Межосевое расстояние зубчатого колеса. Зубчатые передачи и их классификация. Основные геометрические и кинематические характеристики зубчатых передач

1. Цилиндрические зубчатые колеса. Рассмотрим вначале наиболее простую цилиндрическую зубчатую передачу - прямозубую (рис. 5). Часть зубчатого колеса, на которой расположены зубья, называется венцом; часть, насаживаемая на вал, называется ступицей. Делительная окружность, име­ющая диаметр d, делит зуб по высоте на две части - головку высотой ha и ножку высотой hfi при этом высота зуба h = ha + hf. Расстояние Р между одноименными профилями соседних зубьев, измеренное по дуге делительной окружности, называется окруж­ным делительным шагом зубьев; он складывается из окружной толщины зуба S и ширины впадины е. Величина т, имеющая размер­ность длины и равная т = Р/п, (Рис.5) называется окружным делительным модулем, или просто модулем. Модуль - один из основных параметров зубчатого колеса; ко­леса, находящиеся в зацеплении друг с другом, должны иметь одинаковый модуль. Модули стандартизованы, и их значения можно узнать из части 5 учебника. В машиностроении чаще всего используются значения модулей от 1 до 14 мм. Все основные параметры зубчатых колес выражают через модуль. Шаг зубьев Р = пт; диаметр делительной окружности d = mz,

(Рис.5) Рис. 5. Цилиндрическое зубчатое колесо с прямыми зубьями:

1 - окружность вершин зубьев; 2 - делительная окружность; 3 - окружность впадин

где z - число зубьев того колеса, делительную окружность которого определяют.

При изготовлении зубчатых колес в качестве исходного рассматривается зацепление коле-

са с зубчатой рейкой. При этом рейка называется номинальной исходной зубчатой рейкой, и контур ее зубьев называют исходным контуром. В соответствии со стандартным исходным контуром для цилиндрических зубчатых колес (рис. 6) высота головки зуба ha = = т, высота ножки зуба h/ = m + c = 1,25m, где с - радиальный зазор; профиль исходного контура в пределах глубины захода hd ~ = 2т прямолинейный; у основания зуба имеется радиус закругления г, = 0,25т. Исходя из сказанного: высота зубьев цилиндрических колес

Рис. 6. Стандартный исходный контур для цилиндрических зубчатых колесd =2,25m; (Рис.6) диаметр вершин зубьев da = d + 2ha = mz-i = m(z (Рис.7)nдиаметр впадин df=d-2hf =mz-2- (Рис.8) Межосевое делительное расстояние зубчатой передачи(Рис.9)

Знак «-» соответствует внутреннему зацеплению. Если межосевое расстояние отличается от делительного, что также встречается, то обозначается aw.

Расстояние между торцами зубьев Ъ (длина зуба) называется шириной венца (рис. 8.5). В процессе работы прямозубой передачи пара зубьев входит в зацепление сразу по всей длине контакта (теоретически контакт зубьев происходит по линии), что сопро­вождается ударом зубьев друг по другу. Но так как другая пара зубьев, которая уже находилась в зацеплении, еще не вышла из него, в зацеплении находятся две пары зубьев. Затем также одномоментно эта другая пара выходит из зацепления, и в контакте остается только одна пара зубьев. Все это сопровождается изменениями в деформациях зубьев, которые при однопарном зацеплении сильнее, чем при двупарном, вибрациями и другими динамическими нагрузками. Как было уже сказано, продолжительность нахождения передачи в одно- и двупарном зацеплениях зависит оТ коэффициента перекрытия е.

Прямозубая передача имеет только торцовое перекрытие. Коэффициент торцового перекрытия еа (отличается от коэффициента перекрытия еу индексом) равен отношению угла торцового перекрытия фа к угловому шагу т:

£«=Фа/т. (Рис.10)

Для прямозубых передач сра соответствует (pY на рис. 8.3, а коэффициент торцового перекрытия для этих передач рекомендуется принимать еи > 1,2.

