неравномерность распределения нагрузки по длине зуба из-за несимметричного расположения колес относительно опор.

Для улучшения условий работы зубчатых колес наиболее нагруженной тихоходной ступени применяют редукторы с раздвоенной быстроходной ступенью типа «Ц2Ш » (рис. 1, г ). Для равномерной нагрузки обеих зубчатых пар быстроходной ступени их выполняют косозубыми (зубчатое колесо одной пары – с правым, а другой пары – с левым зубом), а один из валов делают «плавающим», что обеспечивает самоустановку вала в осевом направлении. Такие редукторы примерно на 20% легче редукторов, выполненных по развернутой схеме, при одинаковой несущей способности.

Соосные редукторы типа «Ц2С » (рис. 1, д ) имеют меньшую длину корпуса. Они проще по конструкции, легче и менее трудоемки в изготовлении.

Цилиндрические трехступенчатые редукторы выполняют по развернутой или сдвоенной схеме и имеют диапазон передаточных чисел u = 31,5…250 .

Конические редукторы типа «К » (рис. 1, е ) выполняют с круговыми зубьями при передаточном числе u ≤ 5 . Коническо-цилиндрические редукторы типа «КЦ » (рис. 1, ж ) независимо от числа ступеней выполняют с быстроходной конической ступенью.



Червячные редукторы чаще всего применяют в одноступенчатом исполнении (тип «Ч ») с передаточным числом u = 8…63 .
Для приводов тихоходных машин применяют червячно-цилиндрические редукторы типа «ЧЦ » (рис. 1, з ) или двухступенчатые червячные редукторы типа «Ч2 » (рис. 1, м ).

Планетарные редукторы позволяют получить большое передаточное число при малых габаритах. По конструкции они сложнее редукторов, описанных выше. В машиностроении наиболее распространен простой планетарный редуктор типа «П », схема и конструкция которого изображены на рис. 4 .
Широко применяют планетарные мотор-редукторы.



Волновые редукторы имеют наименьшие удельную массу и погрешность угла поворота выходного вала. Такие редукторы при наименьших габаритах позволяют получить большое передаточное число u = 80…300 . Схема и конструкция волнового редуктора представлены на рис. 5 .

Тип редуктора, основные параметры и конструкцию выбирают в зависимости от его места в силовой цепи привода машины, передаваемого момента и частоты вращения, назначения машины и условий эксплуатации. На практике используют стандартные редукторы, изготовляемые на специализированных заводах.
Цилиндрические редукторы следует предпочитать другим ввиду более высоких значений КПД. При больших передаточных числах применяют планетарные, червячные и волновые редукторы.

Корпуса (картеры) редукторов должны быть прочными и жесткими. Внешние очертания формируют плоскостями с внутренним расположением бобышек, фланцев и ребер. Корпуса отливают из серого чугуна, реже – из алюминиевых сплавов. Для удобства сборки корпуса редукторов выполняют разъемными по плоскости расположения осей валов.
Опорами редукторов служат подшипники качения.



Смазывание редукторов

Смазывание зубчатых или червячных передач редукторов применяют с целью уменьшения изнашивания, отвода теплоты и продуктов износа от контактирующих поверхностей, защиты от коррозии, а также для снижения шума и вибраций. В большинстве случаев смазывание зацепления осуществляют погружением колес или червяков в масляную ванну, а подшипников – разбрызгиванием (масляным туманом). Уровень погружения колеса в масляную ванну должен быть не менее двух модулей зацепления.

При окружной скорости колеса свыше 1 м/с происходит интенсивное разбрызгивание масла внутри корпуса и образование масляного тумана, обеспечивающего смазывание других зацеплений и подшипников качения. Во избежание больших гидравлических потерь и сбрасывания масла с зубьев центробежной силой окружная скорость погружаемой детали не должна превышать 12,5 м/с .

Сорт масла для смазки зубчатых колес редуктора назначают в зависимости от условий и режима работы. Вязкость масла должна быть тем выше, чем большие значения контактных напряжений и меньшее значение окружной скорости.
В процессе эксплуатации смазочные масла постепенно теряют свои свойства. Периодичность замены масел устанавливают в зависимости от условий работы редуктора.



