Тв2 117а технические характеристики. Отключения подачи пускового топлива. Одиночный комплект запасных частей редуктора

Введение

ОБЩИЕ СВЕДЕНИЯ О ДВИГАТЕЛЕ ТВ2-117А (АГ)

Отказ одного двигателя

1 Признаки отказа одного двигателя

2 Внезапный отказ одного двигателя

3 Действия экипажа при отказе одного двигателя

4 Полет с одним неработающим двигателем

5 Техника выполнения посадки с коротким пробегом с одним неработающим двигателем

6 Выключение одного двигателя в полете в учебных целях

7 Запуск двигателя в полете в учебных целях

8 Запуск двигателя прекратить

9 Аварийное выключение двигателя

Возможные неисправности двигателя ТВ2-117АГ

1 Возможные неисправности компрессора при эксплуатации и их предупреждение

2 Дефекты, нарушающие работу камеры сгорания

3 Неисправности турбин и их предупреждение

3.4 Условия работы и возможные неисправности выхлопного устройства

3.5 Возможные неисправности системы смазки при эксплуатации и их предупреждение

7 Возможные неисправности топливной системы

8 Возможные неисправности системы регулирования и управления и их предупреждение

3.9 Неисправности гидравлической системы

3.10Техническое обслуживание гидросистемы двигателя ТВ2-117АГ

11 Возможные неисправности системы запуска

4. Технология работы членов экипажа при отказах силовой установки вертолета МИ -8т

1 Отказ одного двигателя на скорости с запасом высоты

2 Отказ одного двигателя на малой высоте

3 Отказ двух двигателей в полете

4 Появление в полете постороннего шума хлопков рывков тряски вертолета

5 Загорание светосигнального табло «стружка в левом двигателе» стружка в «правом двигателе»

ЗАКЛЮЧЕНИЕ

1 Анализ авиационных происшествий за 7 лет в период с 2000 по 2007 год

2 Краткое содержание фактов АП

Список используемой литературы

Введение

ЦЕЛЬ ДИПЛОМНОЙ РАБОТЫ:

В данной дипломной работе мне предстоит разобрать силовую установку, ознакомиться с ее особенностями. Описать отказ (выключение) одного двигателя в полете, особенности летной и технической эксплуатации, технологию работы членов экипажа в особых случаях полета.

НАЗНАЧЕНИЕ, КРАТКАЯ ХАРАКТЕРИСТИКА ВЕРТОЛЕТА МИ-8Т

Вертолет Ми-8 предназначен для перевозки пассажиров, багажа, грузов и почты в труднодоступной местности, а также для проведения специальных авиационных работ в различных отраслях народного хозяйства. По весовой категории вертолет Ми-8 относится к вертолетам 1 класса. Вертолет спроектирован по одновинтовой схеме с пятилопастным несущим и трехлопастным рулевым винтами. На вертолете установлены два турбовинтовых двигателя ТВ2-117АГ с взлетной мощностью 1100 кВт (1500 л.с.) каждый, что обеспечивает возможность посадки вертолета при отказе одного из двигателей.

Вертолет эксплуатируется в двух основных вариантах: пассажирском Ми-8П и транспортном Ми-8Т

Силовая установка является источником энергии для привода несущего и рулевого винтов, а также агрегатов систем вертолета и двигателей. Она состоит из двух газотурбинных двигателей ТВ2-117АГ, систем и устройств, обеспечивающих их работу.

Двигатели установлены на потолочной панели центральной части фюзеляжа впереди главного редуктора симметрично относительно продольной оси вертолета. Каждый из двигателей имеет мощность 1100 кВт и работает независимо один от другого.

Для обеспечения высокой надежности работы и противопожарной безопасности, поддержания оптимального температурного режима двигателей и защиты их от влияния атмосферных явлений на вертолете установлены следующие системы и устройства: топливная и масляная системы, система воздушного охлаждения, пылезащитное устройство, система пожаротушения, капоты двигателей и главного редуктора. Пассажирский вариант вертолета предназначен для межобластных и местных перевозок пассажиров, багажа, почты и малогабаритных грузов. Он рассчитан на перевозку 28 пассажиров. Транспортный вариант предусматривает перевозку грузов массой до 4000 кг или 24 служебных пассажиров. По желанию заказчика пассажирский салон вертолета может быть оборудован в салон с повышенным комфортом на 11 или 7 пассажиров.

Вертолет Ми-8П может быть переоборудован в транспортный, санитарный варианты, а также варианты с увеличенной дальностью (перегоночный) и с внешней подвеской грузов.

Транспортный вариант так же, как и пассажирский, при необходимости переоборудуется в санитарный, перегоночный варианты и вариант с внешней подвеской грузов. Вертолет в санитарном варианте может перевозить 12 лежачих больных и сопровождающего медработника. Вертолет с внешней подвеской грузов перевозит крупногабаритные грузы массой до 3000 кг вне фюзеляжа.

Перегоночный вариант вертолета необходим для выполнения полетов с увеличенной дальностью (от 620 до 1035 км). В этом случае в грузовую кабину вертолета за счет коммерческой нагрузки устанавливают один или два дополнительных топливных бака. Существующие варианты вертолета снабжены электролебедкой, позволяющей с помощью бортовой стрелы поднимать (опускать) на борт вертолета грузы массой до 150 кг, а также при наличии полиспаста затягивать в грузовую кабину грузы массой до 2600 кг.

Экипаж вертолета состоит из двух пилотов и бортмеханика.

1. ОБЩИЕ СВЕДЕНИЯ О ДВИГАТЕЛЕ ТВ2-117А (АГ)

Турбовальный двигатель ТВ2-117АГ устанавливается на вертолете Ми-8.Силовая установка вертолета состоит из двух двигателей ТВ2-117АГ и главного редуктора ВР-8А.

Правый и левый двигатели взаимозаменяемы при условии разворота выхлопного патрубка На вертолете двигатели подсоединены к одному главному редуктору, который передает суммарную мощность двигателей несущему и хвостовому винтам.

Особенностью конструкции ТВ2-117АГ является наличие в нем свободной турбины (турбины винта), мощность которой, передаваемая редуктору, составляет эффективную мощность двигателя. Свободная турбина кинематически не связана с турбокомпрессорной частью двигателя. Эта особенность обеспечивает ряд конструктивных и эксплуатационных преимуществ двигателя: позволяет получать требуемую частоту вращения вала несущего винта вертолета независимо от частоты вращения ротора турбокомпрессора двигателя; облегчает раскрутку турбокомпрессора при запуске двигателя, позволяет получать оптимальный расход топлива при различных условиях эксплуатации двигателя; исключает необходимость использования фрикционной муфты (муфты включения) в силовой установке вертолета. Силовая установка вертолета имеет систему автоматического поддержания частоты вращения несущего винта с синхронизацией мощности обоих двигателей, двигатели ТВ2-117А с 1984 г. выпускаются с графитовым уплотнением узла II опоры ротора турбокомпрессора вместо контактно-кольцевого. Двигатели с указанным изменением имеют условное обозначение ТВ2-11АГ и по своим техническим параметрам и эксплуатации не отличаются от двигателей ТВ2-117А.

Основные характеристики двигателя ТВ2-117А (АГ):

·Тип двигателя... турбовинтовой, со свободной турбиной

·Направление вращения............................................... левое

·Частота вращения свободной турбин. 12000 об/мин (100 %)

·Мощность на выходном валу (взлетный режим).... 1500 л.с.

·Сухая масса......... не более 334 кг + 2%

·Длина с агрегатами и выхлопным патрубком... не более 2843 мм

·Ширина........... не более 550 мм

·Высота............... не более 748 мм

2. ОТКАЗ ОДНОГО ДВИГАТЕЛЯ

2.1 ПРИЗНАКИ ОТКАЗА ДВИГАТЕЛЯ

Под отказом двигателя понимаются случаи самопроизвольной полной или частичной потери мощности, а также случаи нарушения работоспособности силовой установки, требующие либо аварийного, либо нормального (с режима малый газ) выключения двигателя, либо уменьшения режима работы двигателя.

Полная потеря мощности одного двигателя в полете сопровождается:

§резким изменением характера шума от работы двигателей;

§изменением углового положения вертолета (пикированием, а также разворотом и кренением вправо) с уменьшением высоты полета, вызванным уменьшением частоты вращения несущего винта;

§уменьшением частоты вращения турбокомпрессора, температуры газа, давления топлива и масла на входе в двигатель.

При отказе (выключении) одного двигателя автоматика выводит работающий двигатель на повышенный режим работы вплоть до взлетного в зависимости от величинны шага несущего винта, выдерживаемой пилотом, и соответствующей ей частоты вращения несущего винта. Автопилот в этом случае стабилизирует или демпфирует изменения углового положения вертолета. Такая работа автоматики значительно уменьшает вызванное отказом двигателя падение частоты вращения несущего винта и разбалансировку вертолета, облегчает пилотирование, однако не исключает принятия пилотом энергичных мер по установлению наивыгоднейших режимов полета вертолета с отказавшим двигателем.

Пилот о таком виде отказа может судить по отклонениям от нормы параметров работы одного из двигателей (уменьшение частоты вращения ротора турбокомпрессора или понижение температуры газа перед турбиной и др.).

2 ВНЕЗАПНЫЙ ОТКАЗ ОДНОГО ИЗ ДВИГАТЕЛЕЙ

В этом случае уменьшением общего шага на 1-3°С не допустить падения оборотов Nнв ниже 89% (допускается кратковременное падение Nнв до 80% в момент отказа). Далее:

§определить по показаниям приборов, какой из двигателей отказал. И выключить его. Закрыв соответствующий стоп-кран;

§перевести РРУ работающего двигателя в крайнее верхнее положение;

§закрыть пожарный кран остановленного двигателя;

§выключить его генератор;

§рычагом шаг-газ установить работающему двигателю взлетный режим (Nнв = 92 - 93%) или режим, обеспечивающий продолжение полета.

ПРИМЕЧАНИЕ. В СЛУЧАЕ НЕВОЗМОЖНОСТИ ВЫПОЛНЕНИЯ ПОСАДКИ ВЗЛЕТНЫЙ РЕЖИМ РАБОТЫ ДВИГАТЕЛЯ МОЖНО ИСПОЛЬЗОВАТЬ БЕЗ ОГРАНИЧЕНИЯ ПО ВРЕМЕНИ.

3 ДЕЙСТВИЯ ЭКИПАЖА ПРИ ОТКАЗЕ В ПОЛЕТЕ ОДНОГО ДВИГАТЕЛЯ

При внезапном отказе в полете одного из двигателей на скорости и с запасом высоты (с резервом времени до перехода на посадку) командиру вертолета необходимо:

§при \/пр. более 120 км/ч взятием ручки циклического шага на себя перейти на торможение вертолета с интенсивностью, обеспечивающей выход на полет Vпр=120-130 км/ч без потери высоты или с набором высоты;

§отклонением левой педали вперед парировать стремление вертолета к развороту вправо;

§при Vпр. менее 120 км/ч незначительным отклонением ручки "ШАГ-ГАЗ" вниз не допускать падение частоты вращения несущего винта менее 89%, а отклонением левой педали вперед и ручки управления на себя и влево парировать стремление вертолета к правому развороту и уменьшению угла тангажа;

§определить по показаниям приборов, какой из двигателей отказал, и выключить его, закрыв соответствующий кран останова;

§перевести рычаг раздельного управления работающего двигателя в крайнее верхнее положение;

§закрыть перекрывной кран топлива остановленного двигателя или
дать команду бортмеханику закрыть перекрывной кран топлива левого, (правого) двигателя;
§установить изменением величины общего шага несущего винта взлетный режим работающему двигателю при частоте вращения несущего винта 92-93 %;

§после стабилизации режима полета изменением общего шага установить режим, соответствующий Vпр.=120-130 км/ч, уменьшив по возможности режим работы двигателя;

§произвести вынужденную посадку на ближайшем аэродроме (вертодроме) или на площадке, подобранной с воздуха и пригодной для посадки с коротким пробегом.

ПРЕДУПРЕЖДЕНИЯ:

1.ЗАПУСК В ПОЛЕТЕ ОТКАЗАВШЕГО ДВИГАТЕЛЯ ЗАПРЕЩАЕТСЯ, КРОМЕ СЛУЧАЕВ САМОВЫКЛЮЧЕНИЯ ДВИГАТЕЛЯ (ДВИГАТЕЛЕЙ) ПРИ ПОЛЕТЕ ВЕРТОЛЕТА В УСЛОВИЯХ ОБЛЕДЕНЕНИЯ, СИЛЬНОГО СНЕГОПАДА И ДОЖДЯ, В ЭТИХ СЛУЧАЯХ (ЕСЛИ САМОВЫКЛЮЧЕНИЕ ДВИГАТЕЛЯ В ПОЛЕТЕ СОПРОВОЖДАЛОСЬ ЛЕГКИМ ХЛОПКОМ В РАЙОНЕ СИЛОВОЙ УСТАНОВКИ БЕЗ ПОВЫШЕНИЯ ТЕМПЕРАТУРЫ ГАЗА ПЕРЕД ТУРБИНОЙ"ВЫШЕ ДОПУСТИМОЙ И БЕЗ ПОСТОРОННЕГО МЕТАЛЛИЧЕСКОГО ЗВУКА) РАЗРЕШАЕТСЯ ПРОИЗВЕСТИ ЗАПУСК ДВИГАТЕЛЯ В ПОЛЕТЕ, ДЛЯ ЭТОГО НЕОБХОДИМО ОПРЕДЕЛИТЬ ПО ПОКАЗАНИЯМ ПРИБОРОВ, КАКОЙ ИЗ ДВИГАТЕЛЕЙ ВЫКЛЮЧИЛСЯ, ЗАКРЫТЬ СООТВЕТСТВУЮЩИЙ КРАН ОСТАНОВА, А РЫЧАГ РАЗДЕЛЬНОГО УПРАВЛЕНИЯ ВЫКЛЮЧЕННОГО ДВИГАТЕЛЯ ПЕРЕВЕСТИ НА НИЖНИЙ УПОР И ПРОИЗВЕСТИ ЗАПУСК ДВИГАТЕЛЯ.

2.ПРИ НЕВОЗМОЖНОСТИ БЕЗОПАСНОГО ПРОДОЛЖЕНИЯ ПОЛЕТА НА НОМИНАЛЬНОМ РЕЖИМЕ РАБОТЫ ОДНОГО ДВИГАТЕЛЯ РАЗРЕШАЕТСЯ ИСПОЛЬЗОВАТЬ ВЗЛЕТНЫЙ РЕЖИМ РАБОТЫ ДВИГАТЕЛЯ ДО ВЫПОЛНЕНИЯ ПОСАДКИ.