Стандартом предусмотрено 12 степеней точности для цилиндрических зубчатых колес, причем первая - наивысшая. Для каждой степени точности установлены нормы кинематической точности, плавности работы и контакта зубьев и передач. В машиностроении передачи общего назначения изготовляют по 6-9-й степеням точности, которые применяют для прямозубых колес при окружных скоростях до 15...2 м/с соответственно.

Наиболее распространены в машиностроении косозубые зубчатые колеса (рис.7). Косозубые передачи с параллельными осями имеют противоположное направление зубьев ведущего и ведомого колес (рис. 7, а) и так же, как и прямозубые, относятся к цилиндри­ческим зубчатым передачам. Отметим для сравнения, что винто-колесные передачи (см. рис. 2.12), оси которых скрещиваются и колеса которых похожи на косозубые, имеют одинаковые направ-

Рис.7. Параметры цилиндрических косозубых зубчатых колес и передач: а - направление зубьев; б - сечение зубьев нормалью

ления зубьев обоих колес; исходный контакт рабочих поверхностей зубьев у них происходит не по линии, а в точке. Если представить себе линию пересечения боковой поверхности зуба косозубого колеса с делительной цилиндрической повер­хностью, то получится винтовая линия постоянного шага. В косозубых колесах эта линия (линия зуба) может иметь правое и левое направление, как винтовая линия резьбы. Угол наклона линии зуба обозначается буквой р. Как видно из рис. 7, а, у косозубых передач контактные линии расположены наклонно по отношению к линии зуба, поэтому в отличие от прямых зубьев косые входят в зацепление не сразу по всей длине, а постепенно. Угол перекрытия косозубого колеса состоит из торцового и осевого углов перекрытия, и коэффициент перекрытия ет косозубой передачи складывается из ко­эффициентов торцового еа и осевого ер перекрытий:

ег =£« +ер > 2. (8.Ц) В отличие от прямозубой передачи у косозубой нет периода од-попарного зацепления. Поэтому эти передачи отличаются существен­но большей прочностью и плавностью работы. Например, для косозубых колес 6-9-й степеней точности допустимы окружные скорости 30...4 м/с соответственно. Так как косозубые колеса обрабатываются теми же зуборезными инструментами, что и прямозубые, стандартные параметры колес задаются в нормальном сечении NN к зубу (рис. 8.7, б). Для косозубых колес используются три модуля: нормальный - т„ = Р„/п, окружной - т, = Р,/п и осевой - тх = Рх/п, где Р„, Р, и Рх - соответственно нормальный шаг, измеренный по делительной ок­ружности; окружной шаг, измеренный по дуге делительной окружности в торцовом сечении; осевой шаг, измеренный по образующей делительного цилиндра.

Как следует из рис. 7, б:

Р, =Р„/соБр; т, =mfl/cosp.

Все размеры зубьев косозубого колеса определяют по нормальному модулю тп:

h = ha + hf = тп + 1,25т„ = 2,25т„, а диаметр делительной окружности - по окружному модулю:

d = m,z- mnz/cosp. (8. И) Другие размеры косозубых колес определяют по формулам: диаметр вершин зубьев da =d + 2ha =d + 2mn; диаметр впадин df =d-2hf =d-2,5mn; межосевое расстояние

a = m,{z + Z2)/2 = mri(zl + ^2)/(2cosp). Коэффициент осевого перекрытия косозубой передачи

где Ь - ширина венца; Рх - осевой шаг.Если ер - целое число, то суммарная длина контактных линий будет все время оставаться постоянной, что положительно отра­жается на работе передачи, так как нагрузка на зубья в процессе зацепления остается постоянной (для сравнения см. сказанное выше о нагрузках на зубья прямозубых колес). Суммарная длина контактных линий косозубой передачи

1г = £ea/cosp. Недостатком косозубых передач можно считать возникающую при работе передачи осевую силу Fa, вызванную углом р и равную

Fa = Ft*b где F; = 2Tjd, здесь Т - передаваемый вращающий момент, d - диаметр делительной окружности. Этот недостаток устраняется в шевронных зубчатых колесах, венец которых по ширине состоит из участков с зубьями с проти­воположными углами наклона (рис.8).