2.4 Описание конструкции цилиндрического редуктора

Редуктор состоит из массивного чугунного корпуса, узлов зубчатых колес и шестерен с опорами, крышек подшипников и регулировочных колец (рисунок 2.2).

Рисунок 2.2 – Конструкция двухступенчатого цилиндрического
редуктора с развернутой схемой

КОРПУС служит для размещения в нем деталей передач, для заливки смазки зубчатых колес и подшипников, предохранения их от загрязнения и для восприятия усилий, возникающих в процессе работы механизма. Корпус должен быть достаточно прочным и жестким, так как в случае его деформации возникает перекос валов, что может привести к повышенному износу зубьев вследствие неравномерности распределения нагрузки и даже к поломке. Для повышения жесткости корпус усиливают ребрами, расположенными на участках размещения опор валов. Для удобства монтажа корпус выполнен разъемным. Плоскость разъема горизонтальна и проходит через оси валов. Нижняя часть корпуса 1 называется картером, верхняя 2 – крышкой. На крышке имеется смотровое окно 3, закрытое прямоугольной крышкой с отдушиной 4, которая служит для выравнивания давления внутри корпуса редуктора с атмосферным. В картере 1 имеется пробка 5 для слива масла и щуп 6 для замера его уровня. Картер и крышку скрепляют болтами 7, 8.

ЗУБЧАТЫЕ КОЛЕСА служат для передачи вращательного движения. В редукторе могут быть цилиндрические прямозубые или косозубые колеса. По сравнению с прямозубыми косозубые передачи имеют повышенную нагрузочную способность и работают более плавно.

Колеса 10, 11 насаживают на вал по посадке, гарантирующей натяг в сопряжении, или используют шпонки 12, 13. В отдельных случаях шестерни изготавливают заодно с валом, получая так называемые валы-шестерни.

ПОДШИПНИКИ 14, 15, 16 служат для поддержки вращающихся валов. Подшипник качения состоит из внутреннего и наружного колец с желобами для качения шариков, комплекта шариков (роликов) и сепаратора, удерживающего шарики (ролики) на
определенном расстоянии друг от друга. Подшипник надевают на вал неподвижно и вставляют в корпус по посадке с зазором.

КРЫШКИ ПОДШИПНИКОВ 17–21 служат для предотвращения попадания пыли и грязи внутрь корпуса и в подшипниковые узлы.

БОЛТОВЫЕ СОЕДИНЕНИЯ служат для скрепления корпуса и крышки редуктора.

ШТИФТЫ 9 предназначены для точного фиксирования положения крышки относительно корпуса редуктора при совместной расточке гнезд под подшипники и при сборке редуктора.

СМАЗКА РЕДУКТОРА в настоящее время в машиностроении широко применяется циркуляционная и картерная. В данной конструкции редуктора применена картерная смазка, которая осуществляется окунанием зубчатых колес в масло, заливаемое в картер редуктора. Смазка подшипников может быть густая (пластичная), и осуществляемая разбрызгиванием масла. Способ смазки выбирается с учетом окружной скорости зубчатых колес.

2.5 Порядок выполнения работы

2.5.1 Разборка редуктора и ознакомление с конструкцией и назначением
отдельных узлов

Разборка одного из редукторов, указанных преподавателем, производится в следующем порядке: развинчивают болты крепления корпуса, поднимают крышку, используя отжимной болт. Поскольку крышка редуктора является тяжелой деталью, редуктор может перед началом работы находиться в разобранном виде, что дает возможность сразу приступить к знакомству с конструкцией и назначением деталей и узлов редуктора (валов, крышек, регулировочных колец, щупа масломера, сливной пробки).

2.5.2 Определение геометрических параметров быстроходной или тихоходной ступеней цилиндрического зубчатого редуктора

Для решения этой задачи необходимо провести ряд точных замеров с помощью штангенциркуля с точностью до 0,1 мм и вычислить параметры зацепления (рисунок 2.3). Для определения параметров каждой ступени редуктора необходимо сосчитать количество зубьев шестерни и колеса каждой ступени, измерить диаметры вершин зубьев , ширину колес , межосевые расстояния , наружные диаметры подшипников

, внутренние диаметры подшипников , ширину подшипников .