.ВРЕМЯ НЕПРЕРЫВНОЙ РАБОТЫ ДВИГАТЕЛЯ НА ВЗЛЕТНОМ РЕЖИМЕ НЕ БОЛЕЕ 6 МИН, ДОПУСКАЕТСЯ НАРАБОТКА ДО 60 МИН, ПОСЛЕ ЧЕГО ДВИГАТЕЛЬ И ГЛАВНЫЙ РЕДУКТОР ПОДЛЕЖАТ СНЯТИЮ.

.ПРИ НЕВОЗМОЖНОСТИ БЕЗОПАСНОГО ПРОДОЛЖЕНИЯ ПОЛЕТА С ОДНИМ РАБОТАЮЩИМ ДВИГАТЕЛЕМ ПРИ ТЕМПЕРАТУРЕ ОКРУЖАЮЩЕГО ВОЗДУХА +5°С И ВЫШЕ РАЗРЕШАЕТСЯ ОТКЛЮЧИТЬ РЕГУЛЯТОР ТЕМПЕРАТУРЫ ГАЗОВ УРП-27 РАБОТАЮЩЕГО ДВИГАТЕЛЯ АЗСом ОГРАНИЧ. ТЕМПЕР. ДВИГАТ., РАСПОЛОЖЕННЫМ НА ЛЕВОЙ ПАНЕЛИ АЗС В КАБИНЕ ЭКИПАЖА. ДОПУСТИМОЕ ВРЕМЯ ОДНОРАЗОВОЙ НЕПРЕРЫВНОЙ РАБОТЫ ДВИГАТЕЛЯ ПРИ ОТКЛЮЧЕНИИ УРТ-27 - НЕ БОЛЕЕ 30 МИН. МАКСИМАЛЬНО ДОПУСТИМАЯ ТЕМПЕРАТУРА ГАЗОВ НЕ ДОЛЖНА ПРЕВЫШАТЬ 925°С.

При внезапном отказе одного двигателя в полете на малой высоте и невозможности выполнения полета без снижения (без резерва времени до перехода на посадку) командиру вертолета необходимо:

§незначительным отклонением ручки "ШАГ-ГАЗ" вниз не допускать падения частоты вращения несущего винта менее 89%. Отклонением левой педали и ручки циклического шага парировать, при необходимости, стремление вертолета к правому развороту и уменьшению угла тангажа;

§изменением общего шага и отклонением ручки управления и педалей установить наивыгоднейший режим полета, обеспечивающий достижение подобранной площадки для безопасной посадки с одним работающим двигателем.

ВНИМАНИЕ. ПРИ ОТКАЗЕ ДВИГАТЕЛЯ У ЗЕМЛИ НА МАЛОЙ ВЫСОТЕ И МАЛОЙ СКОРОСТИ ПРОИСХОДИТ ЗНАЧИТЕЛЬНОЕ УВЕЛИЧЕНИЕ ВЕРТИКАЛЬНОЙ СКОРОСТИ, ДЛЯ ПАРИРОВАНИЯ КОТОРОЙ ПИЛОТ МОЖЕТ ПРЕЖДЕВРЕМЕННО УВЕЛИЧИТЬ. ШАГ ДО НЕДОПУСТИМОЙ ВЕЛИЧИНЫ, ПОЭТОМУ НЕОБХОДИМО УЧИТЫВАТЬ, ЧТО ТЕМП УВЕЛИЧЕНИЯ ШАГА И ЕГО МАКСИМАЛЬНАЯВЕЛИЧИНА ЗАВИСЯТ ОТ ВЫСОТЫ ПОЛЕТА И СКОРОСТИ ПРИБЛИЖЕНИЯ К ЗЕМЛЕ.

4 ПОЛЕТ С ОДНИМ НЕРАБОТАЮЩИМ ДВИГАТЕЛЕМ

Полеты с одним неработающим двигателем выполняются в диапазоне скоростей, разрешенном для горизонтального полета, набора высоты и моторного снижения согласно РЛЭ п. 2.5.3.

Зависимость полетной массы вертолета, с которой возможен горизонтальный полет без снижения при отказе (выключении) одного из двигателей и работе второго на взлетном режиме от температуры окружающего воздуха и барометрической высоты полета при наивыгоднейшей скорости полета 120 км/ч приведена в РЛЭ, рис. 6.6.1.

ПРИМЕЧАНИЯ:

§При наличии у вертолета дефицита тяги, определенного согласно п. 3.1.3.7 и записанного в бортжурнале, необходимо массу, определенную по графику РЛЭ, рис. 6.6.1 уменьшить на величину дефицита.

§При температуре воздуха равной и выше стандартной, массу, определенную по графику РЛЭ, рис. 6.6.1 необходимо уменьшить на 350 кг.

§При включении пос двигателя и воздухозаборника полетную массу следует уменьшить на 700 кг..

§При установленном (выключенном) ПЗУ двигателя полетную массу следует уменьшить на 300 кг.

§Полет с одним работающим двигателем разрешается производить без последующих дополнительных ограничений по эксплуатации при режиме работы двигателя выше номинального в течение не более б мин.

При невозможности выполнения горизонтального полета на наивыгоднейшей скорости 120 км/ч следует производить прямолинейный полет со снижением или полет с разворотом и со снижением на скорости, обеспечивающей достижение площадки, подобранной для посадки. Особое внимание при разворотах необходимо обращать на координированность действий (выдерживание положения шарика по авиагоризонту в центре) поскольку полет со скольжением приводит к значительному увеличена вертикальной скорости снижения.

2.5 ТЕХНИКА ВЫПОЛНЕНИЯ ПОСАДКИ С КОРОТКИМ ПРОБЕГОМ С ОДНИМ НЕРАБОТАЮЩИМ ДВИГАТЕЛЕМ

Посадку с одним неработающим двигателем, отказавшим при за пасе высоты и скорости полета над препятствиями, необходимо производить, по возможности, против ветра в следующем порядке:

§снижение на выбранную площадку следует производить на скорости 100-120 км/ч, развороты выполнять с углом крена не более 15° .

§снижение, начиная с высоты.100 М, выполнять на УПр=80 км/
при ветре у земли не более 5 м/с и на Упр=80-120 км/ч при
ветре более 5 м/с с вертикальной скоростью снижения 2-4 м/с;
§на предпосадочной прямой на высоте 50 м выключить ПОС работающего двигателя;
§уменьшение поступательной и вертикальной скоростей начинать с высоты 40. . .50 м с таким расчетом, чтобы на высоте 10. . .15 м мощность двигателя была взлетной, а поступательная скорость относительно земли 15-20 км/ч. Увеличение общего шага производить плавно, не допуская падения частоты вращения НВ ниже 92 %.По мере приближения к земле увеличивать шаг более энергично с таким расчетом, чтобы на высоте 0,5-1м он был близок к максимальному. Вертолет при этом приземляется с небольшими вертикальной и поступательной скоростями;

§на высоте 5-10 м от земли до колес шасси ручку циклического шага отдать от себя, с тем, чтобы придать вертолету необходимый посадочный угол и избежать касания земли хвостовой опорой;

§после приземления вертолета, при поднятой вверх ручке общего шага, для торможения вертолета на пробеге необходимо слегка взять на себя от нейтрального положения ручку циклического шага, использовать тормоза колес. Длина послепосадочного пробега вертолета составляет 0-30 м в штиль с посадочной массой около 12 000 кг. Посадочная дистанция с высоты 15 м составляет при этом 115-85 м.

§после остановки вертолета установить ручку циклического шага в нейтральное положение, вывести коррекцию влево с одновременным плавным сбросом общего шага.

ПРЕДУПРЕЖДЕНИЕ. В АВАРИЙНОЙ СИТУАЦИИ В СЛУЧАЕ ОТКАЗА ОДНОГО ИЗ ДВИГАТЕЛЕЙ ПРИ РАБОТЕ ДРУГОГО НА РЕЖИМЕ ВЫШЕ НОМИНАЛЬНОГО ДОПУСКАЕТСЯ КАК ИСКЛЮЧЕНИЕ ПРИ ПРИЗЕМЛЕНИИ ПРОВАЛ ОБОРОТОВ НЕСУЩЕГО ВИНТА ДО 70% В ТЕЧЕНИЕ 15 С. ВОПРОС О ДАЛЬНЕЙШЕЙ ЭКСПЛУАТАЦИИ ТАКОГО ДВИГАТЕЛЯ И ГЛАВНОГО РЕДУКТОРА МОЖЕТ БЫТЬ РЕШЕН ТОЛЬКО ПОСЛЕ ОСМОТРА И ПОЛУЧЕНИЯ ЗАКЛЮЧЕНИЯ ПРЕДСТАВИТЕЛЕЙ ЗАВОДА ИЗГОТОВИТЕЛЯ.

Посадку при одном неработающем двигателе, отказавшем на малой высоте полета над препятствиями, следует выполнять по возможности в соответствии с рекомендациями, изложенными в РЛЭ 6.6.4.1. При этом необходимо учитывать следующее. Отказ двигателя в режиме снижения при наклоне траектории около 10° (Vпр.=60-80 км/ч и Vу = 2-4 м/с, в штиль) при заходе на посадку по-вертолетному с использованием влияния "воздушной подушки" или с пробегом - практически не приводит к уходу вертолета с посадочной траектории. В этом случае обеспечивается возможность посадки вертолета против ветра в намеченную точку ограничений по размерам площадки практически без пробега.

При отказе одного двигателя в горизонтальном полете и при взлете на высотах менее 20-30 м в случае невозможности продолжения полета без снижения посадка выполняется прямо перед собой или с отворотом в сторону с гашением поступательной и вертикальной скоростей соразмерно со скоростью приближения к земле. При этом, в случае отказа двигателя на скоростях менее 60 км/ч на высотах более 15-20 мцелесообразнее сразу же после парирования разбалансировочных моментов и незначительного сбора шага отдачей ручки от себя увеличить скорость до 60-80 км/ч, т.е. перейти на более выгодную скорость, обеспечивающую лучшие аэродинамические условия посадки с "подрывом"

При отказе одного двигателя на взлете на высотах более 30-50 м в условиях, обеспечивающих однодвигательный полет вертолета с положительной скороподъемностью или незначительной скоростью снижения, возможен полет по кругу с посадкой на площадку взлета. Пилотирование вертолета при этом необходимо производить в соответствии с рекомендациями РЛЭ п. 6.6.2.

При отказе двигателя на взлете в условиях фактической видимости ниже минимума для посадки (взлетная масса вертолета менее определенной из номограммы РЛЭ, рис. 6.6.1, на 1,3 т):

§на высоте менее 20 м взлет прекратить и произвести посадку на летную полосу с гашением поступательной и вертикальной скоростей соразмерно со скоростью приближения к земле;

§на высоте 20 м и более выполнить продолженный взлет. Для выполнения продолженного взлета после отказа двигателя и устранения разбалансировки вертолет перевести в разгон скорости до 120 км/ч при взлетном режиме работы двигателя. Набрать безопасную высоту и выполнить полет на запасной аэродром (вертодром), минимум которого не хуже минимума КВС для посадки на нем.

При отказе одного двигателя на висении происходит резкое снижение вертолета с разворотом вправо, причем пилот первоначально замечает снижение. Если отказ двигателя происходит на высотах менее 5 м, то действия пилота сводятся к парированию разбалансировочных моментов педалями и ручкой циклического шага и к увеличению общего шага. Увеличение общего шага необходимо производить с исходного практически сразу и соразмерно скорости приближения к земле.

Если отказ двигателя происходит на высотах более 5 м, то после парирования разбалансировочных моментов необходимо незначительно уменьшить общий шаг для замедления темпа падения частоты вращения несущего винта и отклонением ручки циклического шага придать вертолету незначительное поступательное движение вперед для создания более выгодных аэродинамических условий посадки с "подрывом". Приземлять вертолет на основные колеса шасси необходимо строго вертикально, удерживая его от боковых перемещений ручкой циклического шага.

При выполнении вынужденной посадки на лес необходимо, по возможности, выбрать для посадки наиболее ровный участок леса с расстоянием между стволами деревьев не более 10-15 м, избегая отдельно стоящих больших деревьев. Снижение выполняется в соответствии с рекомендациями РЛЭ. Уменьшение поступательной и вертикальной скоростей необходимо начинать с высоты 40-50 м от уровня верхушек деревьев отклонением ручки управления на себя и плавным увеличением общего шага с таким расчетом, чтобы к моменту касания колесами шасси верхушек деревьев мощность двигателя была взлетной, а поступательна, скорость не более 10-15 км/ч.

При этом перед касанием деревьев, для избежания лобового удара, следует придать вертолету положение на кабрирование и выключить работающий двигатель краном останова.

Произвести более энергичное увеличение общего шага в момент касания фюзеляжем верхушек деревьев, что даст возможность не допустить значительных вертикальных скоростей снижения к моменту начала касания деревьев несущим винтом.

При посадке на лес высотой менее 4-5 м за поверхность приземлен принимать землю.

6 ВЫКЛЮЧЕНИЕ ДВИГАТЕЛЯ В ПОЛЕТЕ В УЧЕБНЫХ ЦЕЛЯХ

При выключении двигателя в полете в учебных целях необходимо рычаг раздельного управления выключаемого двигателя перевести вниз до упора (двигатель на режиме малого газа должен проработать не менее 1 мин); ручку управления остановом двигателя перевести в положение "ЗАКРЫТО"; выключатель ПОЖАРН. КРАН установить в положение "ВЫКЛ." При выполнении полета следить за параметрами работающего двигателя, которые должны соответствовать рекомендациям РЛЭ 7.5.

7 ЗАПУСК ДВИГАТЕЛЯ В ПОЛЕТЕ В УЧЕБНЫХ ЦЕЛЯХ

Запуск двигателя в полете производить аналогично автономному запуску на земле.

ВНИМАНИЕ. 1. ЗАПУСК ДВИГАТЕЛЯ ПРОИЗВОДИТЬ НА ЧАСТОТЕ ВРАЩЕНИЯ АВТОРОТАЦИИ ТУРБОКОМПРЕССОРА НЕ БОЛЕЕ 20%.

НАДЕЖНОСТЬ ЗАПУСКА ОБЕСПЕЧИВАЕТСЯ ДО ВЫСОТЫ 3000 М.