В шевронных колесах осевые силы Fa взаимно уравновешиваются и на опоры валов не передаются. На рис. .8, а показано шевронное зубчатое колесо с дорожкой шириной а посреди венца; так технологичнее нарезать зубья фрезой, но колесо получается


Рис.8. Цилиндрическое шевронное зубчатое колесо: а - с дорожкой посередине колеса; б - без дорожки

большой толщины. На рис. 8, £ представлено шевронное колесо без дорожки, изготовление которого затруднительно.

Так как осевые усилия в шевронных колесах уравновешены углы наклона зубьев р могут быть увеличены от 20°, наибольшей их величины для косозубых колес в общем машиностроении, до 40... 45°. При этом плавность работы и ее нагрузочная способность существенно возрастают. Однако шевронные колеса трудоемки в изготовлении и дороги, требуют специфической фиксации в опо­рах. В осевом направлении закрепляется только одно колесо, а сопрягаемое с ним второе колесо должно свободно передвигаться в этом направлении, так как осевая фиксация здесь происходит по зубьям шевронного колеса.

Принцип действия зубчатой передачи основан на зацеплении пары зубчатых колес. Классификация зубчатых передач осуществляется по следующим признакам: по расположению осей валов:

- передачи с параллельными осями (цилиндрические)

- передачи с пересекающими осями (конические)

- передачи с перекрещивающимися осями (цилиндрические винтовые)

по расположению зубьев:

- прямозубые;

- косозубые

- по форме профиля зубов.

- эвольвентные;

- круговые.

Цилиндрические зубчатые передачи. Выполняются с цилиндрическими колесами внешнего внутреннего зацепления кроме того, применяют передачи между зубчатым колесом и рейкой. Достоинства:

- малые габариты;

- высокая нагрузочная способность;

- большая долговечность и надежность;

- высокий КПД;

- постоянство передаточного отношения;

- возможность применения в широком диапазоне скоростей, мощностей и передаточных отношений.

Недостатки:

- шум при больших скоростях;

- повышенные требования к изготовлению;

- высокая жесткость не позволяющая компенсировать динамические нагрузки.

Меньшее из пары зубчатых колес называют шестерней,

а большее - колесом.

Термин «зубчатое колесо» является общим.

Параметрам шестерни приписывают индекс 1,

а параметрам колеса - 2.

Кроме того, различают индексы, относящиеся: w - к начальной поверхности или окружности;

b - к основной поверхности или окружности;

а - к поверхности или окружности вершин и головок зубьев;

f- к поверхности или окружности впадин и ножек зубьев.

Параметрам, относящимся к делительной поверхности или окружности, дополнительного индекса не приписывают.

51. Резьбы .(не весь)

Расчет резьбы на прочность

Основные виды разрушения крепежных резьб - срез витков. В соответствии с этим основным критериями работоспособности и расчета для крепежных резьб являются прочность, связанная с напряжениями среза τ,

Условия прочности резьбы по напряжениям среза

τ =F/(π d 1 H K K m)≤[ τ] для винта,

τ =F/(π d H K K m) ≤ : [ τ] для гайки

где: d и d 1 наружный и внутренний диаметры резьбы;

Н - высота гайки или глубина завинчивания винта в деталь;

K=ab/p или К=се/р - коэффициент полноты резьбы;

К т - коэффициент неравномерности нагрузки по виткам резьбы.

Если материалы винта и гайки одинаковы, то по напряжениям среза рассчитывают только резьбу винта, так как d 1

Сварные соединения, Способы сварки. Расчет на прочность сварных соединений.

Виды сварки применяемые в аппаратостроении следующие: Дуговая ручная; дуговая автоматическая; в среде защитных газов; атомно-водородная; электрошлаковая (для соединения корпусных деталей); контактная; ацетилено-кислородная; взрывом; холодная прессовая; индукционная; плазменно-лучевая; ультразвуковая. Прочность сварного соединения зависит от следующих основных факторов: качества основного материала, определяемого его способностью к свариванию, совершенства технологического процесса сварки; конструкции соединения; способа сварки; характера действующих нагрузок (постоянные или переменные).(ЛАБОРАТОРНАЯ)

Классификация подшипников.