Рисунок 2.3 – Основные геометрические параметры зубчатого зацепления

2.5.2.1 Модуль зубчатых колесосновная характеристика размеров зубьев.Модуль

– величина, пропорциональная шагу по делительному цилиндру, измеренная в миллиметрах:

. Для косозубых передач определяют торцовые и нормальные шаги и модули.

Шаг в торцовом сечении – это расстояние между одноименными точками профилей соседних зубьев, измеренное по дуге делительной окружности зубчатого колеса.

Нормальный шаг – кратчайшее расстояние по делительному цилиндру между одноименными точками двух соседних зубьев в сечении, перпендикулярном зубу:

,где – угол наклона зубьев по делительному цилиндру. Соответственно, нормальный модуль:

.

Для прямозубых передач торцовые и нормальные шаги, и соответственно, модули совпадают. Модули стандартизированы (таблица 2.1).

Таблица 2.1 – Стандартные модули зубчатого зацепления

№ ряда

1; 1,25; 1,5; 2; 2,5; 3; 4; 5; 6; 8; 10; 12; 16; 20; 25

1; 1,25; 1,375; 1,75; 2,25; 2,75; 3,5; 4,5; 5,5; 5,7; 9; 11; 14; 18; 22

Это дает возможность нарезать зубья стандартным инструментом. Делительный диаметр делит зуб на головку зуба h г и ножку зуба h н . Касательная к основным окружностям – линия зацепления. П – полюс зацепления – точка касания начальных окружностей.Примечание – Предпочтение отдают ряду № 1.Для косозубых цилиндрических колес стандартизированы нормальные модули. Модуль колеса можно приближенно определить через его геометрические размеры:для прямозубых

,для косозубых

,

где делительный диаметр колеса, мм; – число зубьев.

Так как делительный диаметр колеса невозможно непосредственно замерить, то модуль колеса, а также некоторые его геометрические размеры, можно определить косвенно, пользуясь выражениями:

а) для прямозубых колес

,

;б) для косозубых колес

;в)

;г) h = 2,25 m ,где диаметр колеса по вершинам зубьев, мм; диаметр колеса по впадинам зубьев, мм; h высота зуба.2.5.2.2 Передаточное число зубчатой передачи отношение числа z 2 зубьев большего колеса к числу z 1 зубьев меньшего (шестерни)

.

Передаточное число редуктора равно произведению передаточных чисел всех его ступеней. Для двухступенчатого редуктора:



,где – передаточное число быстроходной ступени; – передаточное число тихоходной ступени.2.5.2.3 Межосевое расстояние передач – расстояние между осями ведущего и ведомого колес определяется по формулам:

,

где индексы 1 и 2 соответственно относятся к шестерне и колесу.Межосевое расстояние передачи можно замерить штангенциркулем, угол наклона зубьев угломером или вычислить через тригонометрические функции. Модуль зубчатых колес можно определить по формулам:а) для прямозубых передач

;б) для косозубых передач

.

Так как угол в лабораторных условиях трудно определить достаточно точно, значение

может отличаться от стандартного значения. Приняв ближайшее стандартное значение модуля из таблицы 2.1, в обратном порядке рассчитывают фактическое значение угла (с точностью до секунд) и другие геометрические параметры передач. Результаты расчетов и измерений внести в таблицу 2.2.

Таблица 2.2 – Параметры зубчатого зацепления

Параметры

Быстроходная ступень Тихоходная ступень
Измерения:
Количество зубьев
Диаметр вершин зубьев
Ширина колеса
Межосевое расстояние

Наружный диаметр подшипника
Внутренний диаметр подшипника
Ширина подшипника
Расчетные значения:
Передаточные числа ступеней, ,
Общее передаточное число редуктора
Торцовый модуль
Угол наклона
Нормальный модуль

Диаметры делительных окружностей колеса и
шестерни
Межосевое расстояние
Высота h зуба
2.6 Приборы и инструменты к работеИсследуемый редуктор, измерительная линейка, штангенциркуль, отвертка.2.7 Содержание отчетаа) наименование и цель работы;б) кинематическая схема редуктора;в) формулы, по которым велись расчеты и исходные данные для расчетов, сами расчеты;г) таблица параметров;

д) выводы и заключения.