8 ЗАПУСК ДВИГАТЕЛЯ ПРЕКРАТИТЬ

§температура газа на частоте вращения турбокомпрессора ниже 40% повышается более 500°С, а на частоте вращения свыше 40% - более 600°С;

§произошло зависание оборотов двигателя в течение 3 с. в процессе выхода на режим малого газа;

§нет воспламенения топлива;

§появилась течь топлива, масла или появились другие признаки ненормальной работы двигателей, редуктора или агрегатов;

§отсутствует увеличение давления масла по манометру;

§напряжение борт сети устойчиво падает ниже 16 В;

§загорелось или мигает светосигнальное табло СТРУЖКА ЛЕВ. ДВИГ., СТРУЖКА ПРАВ. ДВИГ.

Для прекращения запуска ручку управления остановом двигателя перевести в положение <ЗАКРЫТО>. Кнопкой прекращения запуска пользоваться в случаях, когда необходимо ускорить отработку цикла автоматики запуска, например при зависании оборотов турбокомпрессора без увеличения температуры газа, при неподжиге топлива, замеченной неисправности стартер генератора. Кнопкой пользоваться после открытия стоп-крана.

ПРЕДУПРЕЖДЕНИЯ: 1. ПОВТОРНЫЕ ЗАПУСКИ РАЗРЕШАЕТСЯ ПРОИЗВОДИТЬ ПОСЛЕ ВЫЯВЛЕНИЯ И УСТРАНЕНИЯ ПРИЧИН НЕНОРМАЛЬНОГО ЗАПУСКА. 2. ПОСЛЕ НЕУДАВШЕГОСЯ ЗАПУСКА НЕОБХОДИМО ПЕРЕД СЛЕДУЮЩИМ ЗАПУСКОМ ПОИЗВЕСТИ ХОЛОДНУЮ ПРОКРУТКУ.

2.9 АВАРИЙНОЕ ВЫКЛЮЧЕНИЕ ДВИГАТЕЛЯ

Аварийное выключение двигателя производить в следующих случаях:

§при уменьшении давления масла в двигателе до значений менее 3 кгс/см² до 2 кгс/см² и одновременном увеличении температуры масла от установившегося значения на 10 - 20 °С;

§при уменьшении давления масла ниже 2 кгс/см² или повышении температуры масла в двигателе выше 125 °С;

§при повышении температуры газа перед турбиной компрессора выше нормы;

§при резком падении частоты вращения турбокомпрессора;

§при сильном выбивании пламени из выхлопного патрубка;

§при опасной в пожарном отношении течи топлива или масла;

§при возникновении пожара в отсеке двигателя.

На земле, кроме указанных выше случаев, аварийное выключение двигателя производится при резком падении давления масла в главном редукторе ниже 2 кгс/см². двигатель может быть выключен стоп-краном с любого режима без перевода его на малый газ и охлаждения.

ВНИМАНИЕ. ПРИ ОТКАЗЕ В РАБОТЕ СТОП-КРАНА ВЫКЛЮЧИТЬ ДВИГАТЕЛЬ, ЗАКРЫВ ПЕРЕКРЫВНОЙ (ПОЖАРНЫЙ) КРАН ТОПЛИВА ВЕРТОЛЕТА.

3. ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ ДВИГАТЕЛЯ ТВ2-117АГ

3.1 ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ КОМПРЕССОРА ПРИ ЭКСПЛУАТАЦИИ И ИХ ПРЕДУПРЕЖДЕНИЕ

Компрессор двигателя ТВ2- 117 АГ

В процессе эксплуатации двигателей отмечаются следующие характерные неисправности узлов и деталей компрессора.

1. Разрушение лопаток ротора, что происходит по следующим основным причинам.

Попадание посторонних предметов в двигатель при техническом обслуживании или при стоянке вертолета. Наибольшую опасность представляет попадание в компрессор металлических предметов. Поэтому после окончания какого-либо вида технического обслуживания, а также при наличии вероятности попадания посторонних предметов перед запуском необходимо тщательно осмотреть входную часть двигателя и специальной рукояткой вручную прокрутить турбокомпрессор. Попадание в двигатель легких посторонних предметов на взлете ив полете (например, небольшой птицы) менее опасно, так как в этих случаях вероятность разрушения рабочих лопаток несколько ниже.

Примерзание лопаток ротора к корпусу при стоянке, вертолета в условиях пониженных температур окружающего воздуха. Вследствие малой величины монтажных зазоров между торцами рабочих лопаток и корпусом попадание в эти зазоры даже небольшого количества влаги может приводить к примерзанию рабочих лопаток. Влага при стоянке вертолета попадает в проточную часть двигателя при неплотно закрытой заглушке воздухозаборника, возможна конденсация влаги при охлаждении двигателя после его выключения. Запуск или даже холодная прокрутка (стартером) двигателя с примерзшими лопатками ротора приводит к их поломке или опасной деформации.

Ротор компрессора ТВ2- 117АГ

Для предупреждения поломки лопаток в этих условиях следует перед запуском двигателя (или перед холодной прокруткой) провернуть ротор турбокомпрессора вручную. При обнаружении примерзания лопаток (ротор не проворачивается) необходимо продуть проточную часть двигателя теплым воздухом от аэродромного подогревателя.

Неэффективность (отказ или неправильное пользование) системы обогрева входной части компрессора. Обледенение деталей входной части компрессора и двигателя обычно сопровождается скалыванием с них кусочков льда и попаданием их на лопатки компрессора. Вследствие большей частоты вращения рабочих лопаток первой ступени компрессора попадание на них даже небольших частичек льда создает забоины на лопатках и может вызвать в последующем их разрушение. Неэффективность системы обогрева наблюдается обычно при работе двигателя в условиях обледенения на низких режимах из-за недостаточной температуры воздуха, отбираемого для обогрева.

Особенно значительное уменьшение температуры воздуха на входе в противообледенительную систему возможно при планировании вертолета. Поэтому при планировании с работающими двигателями в условиях возможного обледенения нельзя допускать снижение птк меньше 85%. Соответственно для предупреждения разрушения лопаток компрессора частицами льда необходимо в условиях обледенения избегать пониженных режимов работы двигателя и при ручном управлении системой обогрева включать ее заблаговременно, до наступления обледенения.

Помпаж компрессора, в процессе которого возникает повышенная вибрация лопаток и всей конструкции компрессора; лопатки испытывают переменные нагрузки и при наличии забоин, рисок, царапин могут разрушаться. Конструктивные и профилактические меры борьбы с помпажом изложены выше.

Превышение допустимого времени беспрерывной работы двигателя на форсированных режимах или работа на режиме выше допустимого для данных полетных условий. В этих случаях после уменьшения частоты вращения турбокомпрессора появляется остаточная деформация рабочих лопаток. При неоднократной нагрузке, близкой к разрушающей, в особенности при наличии повреждений и износе лопаток может происходить их разрушение(или обрыв). Поэтому двигателю ТВ2-117А установлены предельно допустимые режимы работы и допустимое время работы на форсированных режимах. Признаками разрушения обрыва лопаток ротора компрессора в полете являются: резкий хлопок и удар в двигателе, появление повышенной вибрации (тряски), падение оборотов турбокомпрессора и повышение t3 до величин, выше допустимых для данного режима. Если частичное разрушение лопатки вызывает помпаж, то появляются его признаки, изложенные выше. Если кусок разрушившейся лопатки попадает в зазор между торцами остальных лопаток и корпусом, происходит заклинивание или затормаживание ротора. В результате уменьшения частоты вращения ротора топливная автоматика увеличивает подачу топлива в камеру сгорания, что приводит к срыву пламени и самовыключению двигателя.

При обнаружении в полете разрушения лопаток компрессора двигатель следует немедленно выключить.

Профилактическими мероприятиями, направленными на предотвращение разрушения лопаток компрессора, являются: строгое соблюдение правил технической эксплуатации компрессора техническим и летным составом, тщательный визуальный и инструментальный контроль состояния лопаток, проверка времени выбега ротора турбокомпрессора экипажем при останове двигателя, строгое соблюдение рекомендаций по эксплуатации двигателей в условиях запыленного воздуха и условиях возможного обледенения входной части.

Разрушение подшипников опор, что происходит по следующим эксплуатационным причинам.

Выборка радиальных зазоров подшипников качения при запуске двигателя в условиях низких температур без предварительного обогрева. Обычно диаметр беговой дорожки внутреннего кольца подшипника при напрессовке на шейку вала увеличивается на 55-70% от величины номинального натяга, отчего соответственно выбирается зазор в подшипнике и при низких температурах наружного воздуха может быть выбран полностью. В процессе работы двигателя зазоры в подшипнике увеличиваются вследствие нагрева подшипника и вала.

Масляное голодание (недостаточность смазки), при котором шарики (ролики) подшипника нагреваются значительно быстрее колец, так как имеют меньшую массу, а кроме того, от колец тепло частично отводится через посадочные поверхности. При нагреве шарики расширяются и заклинивают между кольцами, что приводит к их оплавлению.

Признаками разрушения подшипников в полете является: увеличение вибрации двигателя, резкое повышение температуры масла и температуры газа перед турбиной, появление характерного скрежета и падение nтк. Разрушение подшипников также определяется по уменьшению выбега турбокомпрессора, по неравномерности усилий, необходимых для ручной прокрутки турбокомпрессора, и наличию металлической стружки на маслофильтре. При обнаружении разрушения подшипников в процессе подготовки двигателя к запуску запуск и дальнейшая эксплуатация его не разрешается. если разрушение подшипников обнаружено в полете, двигатель следует выключить.

Профилактическими мероприятиями, направленными на предотвращение разрушения подшипников, являются: предварительный подогрев двигателя перёд запуском от аэродромного подогревателя при температуре наружного воздуха ниже -2510 С,

3.2 ДЕФЕКТЫ НАРУШАЮЩИЕ РАБОТУ КАМЕРЫ СГОРАНИЯ

1.Срыв пламени и прекращение горения топливовоздушной смеси, происходящее вследствие помпажа компрессора, резкого уменьшения расхода воздуха при попадании на вход в двигатель посторонних предметов, уменьшения давления топлива перед форсунками ниже допустимой величины, резкого падения частоты вращения турбокомпрессора, особенно на большой высоте.

Определяется дефект по самовыключению двигателя.

Камера сгорания двигателя ТВ2-117АГ

2.Прогар жаровой трубы и корпуса камеры сгорания, что может происходить по следующим основным причинам:

§из-за неполного сгорания топлива (например, при помпаже) и отложения нагара, изолирующего отдельные участки жаровой трубы от охлаждающего воздуха, что приводит к местным перегревам и, как следствие, к появлению местных температурных напряжений, короблению, трещинам и прорыву газов с высокой температурой во вторичный воздух; аналогичное явление может быть вызвано применением сортов топлива, не рекомендуемых для данного типа двигателя;

§при превышении установленного времени непрерывной работы на форсированных режимах или при работе двигателя на температурном режиме выше допустимого;

§из-за засорения или обгорания топливной форсунки, а также неудовлетворительного распыла топлива, вследствие чего факел пламени направлен непараллельно оси камеры сгорания и может достигать секций жаровой трубы.

3.Деформация жаровой трубы, корпуса, камеры сгорания и, как следствие, прогар или появление трещин, что может происходить по следующим причинам:

§при запуске двигателя в условиях низких температур (ниже -25° С) без предварительного прогрева от аэродромного подогревателя;

§из-за резких тепловых ударов, возникающих при выводе непрогретого двигателя на повышенный режим или при выключении двигателя без предварительного охлаждения на режиме малого газа из-за превышения установленного времени непрерывной работы на форсированных режимах или при работе двигателя на температурном режиме выше допустимого.

Нарушение работы камеры сгорания в полете приводит к уменьшению мощности двигателя и, для поддержания ее - к автоматическому увеличению подачи топлива в двигатель. При этом значительно увеличивается температура газа перед турбиной. Если нарушение работы камеры сгорания сопровождается прогаром жаровой трубы и корпуса, то возможны возникновение пожара и срабатывание противопожарной системы. При обнаружении этого явления двигатель следует немедленно выключить.

В процессе технического осмотра вероятность прогара корпуса определяется по наличию мест с явными цветами побежалости или трещин. Общее изменение окраски корпусов камеры сгорания, выполненных из титановых сплавов, в процессе эксплуатации не является признаком перегрева, а является свойством сплавов.

Профилактическими мероприятиями, направленными на предупреждение вышеизложенных дефектов, являются строгое выполнение основных правил технической и летной эксплуатации двигателя, применение установленных сортов топлива и тщательный контроль основных параметров, определяющих работоспособность двигателя.

3.3 НЕИСПРАВНОСТИ ТУРБИН И ИХ ПРЕДУПРЕЖДЕНИЕ

Охлаждение турбин : Увеличение надежности и рока службы турбин достигается охлаждением их наиболее нагруженных в тепловом отношении деталей. Охлаждение деталей турбин осуществляется вторичным воздухом и воздухом, забираемым за VIII ступенью компрессора.

Вследствие большой зависимости механических и тепловых нагрузок, действующих на детали турбин, от эксплуатационных факторов и полетных условий в процессе эксплуатации двигателей возможно появление ряда неисправностей. Наиболее характерными из них являются следующие.

Турбина двигателя ТВ2-117АГ

1. Вытяжка рабочих лопаток турбины . Вследствие длительного воздействия на рабочие лопатки центробежных сил в условиях высокой температуры в них могут возникать пластические деформации, выражающиеся в постепенном удлинении лопаток. Это явление называется ползучестью материала. Вытяжка рабочих лопаток вызывает уменьшение радиального зазора между торцами лопаток и металлокерамическими вставками корпуса и может приводить к заеданию лопаток во вставках и поломку лопаток или вставок. Расчетами и экспериментальными исследованиями установлено, что при строгом выдерживании температурных режимов и режимов по частоте вращения в течение установленного. для данного двигателя заводом-изготовителем срока службы вытяжка турбинных лопаток находится в допустимых пределах. Основными причинами вытяжки рабочих лопаток в процессе эксплуатации двигателя являются:

§повышение температуры газа перед турбиной выше допустимой в результате неисправностей в системе автоматического регулирования подачи топлива и в системе синхронизации режимов работы двухдвигательной вертолетной силовой установки, ранней подачи рабочего топлива в двигатель при запуске, помпажа компрессора и т. п.;

§превышение допустимого времени непрерывной работы двигателя на форсированных режимах. Так как при работе двигателя на номинальном и взлетном режимах не только температура газа перед турбиной максимальна или близка к максимальной, но и механические нагрузки на

§лопатки (особенно от действия центробежных сил) достигают наибольших значений; поэтому время работы на этих режимах ограничивается.