Подшипники служат опорами для валов и вращающихся осей. Они воспринимают радиальные и осевые нагрузки, приложенные к валу, и сохраняют заданное положение оси вращения вала. Подшипники классифицируют по виду трения и воспринимаемой нагрузке. По виду трения различают: подшипники скольжения, у которых опорный участок вала скользит по поверхности подшипника; подшипники качения, у которых трение скольжения заменяют трением качения шариков или роликов. По воспринимаемой нагрузке различают подшипники: радиальные - воспринимают радиальные нагрузки; упорные - воспринимают осевые нагрузки; радиально-упорные - воспринимают радиальные и осевые нагрузки. Опорный участок вала называют цапфой. Форма рабочей поверхности подшипника скольжения, так же как и форма цапфы вала, может быть цилиндрической, плоской, конической или шаровой. Цапфу, передающую радиальную нагрузку, называют шипом, если она расположена на конце вала, и шейкой при расположении в середине вала. Цапфу, передающую осевую нагрузку, называют пятой, а опору подшипника - подпятником. Подпятники работают обычно в паре с радиальными подшипниками.

Классификация зубчатых колес по форме профиля зубьев, их типу, взаимному расположению осей валов. Основные элементі зубчатого колеса. Расчет основных геометрических параметров цилиндрической зубчатой передачи. Измерение диаметра вершин зубьев колеса.

Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"

#### ## # # ##
# # # ## # # # #
# ## # # # # #
# # # #### # # #
# # # # # # #
# ## # # ####

Введите число, изображенное выше:

Подобные документы

    Расчет и нормирование точности зубчатой передачи. Выбор степеней точности зубчатой передачи. Выбор вида сопряжения, зубьев колес передачи. Выбор показателей для контроля зубчатого колеса. Расчет и нормирование точностей гладко цилиндрических соединений.

    контрольная работа , добавлен 28.08.2010

    Зубчатые механизмы, в которых движение между звеньями передается последовательным зацеплением зубьев. Классификация зубчатых передач. Элементы теории зацепления передачи. Геометрический расчет эвольвентных прямозубых передач. Конструкции зубчатых колес.

    презентация , добавлен 24.02.2014

    Геометрия зубчатого зацепления. Циллиндрические, конические, червячные, прямозубные, шевронные колеса. Основные параметры рейки. Геометрические размеры передач. Ряды зубчатых колес. Построение картины скоростей для планетарного зубчатого механизма.

    презентация , добавлен 04.09.2013

    Изучение теоретических основ нарезания зубчатых колес методом обкатки зубчатой рейкой. Построение профилей колес с помощью прибора. Фрезерование зубьев цилиндрического колеса. Форма зуба в зависимости от смещения. Положение рейки относительно колеса.

    лабораторная работа , добавлен 04.06.2009

    Выбор электродвигателя: порядок расчета требуемой мощности и других параметров. Обоснование выбора зубчатой передачи: выбор материалов, расчет допустимого напряжения и изгиба, размеров зубьев колеса и шестерни, проверочный расчет валов редуктора.

    курсовая работа , добавлен 11.01.2013

    Геометрические параметры конических зубчатых передач. Силы в конических зубчатых передачах. Передаточное число как отношение числа зубьев ведомой шестерни к ведущей. Приведение прямозубого конического колеса к эквивалентному прямозубому цилиндрическому.

    реферат , добавлен 15.03.2014

    Конструктивные особенности и параметры цилиндрических и конических зубчатых передач. Насадной зубчатый венец. Скольжение зубьев в процессе работы передачи. Силы в прямозубой цилиндрической передаче. Критерии работоспособности закрытых зубчатых передач.

    презентация , добавлен 25.08.2013

Лекция 6

6.5. Основные геометрические параметры прямозубых

цилиндрических передач

В зубчатых передачах принято называть меньшее зубчатое колесо шестерней.

В качестве основного параметра зубчатого зацепления принят модуль m - величина, пропорциональная шагу Р по делительному диаметру, http://pandia.ru/text/79/022/images/image002_53.gif" width="373" height="371 src=">

Рис. 6.6. Геометрические параметры цилиндрических зубчатых колес

Для прямозубых цилиндрических колес, изготовленных без смещения, делительный диаметр равен произведению

Диаметр вершин зубчатых колес определяется суммой

, . (6.13)

Диаметр впадин вычисляют разностью

, . (6.14)

Межосевое расстояние определяют полусуммой диаметров зубчатых колес

Ширина зубчатого колеса равна

где ya - коэффициент ширины, который выбирают в зависимости от расположения зубчатых колес относительно опор и твердости рабочих поверхностей зубьев.