3 ЛАБОРАТОРНАЯ РАБОТА № 2.
ИССЛЕДОВАНИЕ
ХАРАКТЕРИСТИК РЕМЕННОЙ ПЕРЕДАЧИ

(4 часа)

Цель работы: экспериментальное определение зависимости ременной передачи от нагрузки (момента на ведомом шкиве), натяжения ремня, передаточного числа u .

Оборудование : специальная установка; штангенциркуль, линейка.

3.1 Общие сведения

Ременная передача относится к передачам трением с гибкой связью. Передача (рисунок 3.1) состоит из ведущего 1 и ведомого шкивов 2, огибаемых ремнем 3, натяжного устройства 4. Нагрузка передается силами трения, возникающими между шкивом и ремнем вследствие натяжения последнего. В зависимости от формы поперечного сечения ремня передачи бывают плоскоременные (рисунок 3.1б ), круглоременные (рисунок 3.1в ), клиновые (рисунок 3.1г ), поликлиновые (рисунок 3.1д ).


Рисунок 3.1 – Схема ременной передачи

Достоинства ременной передачи:

    простота конструкции и малая стоимость;

    Возможность передачи мощности на значительные расстояния;

    плавность и бесшумность работы;

    уменьшение вибрации из-за упругой вытяжки ремня.

Недостатки ременной передачи:

    большие габариты;

    малая долговечность ремня;

    большие нагрузки на валы и опоры от натяжения ремня;

    непостоянство передаточного отношения из-за упругого проскальзывания ремня.

Применяют ременную передачу в сочетании с другими передачами на быстроходных ступенях привода.

Передаваемая мощность – до 50 кВт, скорость ремня v = 5…50 м/с.

Основными геометрическими характеристиками (см. рисунок 3.1) ременных передач являются:

1) межосевое расстояние а ; впоследствии межосевое расстояние а уточняется при окончательно установленной длине ремня;

2) расчетная длина ремня l ;

3) угол обхвата ремнем малого шкива 1 .

3.1.1 Силы в передаче и напряжения в ремне

Для возникновения трения между ремнем и шкивом создают предварительное натяжение F 0 .

При приложении рабочей нагрузки Т 1 натяжение ведомой ветви снижается до величины F 2 , ведущей повышается до величины F 1 :

F 1 = F 0 + D F ; F 2 = F 0 D F,

F 1 + F 2 = 2F 0 ;

окружная сила на шкиве:

F t = F 1 – F 2 .

Решая совместно два последних уравнения, получим:

F 1 = F 0 + F t / 2 ; F 2 = F 0 – F t / 2 .

При обегании ремнем шкивов в ремне возникает центробежная сила:

F v = rАv 2 ,

где А – площадь сечения, м 2 ; r – плотность материала, кг/м 3 ; v – скорость ремня, м/с.

Силы натяжения ветвей ремня нагружают валы и подшипники (рисунок 3.2а ).


Рисунок 3.2 – Силы в ветвях ремня: а ) T 1 <0; б ) T 1 >0

Равнодействующая сила F n = 2F 0 sin (a / 2).

Обычно величина F n в 23 раза больше величины F t .

При работе ременной передачи от действующих сил возникают напряжения в материале ремня. Максимальное напряжение в ремне возникает в месте его набегания на малый шкив. Так как при перемещении ремня напряжение изменяется по величине, материал ремня со временем разрушается от усталости, здесь же возникают максимальные напряжения изгиба.

3.1.2 Скольжение ремня. Тяговая способность ременных передач

При передаче движения ремнем наблюдается проскальзывание ремня по поверхности шкива. Проскальзывание увеличивается с ростом нагрузки. В пределе может наступить пробуксовка ремня и передача движения прекратится.