Необходимо также иметь в виду, что при работе двигателя на малом газе температура газа перед турбиной высокая, а эффективность системы охлаждения турбины, вследствие низкого давления воздуха, создаваемого компрессором, недостаточна. По этой причине время непрерывной работы двигателя на малом газе также ограничивается.

Свободная турбина двигателя ТВ2-117АГ

При чрезмерной вытяжке лопаток заедание их во вставках корпуса обнаруживается по увеличению усилий, необходимых для ручной прокрутки ротора турбины. Очень важным фактором, позволяющим экипажу своевременно обнаружить недопустимую вытяжку рабочих лопаток, является уменьшение времени выбега ротора после остановки двигателя. При значительной вытяжке лопаток и появлении на металлокерамических вставках дорожек, выработанных на металлокерамических вставках гребешками лабиринтов лопаток, происходит торможение вращения ротора и в ответ на это автоматически увеличивается подача топлива в двигатель для сохранения постоянными мощности и частоты вращения ротора. Это приводит к росту температуры газа существенно выше допустимой. Заедание лопаток в вставках корпуса может быть обнаружено также по появлению постороннего звука в роторе двигателя.

2. Обгорание сопловых и рабочих лопаток турбины. Это происходит из-за нарушения процесса сгорания топлива в камере сгорания, значительного увеличения температуры газа и при большой неравномерности температурного поля перед турбиной. Основными причинами создания неравномерного поля температур газа перед турбиной являются помпаж компрессора и неправильная работа камеры сгорания. Обгорание лопаток приводит к изменению сопротивления проточной части турбины потоку газа, уменьшению мощности и, как следствие, к еще большему росту температуры газа перед турбиной. Это еще больше усугубляет работу лопаток и может приводить к их разрушению.

Обгорание лопаток турбины обнаруживается по росту температуры газа перед турбиной, выбрасыванию из выхлопного устройства пучков искр, а при техническом осмотре - по характерным- следам оставляемых частицами металла на внутренней поверхности проточной части выходного устройства и внешнему виду лопаток последней ступени турбины, просматриваемых через выходное устройство.

3. Обрыв или разрушение рабочих лопаток турбины. Этот дефект является одним из самых опасных. Основные эксплуатационные причины обрыва или разрушения турбинных лопаток следующие.

Заброс температуры газа перед турбиной при запуске двигателя или вывод непрогретого двигателя на повышенный режим. При этом, как было изложено выше, профиль лопатки нагревается неравномерно и возникающие температурные напряжения могут вызывать образование микротрещин, которые значительно снижают запас прочности материала лопатки.

Попадание на рабочие лопатки посторонних предметов или элементов разрушившихся деталей проточной части двигателя(компрессора, камеры сгорания, соплового аппарата и строек опор ротора).

Повышенная вибрация двигателя или силовой установки, что приводит к усталостному разрушению лопаток. Вибрация двигателя может возникать вследствие частичного разрушения лопаток компрессора, помпажа компрессора, обгорания или частичного разрушения лопаток турбины. Усталостное разрушение лопатки может происходить у ножки или по перу. Положение опасного сечения зависит от величины напряжений, от предела усталостной прочности, на величину которых влияет неравномерность температуры по высоте лопатки, а также местоположения забоин и температурных трещин. Обычно опасное сечение находится на расстоянии 1/3 высоты лопатки. Иногда рабочие лопатки разрушаются по замковой части.

Усталостное разрушение лопатки происходит не сразу. Образовавшаяся трещина распространяется постепенно вглубь сечения лопатки, а когда сечение станет недостаточно прочным для восприятия центробежных усилий, лопатка обрывается. Время развития трещины составляет примерно от 5 до 25 ч работы двигателя.

Вытяжка рабочих лопаток, происходящая по причинам, изложенным в п. 1. Обрыв лопаток вследствие их вытяжки происходит с образованием шейки и тоже не сразу.

Вероятность обрыва и разрушения рабочих лопаток необходимо определять заблаговременно, а двигатель, предрасположенный к таким дефектам, должен сниматься с эксплуатации. Основными способами определения вероятности разрушения лопаток турбины при осмотре перед взлетом являются:

§визуальный осмотр проточной части выходного устройства двигателями проточной части турбины в пределах видимости;

§ручная прокрутка ротора турбокомпрессора и ротора свободной турбины (прокрутка ротора свободной турбины производится за лопатки последней ступени против хода вращения для отключения муфты свободного хода);

§проверка времени выбега роторов двигателя при его остановке и прослушивание на предмет обнаружения посторонних шумов (при заедании ротора время выбега меньше допустимого и может прослушиваться посторонний шум).

Обрыв рабочей лопатки турбины в полете сопровождается резким хлопком в двигателе и появлением шлейфа сизого дыма из выходного устройства. Падение частоты вращения в начальный момент может не происходить. Дальнейшее развитие дефекта зависит от величины оторвавшейся части лопатки и последствий, которые этот обрыв вызывает. Обычно оторвавшаяся часть разрушенной лопатки, попадая в зазор между корпусом турбины и торцами следующих по потоку лопаток, вызывает изгиб этих лопаток и выпучивание корпуса турбины или разрушение металлокерамических вставок. Кусок разрушившейся лопатки движется в направлении выходного устройства и вызывает аналогичные деформации лопаток последующих ступеней.

Если двигатель продолжает работать, но на меньшей частоте вращения, то при этом увеличивается подача топлива и растет температура газа перед турбиной. При значительном падении частоты вращения и соответствующем переобогащении смеси в камере (из-за увеличения подачи топлива) происходит срыв пламени и двигатель самовключается.

Если оторвавшийся кусок лопатки вызывает заклинивание остальных, то двигатель сразу выключается.

При обрыве турбинной лопатки на высоких режимах работы двигателя сила удара лопатки о корпус настолько велика, что она пробивает его и может вызвать разрушение элементов силовой установки и элементов конструкции вертолета. В<этом случае не исключена возможность возникновения пожара в отсеках силовой установки, если повреждаются топливные и масляные коммуникации.

При обнаружении в полете признаков разрушения или обрыва турбинных лопаток двигатель необходимо выключить.

4. Разрушение подшипников опор роторов турбины. Причины и профилактические меры против разрушения подшипников описаны в гл. П.

Основными профилактическими мероприятиями, направленными на предупреждение дефектов турбинного узла двигателя, является:

§ручная прокрутка и визуальный осмотр проточной части двигателя перед каждым запуском на предмет обнаружения посторонних предметов;

§строгое соблюдение правил запуска, прогрева и охлаждения двигателя;

§закрытие проточной части двигателя заглушками после останова для уменьшения вентиляции и более равномерного охлаждения проточной части двигателя;

§строгое соблюдение рекомендаций для летной эксплуатации по выдерживанию температурных режимов и максимально, допустимой частоты вращения на различных этапах полета;

тщательный контроль параметров, характеризующих работу двигателя в полете, и своевременное обнаружение предпосылок к отказам.

3.4 УСЛОВИЯ РАБОТЫ И ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ ВЫХЛОПНОГО УСТРОЙСТВА ПРИ ЭКСПЛУАТАЦИИ

В процессе работы двигателя на детали выхлопного устройства действуют:

§радиальные и осевые силы, вызванные перепадом давлений; величина их в вертолетных ГТД незначительна;

§крутящий момент, который передается на выходной патрубок от стоек, спрямляющих поток газа за турбиной;

§изгибающий момент, который возникает от действия инерционных сил поворота газового потока;

§вибрационные нагрузки, которые передаются с корпуса двигателя и возникают вследствие неравномерного истечения газов;

§тепловые нагрузки, достигающие наибольшей величины в момент запуска и останова двигателя.

Надежность выхлопного устройства обеспечивается его охлаждением путем эжектирования атмосферного воздуха через отверстия, выполненные в конце обтекателя.

Выхлопное устройство двигателя ТВ2-117АГ

Характерными неисправностями деталей выхлопных устройств вертолетных ГТД являются следующие:

1. Трещины выхлопного патрубка. Обычно трещины появляются вблизи или в местах сварочных швов, у фланцев крепления или на самих фланцах. Причинами образования трещин может быть вибрационное горение в камере сгорания, частичное разрушение лопаток роторов и увеличение вибрации двигателя, а также увеличение вибрации вследствие нарушения соосности валов двигателя и вертолетного редуктора нарушении соосности косвенно можно судить по потемнению масла в маслосистеме двигателя.

Коробление и деформация отдельных участков выхлопного патрубка, приводящие к возникновению трещин. Трещины возникают в основном из-за больших термических напряжений, достигающих максимальной величины при запуске и останове двигателя. Опасность возникновения трещин заключается в том, что развитие их может привести к выпадению участков материала. При этом газы, выходящие из двигателя с высокой температурой, могут попадать в отсек вертолетного редуктора, что приводит к возникновению пожара.

Своевременное выявление возникшего дефекта при техническом осмотре двигателя перед полетом может предотвратить серьезную аварию или отказ силовой установки в полете. Обнаруженные трещины засверливаются и при необходимости завариваются.

Разрушение выходного устройства в полете приводит к возникновению больших гидравлических сопротивлений потоку газов, выходящих из двигателя и, как следствие к увеличению температуры газа перед турбиной. При попадании газа в отсек главного редуктора происходит резкое увеличение температурного режима редуктора и возможно срабатывание сигнализации и первой (автоматической) очереди противопожарной системы. Двигатель в этом случае следует выключить.

Основными профилактическими мероприятиями, направленными на предотвращение разрушения выходных устройств двигателей являются:

строгое выполнение требований руководящих документов, регламентирующих работу двигателей по температурным режимам; уменьшение вентиляции проточной части двигателя после его выключения, особенно в условиях эксплуатации при низких температурах наружного воздуха, путем установки в воздухозаборник и выходной патрубок специальных заглушек.

5 ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ СИСТЕМЫ СМАЗКИ ПРИ ЭКСПЛУАТАЦИИ И ИХ ПРЕДУПРЕЖДЕНИЕ

Система смазки двигателя ТВ2-117АГ

Опыт эксплуатации двигателей показывает, что наиболее вероятны следующие неисправности системы смазки и суфлирования.

Падение давления масла на выходе из нагнетающего масляного насоса. При этом резко уменьшается количество масла, поступающего на смазку подшипников опор и зубчатых передач двигателя. Наиболее неблагоприятно падение давления масла сказывается на работе подшипников, которые при недостаточной смазке могут разрушаться.

Основными причинами падения давления масла являются:

§засорение фильтра тонкой очистки масла механическими примесями, частицами нагара или другими продуктами коксования масла;

§подсос воздуха через негерметичные соединения на линии масляный бак - нагнетающий масляный насос; в этом случае при неработающем, двигателе в месте негерметичности возможно появление подтекания масла;

§недостаточное количество масла в масляном баке вследствие недостаточной заправки, утечек, большого расхода масла при работе двигателя, из-за недостаточной откачки масла (частичная закупорка маслорадиатора);

§уменьшение вязкости масла вследствие его перегрева или изменения химического состава; при этом Количество масла, поступающего в двигатель, увеличивается, смазывающая способность масла ухудшается и обеспечивается нормальная смазка трущихся поверхностей.

§заедание редукционного клапана в открытом положении, чаще всего из-за попадания под его фаску частиц нагара или случайных механических примесей; при этом давление масла на повышенных режимах работы Двигателя может сохраняться в допустимых пределах, но при уменьшении режима резко уменьшается, так как через клапан непрерывно перепускается масло из литии нагнетания обратно на вход в насос;

§образование воздушной пробки в трубопроводе подвода масла к нагнетающему насосу или закупорка суфлирующей трубки маслобака; в этом случае падение давления масла (или отсутствие давления) наблюдается сразу после запуска двигателя.

Как показывает опыт эксплуатации, воздушная пробка на входе в нагнетающий насос образуется при длительной стоянке двигателя, после замены масла в маслосистеме после съемки для осмотра масляного фильтра, при заедании в открытом положении запорного клапана и при работе двигателя с недостаточным количеством масла в баке. В зависимости от причины, вызвавшей неисправность, падение давления масла в маслосистеме двигателя может быть устранено следующими способами:

§промывкой масляного фильтра; если обнаруживается значительное загрязнение масла механическими примесями или продуктами коксования, то необходима замена масла;

§устранением негерметичности соединений на линии маслобак - нагнетающий насос;

§дозаправкой маслом бака до установленного уровня;

§заменой масла в случае обнаружения изменения его химического состава или значительного загрязнения; промывкой редукционного клапана, а при необходимости и его регулировкой; подогревом масла перед запуском двигателя при температурах ниже минус 40° С; удалением воздушной пробки из магистрали подвода масла к нагнетающему насосу обычно путем заливки небольшого количества масла на вход в насос через полость фильтра заливочным шприцем.

вертолёт двигатель отказ посадка

Повышение температуры масла на выходе из двигателя. При этом значительно уменьшается отвод тепла от подшипников и других трущихся деталей двигателя, что может приводить к разрушению подшипников опор двигателя.

Причинами повышения температуры масла могут быть:

недостаточное количество масла в баке, вследствие чего время циркуляции его уменьшается и увеличивается количество тепла, отводимого маслом от смазывающих узлов; для устранения этой причины необходимо дозаправить масляный бак маслом до установленного уровня; засорение сот маслорадиатора с внешней стороны, для устранения чего необходимо очистить соты радиатора вручную;

недостаточный обдув маслорадиатора вследствие неправильной установки поворотных лопаток направляющего аппарата вентилятора; устраняется дефект правильной регулировкой поворотных лопаток;

неисправность маслорадиатора, т. е. термостатический клапан радиатора перепускает масло мимо охлаждающих сот в масляный бак; такой маслорадиатор подлежит замене.

  1. Повышенный расход масла из системы двигателя. Эта неисправность может не вызывать внешних нарушений в работе двигателя и определяется практически после полета при проверке уровня масла в баке. Однако значительный расход масла может вызвать падение давления и повышение температуры масла, т. е. нарушение нормальной работы маслосистемы.

Система суфлирования двигателя ТВ2-117АГ

Причины повышенного расхода масла могут быть следующие:

1. Течи масла во внешних соединениях маслопроводов и агрегатов маслосистемы. Места течей масла определяются при техническом осмотре силовой установки после полета по наличию следов подтекания масла. Подтекание масла из внешних соединений элементов маслосистемы не допускается. При обнаружении негерметичности соединений маслопроводов или следов подтекания масла из-под фланцев крепления агрегатов неисправность устраняется путем подтяжки гаек, замены уплотнительных прокладок или замены соответствующих элементов маслосистемы.