Ширину шестерни принимают в 1,12 раз больше, чем ширина колеса

6.6. Особенности геометрии косозубых передач

У косозубых колес зубья наклонены под углом з к образующей делительного цилиндра. Нарезание косозубых колес может производиться прямозубой рейкой, как и при нарезании прямозубых колес. Наклон зуба получают поворотом инструмента относительно образующей заготовки на угол b. Расчет геометрических параметров косозубых колес проводят по тем же формулам, что и для прямозубых цилиндрических колес, подставляя вместо нормального m торцовый mt модуль. Торцовый модуль с нормальным связан следующим соотношением:

Тогда диаметр косозубого колеса можно представить в следующем виде

. (6.19)

Сечение делительного цилиндра, нормального к линии зуба, является эллипс (рис.6.7) с полуосями с = 0,5×d и е = 0,5×d / cosb. Радиус и диаметр кривизны этого эллипса в полюсе зацепления составляют

, http://pandia.ru/text/79/022/images/image016_9.gif" width="236" height="53">. (6.21)

http://pandia.ru/text/79/022/images/image018_7.gif" width="75" height="48 src=">.gif" width="84" height="48 src=">, (6.22)

где a - угол профиля зуба, a = 200 при нарезании зубьевбес смещения инструмента.

http://pandia.ru/text/79/022/images/image018_7.gif" width="75" height="48">. (6.23)

Осевая сила, направленная по оси, составляет OZ

http://pandia.ru/text/79/022/images/image025_2.gif" width="453" height="325">

Рис.6.9. Схема усилий в зацеплении косозубых колес

Геометрическая сумма окружной Ft и осевой Fa сил представляет собой силу Fta, направленную вдоль нормали к зубу под углом к образующей цилиндра b, может быть вычислена по зависимости

Тогда радиальная сила, направленная по оси OY, имеет вид

. (6.26)

Нормальная к поверхности зуба сила составляет

. (6.27)

Расчет зубчатых передач на прочность начинается с определения расчетной нагрузки

http://pandia.ru/text/79/022/images/image030_1.gif" width="81" height="28 src=">. (6.28)

На прочность зубьев влияют факторы, которые учитываются коэффициентами. Коэффициент нагрузки К удобно представить в виде произведения частных коэффициентов, учитывающие отдельные факторы

. (6.29)

Коэффициент распределения нагрузки между зубьями Кa учитывает погрешности изготовления зубчатых колес двухпарного зацепления. Физический смысл заключается в следующем: в процессе зацепления без нагрузки только одна пара зубьев контактирует, вторая пара зубьев вследствие погрешностей изготовления не соприкасаются. При нагружении происходит упругая деформация первой пары зубьев и вторая пара также входит в контакт, но она воспринимает меньшую нагрузку. Коэффициент распределения нагрузки между зубьями для косозубых передач, имеющих двухпарное зацепление, определяют в зависимости от степени точности изготовления, а для прямозубых передач, имеющих однопарное зацепление, Кa = 1.

Коэффициент концентрации Кb учитывает распределение нагрузки вдоль зуба. Вследствие деформации валов зубья колес без нагрузки контактируют не по линии, а в точке. Под нагрузкой контакт, вследствие упругой деформации зубьев, происходит по линии вдоль зуба, но в точке первоначального контакта напряжение будет выше. Коэффициент концентрации нагрузки зависит от расположения зубчатых колес относительно опор, ширины венца относительно диаметра колеса и твердости рабочих поверхностей зубьев.

Погрешности нарезания зубьев приводит к непостоянству мгновенного передаточного отношения, что обуславливает появление угловых ускорений звездочки, следовательно - динамических нагрузок. Такая дополнительная нагрузка и учитывается

коэффициентом динамичности КV, который определяют в зависимости от степени точности изготовления колес, твердости поверхности и окружной скорости колес.