Проскальзывание характеризуется коэффициентом проскальзывания E . При этом передаточное число:

u = 1 / 2 = d 1 / d 2 (1 - E ) ,

где  1 , 2 угловая скорость вращения шкивов; d 1 , d 2 диаметр шкивов.

Величина E зависит от нагрузки, угла обхвата ремнем шкива и от натяжения ремня.

3.2.1 Устройство и принцип работы установки

Основные элементы конструкции установки приведены на рисунке 3.3.

На литом основании 1 установки размещены: кронштейн 2 балансирной системы электродвигателя и подставка 15 с нагрузочным устройством. На кронштейне 2 балансирно в шарикоподшипниках установлен корпус электродвигателя 4.

На валу двигателя установлен ведущий двухступенчатый шкив 8.

Узел ведомого шкива смонтирован на подставке 15. В верхней части подставки в направляющих установлен ползун 20. В ползун вмонтирована ось, на которой шарнирно при помощи двух шарикоподшипников установлен корпус. К корпусу крепится нагрузочное устройство 10, вал которого сочленяется с валом двухступенчатого ведомого шкива 11. Вал ведомого шкива установлен в корпусе на двух шарикоподшипниках. К корпусу крепится рычаг 12, при нагружении которого создаётся момент вращения относительно оси, в результате чего корпус вместе с валом ведомого шкива может перемещаться в направлении от ведущего шкива, создавая тем самым дополнительное натяжение ремня.

При помощи ручки 13 производится перемещение ползуна 20 вместе с корпусом, за счет чего создаётся предварительный натяг ремня.

Ручкой 14 производится фиксация ползуна в направляющих при выбранном предварительном натяжении ремня. К валу нагрузочного устройства со стороны, противоположной ведомому шкиву, крепится рычаг, который своим концом создаёт усилие, приложенное к пружине. Величина деформации плоской пружины измеряется индикатором 27, установленным в кронштейне 9.

На валах ведущего и ведомого шкивов закреплены коллекторы контактных устройств. Сигналы, снимаемые с коллекторов контактных устройств, позволяют определить с помощью счётчиков 19 и 23 количество оборотов ведомого и ведущего валов. На панели 16 установлены: выключатель 26 общего питания установки, выключатель двигателя 25, регулятор скорости 24, счётчик оборотов ведущего вала 23, счётчик оборотов ведомого вала 19, выключатель цепей управления счётчиков 22, переключатель сигналов с контактных устройств 21 на счётчики, выключатель цепи возбуждения нагрузочного устройства 18 и регулятор тока возбуждения нагрузочного устройства 17.

На задней стороне основания прибора установлена клемма заземления и выведен кабель с вилкой на конце для подключения прибора к источнику питания.

Нагрузочное устройство представляет собой магнитный порошковый тормоз, принцип действия которого основан на свойстве намагниченной среды оказывать сопротивление перемещению в ней ферромагнитных тел.

В качестве намагниченной среды в конструкции применена жидкая смесь минерального масла и железного порошка.

Передаточное число это - отношение числа зубьев колеса к числу зубьев шестерни в зубчатой передаче, числа зубьев колеса к числу заходов червяка в червячной передаче, числа зубьев большой звёздочки к числу зубьев малой в цепной передаче, а также диаметра большего шкива или катка к диаметру меньшего в ремённой передаче.

Червячный редуктор i=5 – 100

Цилиндрический редуктор i=5.38 – 353.98

Конический редуктор i=7.62 – 442.76

Планетарный редуктор i=3 – 3150

КПД (Коэффициент полезного действия) - характеристика эффективности системы (устройства, машины, ) в отношении преобразования или передачи энергии. Определяется отношением полезно использованной энергии к суммарно затраченной энергии.

Жесткость - это способность редуктора сопротивляться действию внешних нагрузок с деформациями, допустимыми без нарушения работоспособности изделия. Жесткость при кручении [Нм/угл.мин.] определяется как число приложенного крутящего момента и полученного угла кручения. Также показывает какой крутящий момент требуется для скручивания выходного вала на одну угловую минуту.