  1. Выброс масла из системы суфлирования. При этом не только увеличивается расход масла, но растет его температура с последующим падением давления. Выброс масла может происходить вследствие попадания воды в масло, изменения химического состава масла, прорыва воздуха и газов внутрь масляных полостей из-за разрушения уплотнений или загрязнения жиклеров системы суфлирования предмасляных полостей. В отдельных случаях выброс масла может быть вызван неисправностью воздушно-масляного радиатора или откачивающего масляного насоса.
  2. Интенсивное проникновение масла в газовоздушный поток двигателя из-за повышенного износа уплотнений масляных полостей или загрязнения жиклеров системы суфлирования масляных полостей. При сгорании масла в газовоздушном потоке на деталях проточной части двигателя образуется значительный слой нагара, который ухудшает охлаждение деталей и может вызвать их перегрев.

При обнаружении повышенного расхода масла вследствие проникновения его в газовоздушный тракт двигателя проверяется состояние системы суфлирования, и в случае неисправности ее двигатель подлежит снятию с вертолета.

В полете, как было указано выше, неисправности системы смазки обнаруживаются по падению давления и росту температуры масла.. Если давление масла уменьшается до 2 кгс/см2 и увеличивается его температура, то во избежание разрушения подшипников опор двигатель следует выключить. В отдельных случаях не исключена возможность отказа системы замера давления или температуры масла. Если, например, стрелка указателя давления масла не показывает давления (зашла за электрический нуль), но температура масла нормальная и двигатель продолжает работать без внешних, признаков разрушения, то это является признаком отказа прибора. Двигатель в этом случае выключать не следует, но необходимо усилить контроль за его работой.

Резкое падение давления масла может быть следствием разрушения масляных коммуникаций. Так как емкость маслосистемы двигателя небольшая, то все масло может выйти из системы в течение 50-60 с, а роторы двигателя могут заклиниться. Поэтому при падении давления масла необходимо внимательно контролировать температуру масла и температуру газа перед турбиной которая в случае разрушения подшипников и торможения ротора увеличивается вследствие увеличения регуляторами подачи топлива). В случае отклонения этих параметров от установившихся для данного режима значений или появления постороннего шума двигатель следует выключить.

Слив масла из масляной системы двигателей через блок сливных кранов:

Масляный радиатор; 2- заглушка; 3- блок сливных кранов; 4- масляный бак; 5- сливной кран масляного бака; 6- пробка заливной горловины; 7- рукоятка блока сливных кранов; 8- тара для масла; 9- заглушка от загрязнения трубопровода слива

3.7 ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ ТОПЛИВНОЙ СИСТЕМЫ

Агрегаты топливной системы двигателя ТВ2-117АГ

Нарушение нормальной работы системы топливопитания, как правило, приводит к изменению подачи топлива в камеру сгорания, что соответствующим образом сказывается на работе двигателя. Другими признаками нарушения нормальной работы системы топливопитания могут быть: изменение давления топлива, определяемое по указателю манометра УИЗ-3, подтекание топлива из-за негерметичности системы, определяемое визуально пли но запаху.

Из неисправностей системы топливопитания наиболее вероятны следующие.

1. Отказ подкачивающих насосов расходного бака (практически отказ электрического привода насосов). В этом случае гаснет табло «Расход, бак» и частота вращения турбокомпрессоров двигателей падает на 2-5%, а несущего винта - на 1, также возможно падение давления топлива перед рабочими форсунками по измерителю УИЗ-3. Отказ подкачивающих насосов при полете на высотах более 1000 м может сопровождаться выключением одного или двух двигателей. Происходит это вследствие того, что на больших высотах подача топлива в двигатель дросселируется регуляторами до минимального значения по устойчивости горения в камере сгорания. Кроме того, пространство над топливом в баках сообщается с атмосферой и при уменьшении атмосферного давления уменьшается гидростатический подпор топлива на входе в насос высокого давления. В этом случае даже незначительное уменьшение давления топлива на входе в насос и, соответственно, перед рабочими форсунками может приводить к срыву пламени и самовыключению двигателя. Поэтому, если отказ топливоподкачивающих насосов сопровождается только падением частоты вращения турбокомпрессоров двигателей и несущего винта, необходимо снизиться до высоты 400-500 м над рельефом местности, уменьшить общий шаг несущего винта до

рекомендуемой частоты вращения винта и продолжать полет до места возможного выполнения нормальной посадки. Если отказ насосов сопровождается отказом одного из двигателей, то необходимо снизиться до высоты порядка 500 м, произвести запуск выключившегося двигателя. Полет с отказавшими насосами не безопасен и поэтому необходимо совершить посадку на ближайшей посадочной площадке. При отказе обоих двигателей попытку запуска их рекомендуется производить в том случае, если время запуска двигателя и выхода на рабочий режим меньше времени снижения вертолета в режиме авторотации. Так, для вертолета Ми-8 время запуска и выхода двигателя на рабочий режим соответствует времени снижения вертолета в режиме авторотации с высоты порядка 1000 м.

.Заедание клапана дренажа второго контура рабочих форсунок в открытом положении. Основной причиной этой неисправности является попадание под фаску клапана твердых частиц смолы или продуктов механического износа насоса высокого давления. В этом случае двигатель не увеличивает частоты вращения с режима примерно 66% при повороте рукоятки коррекции вправо (при перемещении рычага управления насосом-регулятором на увеличение режима работы двигателя) вследствие недостаточного поступления топлива к форсункам. Определяется дефект по наличию большого количества топлива в дренажном бачке. При длительной работе с такой неисправностью дренажный бачок переполняется топливом, которое сливается из бачка в атмосферу через дренажную трубку. Устраняется дефект заменой блока дренажных клапанов.

3.Засорение рабочих топливных форсунок. Дефект является следствием наличия большого количества механических примесей в топливе и засорения фильтра тонкой очистки. В этом случае, как было указано выше, топливо поступает в систему двигателя через фильтр грубой очистки и перепускной клапан. Механические примеси топлива засоряют фильтрующую часть форсунок, которые также могут засоряться продуктами износа плунжерных: пар насоса высокого давления при выключении двигателя пожарным краном, или смолистыми веществами, осаждающимися на деталях топливорегулирующей аппаратуры при применении недоброкачественного топлива. Опасность засорения форсунок заключается в неравномерной подаче ими топлива в камеру сгорания и получении неравномерного поля температур газа перед турбиной. Это может приводить к разрушению турбины, а в отдельных случаях - к прогару жаровой трубы камеры сгорания. Обнаруживается дефект по увеличению давления топлива перед форсунками и одновременному «зависанию» или уменьшению температуры газа. В случае, если давление топлива превысит 60 кгс/см2, двигатель следует выключить и перейти на однодвигательный полет.

8 ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ СИСТЕМЫ РЕГУЛИРОВАНИЯ И УПРАВЛЕНИЯ И ИХ ПРЕДУПРЕЖДЕНИЕ

Неисправности системы регулирования и управления вызывают нарушение нормальной работы двигателей и определяются по отклонениям от установленных значений основных параметров, характеризующих работу силовой установки вертолета. Опыт эксплуатации вертолета Ми-8 показывает, что основные неисправности системы регулирования двигателей вызывают следующие нарушений работы силовой установки:

1. Двигатель в процессе запуска самопроизвольно выходит на повышенный режим. Явление это чрезвычайно опасно и недопустимо, так как сопровождающее его резкое повышение температуры-газа перед турбиной может вызвать разрушение или деформацию» ее основных узлов. Неисправность возникает вследствие неправильной установки рычагов управления (рычага «шаг-газ», рукоятки коррекции или рычага раздельного управления) в исходное положение перед запуском двигателя, неправильной регулировки-насоса-регулятора или заедания золотниковых пар регуляторов. Наиболее частой причиной этой неисправности является залипание золотника клапана минимального давления в закрытом положении. Такое явление замечается при заправке топливом, не обладающим высокой химической стабильностью или содержащим большое количество водной эмульсии. Особенно способствуют залипанию золотников смолистые вещества, образующиеся в топливе при длительной стоянке двигателя.

При обнаружении такой неисправности запуск двигателя необходимо прекратить и решить вопрос о возможности дальнейшей эксплуатации топливного насоса-регулятора или его замене. В случаях крайней необходимости дефект можно попытаться устранить повторением запуска. При этом переменное давление, действующее на торец золотника может сдвинуть его с места, и в дальнейшем он будет работать нормально.

2.Несинхронная работа двигателей на установившихся режимах. При работе автоматической системы поддержания постоянным заданного значения Nтк разность частот вращения компрессоров двигателей («вилка») не должна превышать 2%.Эту задачу решает синхронизатор оборотов СО-40 Основными причинами разнорежимности работы двигателей являются следующие:

§неправильная регулировка системы управления «шаг-газ». При этом заведомо насосы-регуляторы настраиваются на различную подачу топлива в двигатели. Устраняется неисправность проверкой и регулировкой системы «шаг-газ».

§негерметичность соединительных шлангов воздушной системы синхронизаторов мощности или замерзание конденсата в них. Последняя неисправность наиболее характерна для эксплуатации вертолета при температурах атмосферного воздуха, близких к (УС. Устраняется дефект заменой поврежденных соединительных шлангов и трубок привода воздуха к мембранным устройствам синхронизаторов, подтяжкой мест их подсоединения, а также удалением замерзшего конденсата путем прогрева и продувки шлангов воздухом. С целью профилактики образования и замерзания конденсата перед полетом вертолета необходимо проверять отстойник шлангов и удалять из них скопившуюся влагу или продувать шланги, если отстойники не установлены.

Несинхронность работы двигателей необходимо выявлять в процессе опробования двигателей на земле. Если при опробовании на основных режимах обнаруживается разность в частотах вращения турбокомпрессоров более 2%, следует двигатели выключить и устранить неисправности. При появлении «вилки» более 2% в полете необходимо изменением общего шага подобрать такой режим работы двигателей, при котором разнорежимность будет в пределах допуска. Несинхронность двигателей может расти вследствие неисправности проточной части одного из двигателей (например, чрезмерной вытяжки турбинных лопаток, разрушения подшипников) или разрушения топливопроводов системы регулирования. Поэтому, когда изменение режима работы двигателей не устраняет несинхронности, а наоборот, приводит к ее увеличению, необходимо выявить неисправный двигатель и выключить его.

3.Раскачка частоты вращения турбокомпрессоров. Эта неисправность может быть вызвана следующими причинами:

§неустойчивой работой системы автоматического поддержания постоянства оборотов или регулятора оборотов турбокомпрессора вследствие образования во внутренних топливных полостях регуляторов воздушных пробок или паров топлива; обычно эта неисправность имеет место после замены топлива в системе или осмотра топливных фильтров;

§неустойчивой работой системы синхронизации мощности вследствие разгерметизации воздушных соединительных шлангов синхронизаторов, образования конденсата в этих шлангах или заедания золотников;

Турбовальный авиационный двигатель ТВ2-117.

Разработчик: ОКБ-117 им. В.Я.Климова под руководством С.П.Изотова
Страна: СССР
Начало разработки: 1960 г.
Построен: 1962 г.
Принят на вооружение: 1965 г.

В 1960 году был объявлен конкурс на создание газотурбинного двигателя мощностью 1250 л.с. для перспективного вертолёта Ми-8 . Победителем конкурса проектов стало ОКБ-117 им. В.Я.Климова под руководством С.П.Изотова, которому и была поручена разработка двигателя и главного редуктора ВР-8. ТВ2-117 стал первым отечественным специализированным вертолётным двигателем. Первые образцы двигателей изготовлены летом 1962 года. Серийное производство организовано в 1965 году.

Двигатели ТВ2-117А и ТВ2-117 по своим техническим данным и эксплуатационным качествам соответствуют современным техническим требованиям, предъявляемым к двигателям данного класса. Особенностью двигателей является наличие в них свободной турбины (турбины винта) для передачи мощности двигателя на редуктор ВР-8. Свободная турбина кинематически не связана с турбокомпрессорной частью двигателя. В силовую установку вертолета входят два двигателя и редуктор ВР-8. В случае необходимости, достаточно мощности одного двигателя для продолжения полета. Правый и левый двигатели взаимозаменяемы при условии разворота выхлопного патрубка.

На вертолет могут устанавливаться двигатели ТВ2-117 и ТВ2-117А. Для замены одних двигателей на другие проведение дополнительных работ не требуется. Разрешается совместная работа на одном вертолете двигателей ТВ2-117 и ТВ2-117А. На вертолете двигатели присоединяются к одному главному редуктору ВР-8, который передает от двигателей мощность несущему и хвостовому винтам. Силовая установка вертолета имеет систему автоматического управления оборотами несущего винта и синхронизации мощности обоих двигателей.

Каждый двигатель имеет раздельные системы: смазки, топливопитания, регулирования, противооблединения, и может работать на вертолете самостоятельно при неработающем втором двигателе.

Двигатель состоит из следующих основных узлов:
-компрессора с поворотными лопатками входного направляющего аппарата (ВНА) и направляющих аппаратов (НА) первых трех ступеней. На компрессоре установлены клапаны перепуска воздуха из-за VI ступени;
-камеры сгорания. На камере сгорания установлены 8 рабочих форсунок и 2 пусковых воспламенителей;
-турбины компрессора и свободной турбины, передающей мощность через вал-рессору редуктору ВР-8;
-выхлопного устройства;
-коробки приводов агрегатов. На коробке приводов устанавливаются следующие агрегаты: стартер-генератор ГС-18ТП или ГС-18ТО, топливный насос-регулятор НР-40ВР, командный агрегат КА-40, гидронасос ПН-40Р, датчик Д-2 счетчика оборотов турбокомпрессора, верхний масляный агрегат с фильтром.

Модификации:

ТВ2-117 — базовый мощностью 1500 л.с.
ТВ2-117А — модернизированный с увеличенным ресурсом.
ТВ2-117АГ — с графитовым уплотнением в опорах турбокомпрессора. Отличался большей долговечностью. Устанавливался на вертолёте Ми-8АТ .
ТВ2-117ДC — самолётный турбовинтовой.
ТВ2-117C — самолётный турбовинтовой. Отличался выносным редуктором и конструкцией выхлопного устройства. Разработан для Ан-3 .
ТВ2-117ТГ — двигатель для вертолёта Ми-8ТГ . Предназначен для работы на жидком метане. Разработан в 1987 году.
ТВ2-117Ф — форсированный до 1700 л.с. Устанавливался на вертолёте Ми-8ПА .

Модификация: ТВ2-117 / ТВ2-117А / ТВ2-117АГ
Длина, мм: 2835 / 2835 / 2843
Высота, мм: 547 / 547 / 550
Частота вращения ротора, об/мин.: 12000 / 12000 / 12000
Взлетная мощность, э.л.с.: 1500 / 1500 / 1500
Сухая масса, кг: 330 / 330 / 334.

Двигатель ТВ2-117А. Музей ВВС КНР.

Двигатель ТВ2-117. Музей ВВС Чехии.

Двигатель ТВ2-117А (вид спереди).

Двигатель ТВ2-117А (вид справа).

Главный редуктор ВР-8А и двигатели ТВ2-117А.

Список источников:
П.Изотов, Д.Изотов. Самый массовый вертолётный двигатель.
Е.И.Ружицкий. Вертолёты.
Сайт «Военная авиация России» (www.aveaprom.ru).

11 12 16 ..

ТОПЛИВНАЯ СИСТЕМА ДВИГАТЕЛЯ ТВ2-117А (АГ)

8.1 ОБЩИЕ СВЕДЕНИЯ
Топливная система предназначена для обеспечения питания двигателя и регулирования режимов работы двигателя путем изменения подачи топлива в камеру сгорания. Топливную систему двигателя можно разделить на три системы:

1) система высокого давления обеспечивает регулирование подачи топлива в камеру сгорания топлива и включает в себя следующие агрегаты: насос-регулятор НР-40ВА; регулятор частоты вращения Р0-40М; синхронизатор мощности С0-40; исполнительный механизм ограничителя температуры газов ИМ-40; рабочие топливные форсунки;

2) пусковая система служит для подачи пускового топлива при запуске и имеет блок электромагнитных клапанов с клапаном постоянною давления системы запуска, импульсатор И-2 и две пусковые форсунки пусковых воспламенителей;

3) дренажная система предназначена для слива несгоревшего топлива из нижней части внутренних полостей двигателя после неудавшегося запуска, слива топлива из коллекторов рабочих форсунок после выключения, капельного слива топлива из уплотнений агрегатов топливной системы и состоит из блока дренажных клапанов и дренажного бачка вертолета.

8.2 ПРИНЦИП РАБОТЫ ТОПЛИВНОЙ СИСТЕМЫ ДВИГАТЕЛЯ ТВ2-117А (АГ)

При работе двигателей топливо из расходного бака вертолета двумя подкачивающими насосами ЭЦН-40 (или ПЦР-1Ш) подается к насосам-регуляторам НР-40ВА двигателей (1). Из насоса высокого давления НР-40ВА топливо поступает в пусковую топливную систему в процессе запуска двигателя, а также в систему регулирования подачи топлива и к рабочим форсункам (13) камеры сгорания. Подачей топлива к пусковым форсункам управляет блок электромагнитных клапанов (5). Давление топлива перед пусковыми форсунками редуцируется клапаном постоянного давления блока электромагнитных клапанов. К рабочим форсункам топливо поступает от насоса-регулятора в количестве, определенном системой регулирования. Рабочим органом, изменяющим подачу топлива к форсункам, является дозирующая игла НР-40ВА. Изменением подачи топлива в камеру сгорания регулируется частота вращения турбокомпрессора и несущего винта (свободной турбины). Поэтому от насоса-регулятора часть дозированного топлива подводится через синхронизатор мощности С0-40 (2) к регулятору оборотов свободной турбины Р0-40М (4). Сервомеханизм иглы настраивается на такую подачу топлива, при которой частота вращения винта остается постоянной. Применение синхронизатора мощности позволяет устанавливать одинаковые режимы параллельно работающих двигателей.

Так же часть дозированного топлива из насоса-регулятора поступает к исполнительному механизму ИМ-40 (3) системы ограничения температуры газа перед турбиной компрессора. При температуре газа выше максимально допустимой исполнительный механизм по сигналам системы, контролирующей температуру, перенастраивает дозирующую иглу НР-40ВА на уменьшение подачи топлива. Подача топлива к рабочим форсункам в процессе запуска двигателя регулируется с помощью пневматического автомата запуска НР-40ВА, к которому подводится атмосферный воздух и воздух из корпуса диффузора камеры сгорания (от компрессора).

1 - насос-регулятор HP-40BA

2 - синхронизатор мощности С0-40

3 - исполнительный механизм ИМ-10

4 - регулятор оборотов РО-40М

5 - блок электромагнитных клапанов

6 - блок дренажных клапанов

7 - корпус камеры сгорания

8 - фильтр

9 - корпус турбины

10 - датчик давления топлива

11 - топливный коллектор первого контрура

12 - топливный коллектор второго контрура

13 - рабочие форсунки

14 - пусковые воспламенители

Тонкий распыл топлива, подводимого от системы высокого давления в камеру сгорания, обеспечивается восемью топливными форсунками (13). "Гак как расход топлива в камеру сгорания изменяется в широки к пределах, то для обеспечения тонкого распыла топливные форсунки выполняются двухканальными. Первый канал (контур) форсунок обеспечивает подачу топлива в камеру сгорания, начиная с момента запуска и на всех режимах. Второй канал включается в работу при выводе двигателя на режимы выше малого газа. Подачей топлива в первый и второй каналы топливных форсунок управляют автоматические устройства насоса-регулятора.

Дренажные клапаны (6) закрываются в момент запуска двигателя под действием давления топлива, поступающего к торцам золотников клапанов, когда его величина достигает 2,5-3 кгс/кв.см. Количество топлива, поступающего в дренажный бачок на работающем двигателе, определяется состоянием уплотнений агрегатов топливной системы, установленных на двигателе.

«43. Авиационный турбовальный двигатель ТВ2-117А и редуктор ВР-8А Руководство по технической эксплуатации Москва « Машиностроение » ...»

-- [ Страница 1 ] --

Авиационный

турбовальный

двигатель

и редуктор

Руководство

по технической

эксплуатации

« Машиностроение »

УДК 629.7.035.3 (083.96)

Авиационный турбовальный двигатель ТВ2-117А и редуктор ВР-8А. М.: Машиностроение, 1987, 256 с.

Руководство содержит указания по эксплуатации и техническому обслуживанию двигателя ТВ2-117А, (ТВ2-П7АГ) и редуктора ВР-8А, устанавливаемых иа

вертолете Ми-8. Данным руководством также следует пользоваться при эксплуатации ТВ2-117 и ВР-8.

С выпуском настоящего издания руководство по эксплуатации и техническому обслуживанию двигателя ТВ2-117А (ТВ2-117) и редуктора ВР-8А (ВР-8), изданное в 1976 г.. а также все бюллетени по двигателю ТВ2-117А (ТВ2-117) и редуктора ВР-8А (ВР-8), выпущенные с 1 января 1976 г. по 1 ноября 1984 г., теряют силу (за -исключением бюллетеней 79202-БЭ-Г, 79208-БЭ-Г, 79209-БУ-Г, 79213-БЭ-Г, 79214-БЭ-Г, 79216-БЭ-Г, 79217-БЭ-Г, 079.4.0.0338.4, 79217-БЭ-В).

При эксплуатации и техническом обслуживании двигателя и редуктора можно использовать другие технические документы по вертолету Ми-8 (регламент техрического обслуживания, инструкция по технической эксплуатации, руководство по летной эксплуатации вертолета, действующие в эксплуатирующих организациях, согласованные с главными конструкторами вертолета и двигателя (редуктора), а также с предприятием-изготовителем двигателя (редуктора)." Руководство предназначено для специалистов эксплуатирующих организаций МАЛ, МГА и ВВС.



3606030000-415 А 6е 038(01)-87 Выпущено по заказу Пермского производственного объединения «Моторостроитель» им. Я. М. Свердлова Пермское производственное объединение «Моторостроитель»

им. Я. М. Свердлова, 1987.

ДОПУЩЕННЫЕ ОПЕЧАТКИ

при издании книги «Авиационный турбовальный двигатель ТВ2-117А и редуктор ВР-8А. Руководство по технической эксплуатации»

(издание 1987 г.) Стра- Напечатано Должно быть Строка ница 2 снизу ТВ2-117АГ 3 ТВ2-11АГ Ротор турбокомпресРотор турбокомпрессверху сора (рис. 10) сора 16 (рис. 10) привод свободный привод свободной турРис. 10, поз. 2 1 бины –  –  –

ОБЩИЕ СВЕДЕНИЯ О ДВИГАТЕЛЕ И РЕДУКТОРЕ

1.1. ДВИГАТЕЛЬ Особенности конструкции узлов и агрегатов Турбовальный двигатель ТВ2-117А устанавливается на вертолете Ми-8 (рис. 1, 2, 3, 4)." Силовая установка вертолета (рис. 5) состоит из двух двигателей ТВ2-117А и главного редуктора ВР-8А.

Правый и левый двигатели взаимозаменяемы при условии разворота выхлопного патрубка (см. разд. 12.2).

На вертолете двигатели подсоединены к одному главному редуктору, который передает суммарную мощность двигателей несущему и хвостовому винтам.

Особенностью конструкции ТВ2-117А* является наличие в нем свободной турбины (турбины винта), мощность которой, передаваемая редуктору, составляет эффективную мощность двигателя.

Свободная турбина кинематически не связана с турбокомпрессорной частью двигателя. Эта особенность обеспечивает ряд конструктивных и эксплуатационных преимуществ двигателя:

позволяет получать требуемую частоту вращения вала несущего винта вертолета независимо от частоты вращения ротора турбокомпрессора двигателя;

облегчает раскрутку турбокомпрессора при запуске двигателя;

позволяет получать оптимальный расход топлива при различных условиях эксплуатации двигателя;

исключает необходимость использования фрикционной муфты (муфты включения) в силовой установке вертолета..

Силовая установка вертолета имеет систему автоматического поддержания частоты вращения несущего винта с синхронизацией мощности обоих двигателей, которая обеспечивает:

автоматическое поддержание частоты вращения несущего зинта в заданных пределах посредством изменения мощности двигателя в зависимости от мощности, потребляемой несущим винтом;

поддержание одинаковой мощности параллельно работающих двигателей;

автоматическое увеличение мощности одного из двигателей при отказе другого.

Кроме того, система регулирования и управления обеспечивает автоматическое ограничение:

* Двигатели ТВ2-117А с 1984 г. выпускаются с графитовым уплотнением узла II опоры ротора турбокомпрессора вместо контактно-кольцевого. Двигатели с указанным изменением имеют условное обозначение ТВ2-11АГ и по своим техническим параметрам и эксплуатации не отличаются от двигателей ТВ2-117АI* 3

Рис. 1. Двигатель ТВ2-117А (вид справа):

; _ ушки для подвески двигателя; "2 - агрегат СО-40; 3 - фланец отбора воздуха для нужд вертолета; 4 - маслофильтр; 5 - штуцер подвода масла из маслобака; 6 - агрегат РО-40М; 7 -фланец,суфлирования III опоры"; «--колодка Термопар; 3 ~ блок дренажных клапанов- 10 - штуцер суфлирования II опоры; П - Клапан Перепуска воздуха; 12 - противообледенительный клапан; 13 - гидромеханизм;

14 - штуцер выхода масла из" двигателя; /5 - кронштейн датчика давления масла

Рис. 2. Двигатель ТВ2-117А (вид слева):

/ - агрегат КЛ-40; 2 - штуцер суфлирования; 3 - агрегат НР-40ВА" 4 - стартер-генератор постоянного тока ГС-18МО (ГС-18ТО)- 5 - аге=п-г" 1х"М-40; /-пусковой воспламенитель; 7 - коллектор "термопар Т-80Т; -в - трубопровод суфлирования; 9 - кронштейн датчика давления топлива; 10 - штуцер подвода топлива к агрегату НР-40ВА- 11 - НР-40ВА; и гидромеханизм; П - клапан перепуска воздуха; 13 - блок электромагнитных клапанов с клапаном постоянного давления пускового топлива; 14 - штуцер суфлирования II опоры; - 1 5 - противопожарный коллектор; 16 - дренажная трубка

1. В главе 1 «Общие сведения о двигателе и редукторе», в разделе 1.1 «Двигатель», подразделе «Особенности конструкций узлов и агрегатов», на стр. 6, в подрисуночном тексте, рис.® фразу «4 - кран слива масла из маслоагрегата двигателя» изложить в следующей редакции: «4 - кран слива масла из маслоагрегата двигателя, пробка - для двигателей новых, начиная с № 98.111052, и отремонтированных с выполнением бюллетеня № С79-625-БР-Г».

максимального расхода топлива {с целью ограничения максимальной мощности двигателя в определенном диапазоне температур наружного воздуха);

Рис. 3. Двигатель ТВ2-117А (вид. спереди):

/ - агрегат ПН-40Р; 2 - агрегат КА-40; 3 - нижний масляный агрегат; 4 - кран слива масла из маслоагрегата двигателя; 5 - главный штепсельный разъем максимально допустимой температуры газов перед турбиной компрессора (с целью не допустить перегрева деталей горячей части двигателя) ;

максимальной физической (замеренной) частоты вращения ротора турбокомпрессора (с целью не допустить перенапряжения деталей турбокомпрессора от действия центробежных сил);

максимальной физической частоты вращения свободной турбины (для защиты ее от раскрутки в случае нарушения кинематической связи с редуктором) посредством автоматического выключения двигателя;

максимальной приведенной частоты вращения ротора турбокомпрессора (для предотвращения недопустимого увеличения мощности при низких температурах наружного воздуха и обеспе-.

чения необходимого запаса устойчивости работы компрессора).

Для совместного управления обоими двигателями и шагом неК бюллетеню № 79246-БЭ-Г, стр. 3 Рис. 1. Кран слива масла 600400М НМД Рис. 2. Пробка 7967.0628 НМД сущего винта на вертолете имеется система объединенного управления шаг - газ, а для раздельного управления двигателями - рычаги раздельного управления.