Для отображения комментариев нужно включить Javascript

Цилиндрический редуктор - это одна из самых популярных разновидностей редукторов. Он, как и все редукторы, служит для изменения скорости вращения при передачи вращательного движения от одного вала к другому.

Именно редукторный привод один из наиболее распространенных видов приводов современных механических систем общепромышленного применения. Более ста лет назад перед нашей промышленностью стояла задача обеспечить нужды страны в цилиндрических редукторах. С этим успешно справлялись открывающиеся заводы. В настоящее время выпуск качественной и надежной продукции обеспечивается мощной производственной базой. Сейчас производят различные типы продукцией: цилиндрический редуктор одно-, двух-, и трехступенчатый.

От работоспособности и ресурса цилиндрического редуктора во многом зависит обеспечение требуемых функциональных параметров и надежности машины в целом. Показатели долговечности и надежности элементов привода и, в частности, редукторов и мотор-редукторов, зависят от обоснованного выбора самого редуктора при проектировании машины, т.е. соответствия этого выбора действующей нормативной документации (НД). Неправильный выбор редуктора снижает его рыночную конкурентоспособность, нанося ущерб производителю, и может привести к значительным экономическим потерям потребителя машиностроительной продукции из-за внеплановых простоев, роста ремонтных затрат и пр. Одно из важнейших требований обеспечения конкурентоспособности цилиндрического редуктора - наилучшее соответствие его паспортных характеристик реальным эксплуатационным условиям нагружения и работы привода машины.

Редуктор (от лат. reductor - отводящий назад, приводящий обратно) - это механизм, входящий в приводы машин и служащий для снижения угловых скоростей ведомого вала с целью повышения крутящих моментов. В редукторах применяют зубчатые передачи, цепные передачи, червячные передачи, а также используют их в различных сочетаниях - червячные и зубчатые, цепные и зубчатые и т.п. Существуют комбинированные приводы, в которых редуктор компонуют с вариатором. Редуктор используют в транспортных, грузоподъёмных, обрабатывающих и др. машинах. Главными характеристиками редукторов служат коэффициент полезного действия (КПД), мощность, передаточное отношение, угловые скорости валов, количество ступеней и передач и др.

Ещё в глубокой древности применялся принцип редукторов - увеличение приложенной силы или тяги. Эта идея механической передачи приложенного усилия восходит от изобретения колеса. Каким образом функционирует простая передача? Два колеса соприкасаются с собой ободами. Большое колесо делает оборотов меньше, по сравнению с меньшим. Когда колесо поменьше - становится ведущим, то крутящийся момент передачи получается больше, потеряв в скорости угловой. Для подъемов огромных грузов подобная передача применяется часто. Установив зубчатые колёса вместо гладких, получим передачу тяги и усилия более производительной. Вот так в человеческой жизни начали появляться редукторы. С появлением паровой машины возникла необходимость в передаче еще больших мощностей. Соответственно, потребовалось конструировать металлические редукторы. К 1850 г. ткацкие станки с механическим приводом были уже втрое производительнее ручных станков. Более дешевая энергия дала возможность повысить быстродействие станков, и это укрепило их экономическое преимущество. Паровой двигатель был достаточно мощным, чтобы приводить в движение несколько текстильных станков, и соответствующие станки приходилось размещать вокруг двигателя. Паровой двигатель также сделал возможным размещение производств не только у воды, а там, где были уголь, рабочие руки, рынки сбыта и транспорт. Новое время проводило и селекцию самых оптимальных конструкций зубчатых передач - тиражироваться начинали именно те, что давали максимальный экономический эффект. К середине ХIX века, по-видимому, следует отнести появление первых серийных редукторов. Ну а при появлении во второй половине XIX века электрического привода, бензиновых и дизельных двигателей означало разработку редукторов с заданными параметрами. Зубчатые механизмы предназначались для передачи вращательного движения от высокооборотных двигателей и преобразования (снижения) его параметров. Даже самые первые электродвигатели и ДВС обладали скоростью и моментом, как правило, не подходящим для использования в технологическом процессе.

Существует много разновидностей редукторов и классифицируются они по типу механических передач: цилиндрический, червячный, конической - цилиндрический.