–  –  –

В двигатель ТВ2-117А входят следующие основные узлы и системы:

осевой десятиступенчатый компрессор с поворотными лопатками входного направляющего аппарата (ВНА) и направляющих аппаратов (НА) первых трех ступеней. На компрессоре установлены клапаны перепуска воздуха из-за шестой ступени в атмосферу. Поворотом лопаток ВНА и НА обеспечиваются устойчивость работы и повышение КПД компрессора на режимах выше малого газа, а перепуском воздуха в атмосферу - устойчивость работы компрессора при запуске;

камера сгорания с кольцевой жаровой трубой с восемью головками. На камере сгорания установлены восемь рабочих форсунок и два пусковых воспламенителя;

двухступенчатая турбина компрессора;

двухступенчатая свободная турбина (турбина винта);

выхлопное устройство;

главный привод передачи крутящего момента с вала ротора свободной турбины двигателя на главный редуктор вертолета;

приводы агрегатов двигателя;

системы охлаждения, смазки и суфлирования;

системы топливопитания, регулирования и управления;

системы электропитания и запуска;

гидравлическая, дредажная, противообледенительная и противопожарная системы;

система защиты турбины винта от раскрутки.

Рис. 5,- Силовая установка вертолета:

Главный редуктор; 2 - двигатель правый; 3 - двигатель левый Двигатель крепится на вертолете в трех точках (рис. 6): тремя ушками (одно из них двойное) на заднем корпусе компрессора (вблизи центра тяжести двигателя) посредством двух пар.стоек к двум точкам фюзеляжа вертолета, а корпусом главного привода со сферической опорой к корпусу редуктора. Установка сферической опоры в соединении двигателя с редуктором допускает неРис. 6.-Схема крепления двигателей и редуктора на^ вертолете:

/ - двигатель; 2 - редуктор; 3 - стойка крепления двигателя в передней его части; 4 - приспособление дли удержания двигателя при снятии редуктора с вертолета; 5 -- сферическая опора редуктора для крепления двигателя в задней его части; 6 - подкосы рамы крепления редуктора соосность валов двигателя и редуктора (в определенных пределах) при работе на вертолете.

Работа двигателя ТВ2-117А основана на превращении тепловой энергии, выделяющейся при сгорании топлива, в механическую работу с помощью газовых турбин: турбины компрессора и свободной турбины (турбины винта).

Основными параметрами рабочего тела - воздуха (газа) являются: давление (р), температура (Г), скорость (С).

Изменение этих параметров по газовоздушному тракту приработе двигателя на взлетном режиме (Я=0, У=0, СА-73) показано на рис. 7.

Рис. 7. Изменение основных параметров рабочего тела в газовоздушном тракте д"вигатёля Характеристика двигателя Дроссельная характеристика двигателя ТВ2-117А показывает зависимость эффективной мощности Nе на ва*лу свободной турбины и удельного расхода топлива Се от частоты вращения ротора турбокомпрессора п тк (рис. 8).

Из характеристики видно, что с увеличением частоты вращения ротора турбокомпрессора мощность двигателя и температура газов перед турбиной возрастают, а удельный расход топлива уменьшается. Такое изменение параметров происходит в соответствии с выбранным законом регулирования, выполнение которого обеспечивается топливорегулирующей аппаратурой двигателя.

С увеличением частоты вращения птк растут секундный расход воздуха О в, проходящего через компрессор, и степень повышения давления воздуха в компрессоре як. Увеличение этих параметров вместе с увеличением температуры Тг приводит к увеличению эффективной мощности, максимально допустимое значение которой ограничивается максимальным расходом топлива (соответствующей регулировкой топливного агрегата НР-40*).

Рис. 8. Зависимости удельного расхода топлива Се, температуры. газов перед турбиной Тг и мощности N е от частоты вращения ротора. турбокомпрессора.

лтк при стендовых испытаниях на земле (Я=0, У= = 0), приведенные к стандартным атмосферным условиям (СА-73):

/ - на крейсерском режиме; 2 - на номинальном режиме: 3 - на взлетном "режиме Уменьшение удельного расхода топлива с увеличением частоты вращения птк происходит вследствие увеличения удельной мощности Nе уд в соответствии с ростом степени повышения давления воздуха в компрессоре я к и температуры газов перед турбиной Т г.

Высотная характеристика показывает зависимость эффективной мощности Ые от высоты полета Н при заданной"программе регулирования.

На рис. 9 показана зависимость мощности на взлетном, номинальном и крейсерском режимах от высоты полета при У-О и изменении атмосферных условий согласно СА - 73.

Характер изменения мощности на взлетном режиме обусловлен работой ограничителей, предусмотренных в системе автоматического регулирования и управления двигателем:

Высотная характеристика двигателя (СА-73):

А,- область взлетных режимов; Б - область номинальных режимов; В - область крейсерских режимов; / - линия ограничения параметров движения по расходу топлива; 2 - линия ограничения параметл,КМ ров двигателя по приведенной частоте вращения ротора турбокомпрессора "тк. пр * Здесь и далее по тексту наименование насоса-регулятора НР-40 приводится без указания его модификации (ВА), кроме разделов, где это упоминание необходимо.

П до высоты Я=1,5 км взлетная мощность ограничивается постоянным максимальным расходом топлива О т =сопз1;

при дальнейшем наборе высоты взлетная мощность ограничивается по приведенной частоте вращения «тк, пр =сопз! (101...

105%) автоматическим уменьшением подачи топлива в двигатель От.

Кинематическая схема двигателя и приводов агрегатов Ротор компрессора имеет две опоры: переднюю - роликовый подшипник и заднюю - шариковый подшипник, выполняющий функцию опорно-упорного подшипника и одновременно, являющийся передней опорой ротора турбины компрессора. Второй (задней) опорой ротора турбины компрессора является роликовый подшипник.

Ротор свободной турбины имеет две опоры: переднюю - шариковый подшипник, выполняющий функцию опорно-упорного подшипника, и заднюю - роликовый подшипник.

Ротор турбокомпрессора 7га (рис. 10) приводит во вращение = *7 1=16

Рис. 10. хК.инемэтическая схема двигателя и приводов агрегатов»:

Й^*^ / - привод датчика частоты вращения; 2 - привод свободна* турбины; 3 - привод агрегата ПН-40Р- 4 -привод верхнего масляного агрегата; 5 - привод ручной прокрутки;

6 - привод генератора ГС-18*; 7 - ведущее коническое зубчатое колесо коробки приводов;

8 - центробежный суфлер; 9 - привод агрегата КА-40; 10 - привод агрегата НР-40; 11ведомое коническое зубчатое колесо передачи вращения к коробке приводов; /2 -ведущее коническое зубчатое колесо центрального привода; 13 - ведомое коническое зубчатое колесо передачи вращения к нижнему масляному агрегату; 14 ~ привод нижнего масляного агрегата- 15 - компрессора/5 - ретор-ч?ур4вяв*нчеббв(а; 17 - свободная турбина; /а - шлицевая втулка; 19 - ведущее зубчатое колесо передачи вращения к агрегату РО-41) ;

20 - главный привод; 21 - привод агрегата РО-40 * Здесь и далее по тексту наименование агрегатов ГС-18 и РО-40 приводится без указания модифицикаций (МО или ТО и М или ВР соответственно) кроме разделов, где это упоминание необходимо.

на стр. 13 седьмой абзац дополнить следующим предложением: «На двигателях, изготовленных и отремонтированных на" предприятии-изготовителе с 1.12.91 г. и отремонтированных на АРП с выполнением бюллетеня № С79-963-БУ-Г, в магистрали подвода масла к III опоре имеется дополнительный фильтр».

ведущее 12 и ведомые 11 и 13 конические зубчатые колеса центрального привода, расположенного в корпусе первой опоры роторов двигателя. От ведомого конического зубчатого колеса 11 через верхнюю вертикальную рессору вращение передается на ведущее коническое зубчатое колесо 7, приводящее во вращение приводы всех агрегатов, установленных на коробке приводов. От ведомого конического" зубчатого колеса 13 через нижнюю вертикальную рессору вращение передается на привод нижнего масляного агрегата., От ротора свободной турбины 17 через шлицевую втулку 18 и ведущее зубчатое колесо 19 -вращение передается на привод регулятора частоты вращения ротора свободной турбины, а от главного привода 20 через муфту свободного хода - на редуктор.

Передаточные числа к агрегатам двигателя приведены в разд. 2.1.

Масляная система Масляная система обеспечивает постоянную подачу, масла к подшипникам и трущимся поверхностям деталей при работе двигателя для уменьшения трения и для отвода тепла.

Масляная система двигателя ТВ2-117А выполнена по открытой замкнутой схеме с принудительной циркуляцией масла (рис. 11).

Для смазывания двигателя применяется синтетическое, масло Б-ЗВ^которое имеет хорошие смазывающие свойства, высокую термохимическую стабильность и низкую температуру застывания, обеспечивающую запуск двигателя без подогрева масла при температуре окружающей среды до -40°С.(Бйфв-91г -_з00е) Масляная система включает в себя: верхний и нижний масляные агрегаты двигателя, магистральные трубопроводы, шланги, воздушно-масляный радиатор, масляный бак и расширительный бачок.

Воздушно-масляный радиатор, трубопроводы, шланги, масляный бак и расширительный бачок относятся к внешней маслосистеме двигателя и являются принадлежностью вертолета.

Масло из масляного бака 1 по внешнему трубопроводу поступает к штуцеру в передней части корпуса коробки приводов. От штуцера по сверлению внутри корпуса коробки приводов масло подводится в заднюю часть коробки к фланцу крепления верхнего масляного агрегата и поступает на вход нагнетающего насоса 2.

Нагнетаемое масляным насосом масло проходит масляный фильтр 3, запорный клапан 4 и по наружным трубопроводам, каналам в корпусах опор роторов черел форсунки поступает к точкам смазывания, ^с^ $9 ^$.Ш0^1 Требуемое давление масла в системе (3...4 кгс/см2) поддерживается с помощью редукционного клапана 5. Замер давления масла производится Б трубопроводе подачи масла к корпусам опор роторов двигателя манометром 6.

2. Там же, на стр. 14, подрисуночные подписи на рис. 11 дополнить пунктом 23 следующего содержания: «23. Маслофильтр III опоры».

В магистрали подвода масла к III опоре на рис. 11 на контуре корпуса двигателя тушью от руки отметить местонахождение фильтра и внести его оцифровку. ё^с^, ^^На стр. 1^ в конце последнего абзаца текстом следующего содержания:

«В маслосистеме двигателей, установленных на вертолеты, оборудованные системой сигнализации стружки в двигателе, на входном штуцере маслорадиатора установлен магнитный сигнализатор наличия в масле ферромагнитных частиц - стружкосигнализатор СС-78-2. В стружкосигнализаторе, в зоне потока откачиваемого масла, установлены два магнита с фиксированным промежутком между торцами разнополюсных магнитов- В промежутке между магнитами создается магнитное поле, в котором задерживаются и оседают на торцах магнитов ферромагнитные частицы. При заполнении частицами промежутка между магнитами замыкается электрическая ",епь и загорается сигнальная лампа, установленная в кабине вертолета», " Откачка масла от точек смазывания производится нижним масляным агрегатом, который включает в себя пять откачивающих насосов 8, 9, 10, 13 и 14. Из полости коробки приводов масло откачивается шестым откачивающим насосом 15, расположенным в верхнем масляном агрегате.

Рис. 11. Схема масляной системы двигателя:

/ - масляный бак; 2 - нагнетающий насос; В - масляный фильтр; 4, 11 - запорные клапаны; 5 - редукционный клапан; 6 - манометр; 7 - радиатор; 8, 9, 10, 13, 14 - масляные насосы; 12 - термометр; /5 - масляный откачивающий насос в верхнем масляном агрегате; 16 - центробежный суфлер; П - расширительный бачок; 18 - отвод воздуха под фюзеляж вертолета; 19 - отвод воздуха в дренажный бачок вертолета; 20 - отвод воздуха на срез выхлопного патрз^жа; 21 - фильтр редукционного клапана е п в/ж.

Сс- Ц -л, 1е ъ - ММБЭГ.

Из откачивающих насосов масло через запорный клапан // направляется в радиатор 7 и из него возвращается в масляный бак 1.-^ В схеме маслоснстемы предусмотрены запорные клапаны 4 (в магистрали нагнетания) и // (в магистрали откачки масла). Клапан 4 -предотвращает слив масла из магистрали нагнетания, а клапан 11 - перетекание масла из маслорадиатора в двигатель во время стоянки вертолета.

Измерение температуры выходящего из двигателя масла производится термометром 12 в магистрали отвода масла из, нижнего масляного агрегата в радиатор.

79273-БЭ-Г, К бюллетеню стр. 3

Рис. I. Маслофильтр III опоры 7967.1460:

1 - гайка 7452А56-8; 2 - кольцо уплотнительное 2267А-12-2; 3 - фильтроэлемент 7967.1450; 4 - штуцер 7967.1440; 5 - кольцо уплотнительное 7967-0641; 6 - кольцо упорное 7967-0642

2. Там же, в подразделе «Масляная система», на стр. 1», текст последнего абзаца дополнить словами:

«...(пробка для двигателей новых, начиная с № 9811105?

и отремонтированных с выполнением бюллетеня № С79БР-Г)». &- Ш6&ЭГ______.

Суфлированйе маслобака 1 производится через " расширитель^ ный бачок 17, от которого отводится трубка на срез выхлопного патрубка для сообщения его с атмосферой.

Из магистрали суфлирования маслосистемы производится слив конденсата масла в дренажный бачок, установленный на вертолете с левой стороны фюзеляжа. Коробка приводов двигателя суфлируется через центробежный суфлер 16, от которого воздух, очищенный от масла, по специальному трубопроводу отводится за фюзеляж вертолета.

Верхний масляный агрегат расположен на коробке приводов с правой стороны и включает в себя нагнетающий и откачивающий насосы, сетчатый фильтр, запорный и редукционный клапаны.

П р и м е ч а н и е. На двигателях с № С9231001 до № С95201100 устанавливались верхние масляные агрегаты с измененным расположением редукционного клапана и дополнительным фильтром 21.

Взаимозаменяемость масляных агрегатов возможна.

Нижний масляный агрегат расположен в нижней части двигателя и прикреплен к корпусу I опоры двигателя. Назначение.агрегата - откачивать отработанное (нагретое) масло от всех пяти опор роторов двигателя и возвращать его по масляной магистрали через воздушно-масляный радиатор в маслобак вертолета.

Нижний масляный агрегат включает в себя пять откачивающих насосов, расположенных в два ряда; двухступенчатый редуктор, понижающий 1 частоту вращения привода насосов; запорный клапан и сливной крак^кро&иа, цачци^&Я с //В8-Н-165&. « *т/ье*е«и-ог в УЭ. }.ЧЁ е?г Система суфлирования Система суфлирования двигателя предназначена для обеспечения работы масляных уплотнений и воздушно-масляных лабиринтов.

Система суфлирования (рис. 12) состоит из системы суфлирующих каналов, трубопроводов, центробежного суфлера, регулировочных диафрагм и жиклеров.

Суфлированйе полостей опор двигателя осуществляется двумя способами: суфлированием предмаеляных полостей непосредственно в атмосферу и суфлированием через центробежный суфлёр коробки приводов.

Воздушные полости II (полость № 15) и III (полость № 16) опор двигателя, в которые может прорываться воздух под повышенным давлением из газовоздушного тракта, суфлируются непосредственно в атмосферу через каналы в корпусах и наружные трубки, выведенные к срезу выхлопного патрубка.

Масляные полости II (полость № 14), III (полость № 18), IV (полость № 22) и V (полость № 23) опор двигателя через каналы в корпусах и наружные трубки суфлируются с помощью приводного центробежного суфлера (ЦС), расположенного в коробке приводов. ^-,Йв^_^^й^_ 1 г

–  –  –

Рис. 12. Схема суфлирования полостей опор двигателя:

/ - жиклер в трубке суфлирования (справа); 2 - диафрагма в патрубках стравливания (справа и слева); 3 - жиклер на корпусе диффузора камеры сгорания (вверху справа); 4 - жиклер в трубке суфлирования (вверху справа); 5 - жиклер на корпусе главного привода (справа); 6 - пластинчатый жиклер на корпусе главного привода (вверху); / ^ д и а ф р а г м а в патрубке стравливания (справа - для правого двигателя, слева - для левого двигателя); 8 - стравливание воздуха на срез выхлопного патрубка; № 10, 12, 14, 15, 16, 18, 21, 22, 23 - номера полостей опор; I-V - опоры двигателя Полость I опоры (полость № 12) двигателя суфлируется через систему откачки масла.

Схема наружных трубопроводов показана на рис. 13..

Схема-трубопроводов, соединяющих масляные полости II, IV, V опор и полости наддува IV и V опор:

/ - трубопровод, соединяющий масляные полости опор двигателя с коробкой приводов;

г - ш т у ц е р; 3 - жиклер 7928.0143 суфлирования полости № 14; 4 - трубопровод суфлирования II опоры; 5 - пластинчатый жиклер 7929.0176 наддува полости № 21 вместо чашечного жиклера 7928.0143; 6-прокладка 7929.0175; 7 - пластинчатый жиклер 7929.0177 суфлирования полости № 23 (вместо чашечного жиклера 7929.0169); 8 - прокладка 7929.0073; 9 - трубопровод наддува IV и V опор Суфлирование маслобака осуществляется независимо от системы суфлирования двигателя. Маслобак суфлируется через расширительный бачок 17 (см. рис. 11), в котором происходит конденсация масляных паров. Масляный конденсат собирается в нижней части расширительного бачка и оттуда по трубке возвращается в маслобак. Расширительный бачок и маслобак входят в масляную систему вертолета.

Номера и размеры регулировочных жиклеров и диафрагм системы суфлирования приведены в табл. 1.

–  –  –

П р и м е ч а н и я: 1. С мая 1977 г. вместо чашечных введены пластинчатые жиклеры, устанавливаемые в полостях № 21 2, В эксплуатации при подборе жиклеров необходимо руководствоваться действующими бюллетенями.

ограничение максимального расхода топлива, максимальной частоты вращения ротора турбокомпрессора, максимальной частоты вращения ротора свободной турбины, максимальной температуры газа перед, турбиной компрессора, максимальной приведенной частоты вращения ротора компрессора;

поддержание частоты вращения несущего винта в заданных пределах;

выравнивание мощностей обоих двигателей, работающих совместно на один редуктор ВР-8А;

автоматическое увеличение" мощности одного из двигателей при отказе другого.

Основной системой управления двигателями является система автоматического поддержания частоты вращения несущего винта в заданных пределах, что обеспечивается регулятором частоты вращения ротора свободной турбины РО-40. При работе системы автоматического поддержания постоянной частоты вращения свободной турбины снимаемая мощность задается шагом несущего винта.

Управление шагом несущего винта осуществляется рычагом ШАГ - ГАЗ, который кинематически связан с рычагами управления насосов-регуляторов НР-40 обоих двигателей. При перемещении рычага ШАГ-ГАЗ вверх общий шаг несущего винта и режим обоих двигателей увеличиваются, а при перемещении рычага вниз - уменьшаются.

При постоянном шаге несущего винта положение рычага насоса-регулятора НР-40 можно изменить рукояткой коррекции рычага ШАГ - ГАЗ и рычагом раздельного управления двигателем.

При поворачивании рукоятки коррекции вправо рычаги указанных насосов-регуляторов обоих двигателей перемещаются в сторону увеличения режима работы, а при поворачивании рукоятки влево- в сторону уменьшения режима.

При полностью введенной правой коррекции работает система автоматического поддержания частоты вращения несущего винта. При повороте рукоятки коррекции влево система автоматического регулирования выключается из работы. Частота вращения несущего винта при этом поддерживается вручную системой шаг - газ, выполняющей роль резервной системы-управления при отказе автоматической. Момент перехода с автоматической системы регулирования на систему шаг - газ (и обратно) определяется по1 уменьшению (увеличению) частоты вращения несущего винта.

На малом.газе и на режимах от малого газа до режима, когда частота вращения несущего винта достигает частоты вращения настройки регулятора РО-40М, частота вращения ротора турбокомпрессора определяется настройкой насоса-регулятора НР-.40.

При резком перемещении рычага управления насоса-регулятора на увеличение режима работы темп увеличения частоты вращения турбокомпрессора п тк определяется темпом нарастания 2* 19 расхода топлива, зависящим от пропускной способности дроссельного пакета насоса-регулятора НР-40.. .-.. При резком уменьшении режима работы двигателя или при подъеме на высоту клапан минимального давления топлива за дозирующей иглой насоса-регулятора предотвращает падение расхода топлива ниже значения, обеспечивающего нормальный процесс горения в камере сгорания и поддержание заданной "частоты вращения турбокомпрессора. „ При изменении режима работы двигателя автоматически "производится поворот лопаток входного направляющего аппарата и спрямляющих аппаратов первых трех ступеней компрессора/" ;

Поворот лопаток осуществляется гидромеханизмами по командному давлению в гидросистеме, поступающему от агрегата КА-40.

–  –  –

Рис. 15. Нас^с-регулятср НР-40ВА:

Рессора; 2 - шпонка; В - кольцо -торцевого уплотнения; 4- пружина торцевого уплот- 82 - канал подвода топлива под высоким давлением в полость мембраны КПП; 83 - погния; 5 - подшипник; 6 - наклонная шайба; 7 -сферическая опора сепаратора; 8 - под- лость. Давления топлива перед дозирующей иглой; 84 - пружина клапана постоянного пелтник; 9 - сепаратор; 10 - плунжер; 11 - пружина плунжера; 12 - пружина сепаратора; репаде; 55 - тарелка клапана постоянного перепада; 86 - диск; 57 - мембрана клапана (- ротор; 14 - входной фильтр; 15 - направляющая пружина; 16 - подшипник скольже- постоянного перепада; 55 - винт; 89 - клапан постоянного перепада; 90 - клапан стравлиия; 17- замок; 18 -плоский золотник ротора; 13 - рессора тахиметрического датчика; вания воздуха; 91 - клапан дозирующей иглы; 93 - клапан автомата запуска; 94 - гнездо " - подшипник тахометрического датчика; 21 - тахометрический датчик; 22 - штуцер сли- клапана; 96 - шток; 97 - сухарь; 98 - ось рычага; 99 - рычаг автомата запуска; 100 - жикI; 23 - центробежный грузик; 24 - игла опорная; 25, 28 - опоры; 26 - маятник; 27 - лер з*порного клапана первого контура; 101 - игла; 102 - пробка с фильтром; 103 - мемружина маятника; 29 и 51 - рычаги; 30 - кулачок; 31 - червяк; 32 - упор МАКСИМАЛЬ- брана АЗ; 104 - трубка подвода воздуха из-за компрессора к АЗ; 106 - опора пружины;

АЯ ЧАСТОТА ВРАЩЕНИЯ; 33 - упор рычага управления; 34 - рычаг управления; 35 - 107 - регулировочный винт АЗ; 108 - мембрана; 109 - демпфер; 110 - технологический штуектор газа; 36 - упор МИНИМАЛЬНАЯ ЧАСТОТА ВРАЩЕНИЯ; 37 - регулировочный винт цер; л!1 - фильтр; 112-втулка ограничителя максимального расхода; 113 - винт ограниинимальной частоты вращения; 35 - регулировочный винт максимальной частоты враще- чителя максимального расхода; 114 - пружина клапана максимального расхода; 115 - мембия; 39 - контргайка; 40 - золотник клапана минимального давления; 41 - пружина клапа- ранны! усилитель; 116 - клапан максимального расхода; 117 - втулка клапана; ИВ - а минимального давления; 42 - удор клапана минимального давления; 43 - опора рыча- филы"); 119 - запорный клапан второго контура; 120 - пружина запорного клапана; 121 - а; « - выходное окно маятника; 45 - опора маятника; 46 - колпачок; 47, 95, 127 - регу- штуце для отвода топлива ко второму контуру; 122 - седло клапана; 123 - втулка расировочные винты; 48, 53, 64, 92, 105 - пружины; 49 - клапан; 50 - жиклер; 52 - поршень; пределительного клапана; 124 - золотник распределительного клапана; 125 - опора пружишл"цс^; 5 е - 1;гла; 56 - воздушный фильтр; 57 - жиклер клапана постоянво- ны: /.6 - п р у ж и н а распределительного клапана; 128 - штуцер отвода топлива из пружинэ перепада; 58 - фильтрующий элемент; 5У -^дроссельный пакег; -60 - пи-уцер для замера,"-.-, -ти_^лв11*чаг.достоянного перепада давлений к аварийному золотнику регулятора.явления топлива за жиклером регулятора; 67 - упор максимального расхода топлива чё- част.,1 вращения РО-41Ш; А -штуцер повода- тевлээе-а--НВ-4ИВА:_Б^г-ШЦЩ&Р отвода ез дозирующую иглу; 62 -~ дозирующая игла; 63 - поршень дозирующей иглы; 65 - жик- тог.лн!?а в ПН-40; В - трубка соединения полостей низкого давления НР-40ВА и "рО-ЗШНГ!ер регулятора; 66 - стравливающий жиклер автомата запуска (АЗ); 67 - входной жиклер Г - штуцер подвода топлива в первый контур топливных форсунок; Д - штуцер подвода \.3; 68 -пружина запорного клапана; 69 - запорный клапан первого "контура; 70 - седло топли г.а к агрегатам РО-40М и ИМ-40; Ж - штуцер подвода воздухд из-за X ступени;лапана; 71 - подпорный клапан первого контура; 72 - штуцер отвода топлива к первому коми! гссора; И - штуцер отвода топлива в дренажный бачок вертолета; Л - штуцер подконтуру; 73 - уплотнительное кольцо; 74 - пружина подпорного клапана; 75 - упор СТОП- вода топлива к клапану постоянного давления блока ЭМК, регулятору РО-40М и блоку КРАН ОТКРЫТ; 76 - рычаг стоп-крана; 77 - упор рычага стоп-крана; 78 - упор СТОП- дрона.кных клапанов; М - штуцер подвода топлива во второй контур топливных форсунок;

\РАН ЗАКРЫТ; 79 - штуцер для замера давления топлива перед распределительным кла- Н - г туцер подвода командного давления от КА-40; О - штуцер слива топлива от КА-40;

шном; 80 - стоп-кран; 81 - штуцер для замера давления топлива за дозирующей иглой; Ра -давление воздуха за-компрессором; р -атмосферное давление Насос, высокого.давления состоит из ротора 13, наклонной тай" бы:6; закрепленной",неподвижно, семи плунжеров 10 и плоского золотника 18.

Клапан постоянного перепада (КПП) 89 поддерживает постоянный перепад давлений топлива на дозирующем сечении иглы, а следовательно и;постоянный расход топлива на заданном режиме. Клапан состоит из золотника, перемещающегося во втулке и скрепленного с мембраной 87, пружины 84 и жиклера 57.

Количество топлива,. проходящего при постоянном перепаде давлений через иглу 52/определяется только размерами ее дозирующего сечения. Упором 61 ограничивается ход иглы в.сторону увеличения расхода топлива.

Излишки топлива, подаваемого насосом, перепускаются через щели, образуемые торцем золотника и отверстиями во втулке на слив.

На поршне дозирующей иглы установлен клапан 91, который ставит дозирующую иглу в исходное положение перед последующим запуском.

Центробежный регулятор частоты вращения служит для поддержания заданной частоты вращения ротора турбокомпрессора двигателя в диапазоне от частоты вращения на малом газе до момента"вступления в работу регулятора частоты вращения, свободной турбины РО-40М (п тк = 80...82%). Он также вступает в работу с подъемам на высоту при достижении частоты вращения турбокомпрессора п т к = 101%,^°есл""и"Л не происходит ограничения мощности двигателя по температуре газов перед турбиной двигателя.. .

Центробежный регулятор состоит из грузиков 23, маятника 26, пружины 27, поршня 63 с пружиной 64, дроссельного пакета 59 и жиклера 65.

При отклонении частоты вращения от заданной в сторону увеличения центробежный, регулятор перемещением дозирующей иглы з"менынает подачу топлива, что приводит к уменьшению частоты вращения.

Винт 37 служит для настройки минимальной частоты вращения (малый газ). Винтом 38 ограничивается максимальная физическая (замеренная), частота вращения турбокомпрессора. Время разгона двигателя регулируется подбором дроссельного пакета 59.

Клапан минимального давления НР-40 предназначен для ограничения уменьшения пбдачи топлива в двигатель ниже заданного значения при подъеме на высоту и при резком уменьшении режима работы. Клапан/состоящий из золотника 40, перемещающегося во втулке, нагружен слева пружиной 41 и давлением слива. На торец золотника справа действует давление топлива за дозирующей иглой 62." На всех режимах от малого газа (на земле) до максимального золотник 40 прижат силой давления топлива к упору 42. Если давление топлива за дозирующей иглой начнет падать ниже заданного натяжением пружины 41, то золотник 40, перемещаясь вправо, перекроет канал за жиклером 65, идущий от маятника и ограничителей, и прекратит перемещение дозирующей иглы в сторону уменьшения подачи топлива.

Автомат запуска (АЗ) в процессе запуска двигателя дозирует подачу топлива в камеру сгорания в зависимости от давлений воздуха р2 (за компрессором) и р„ (окружающей среды).

Автомат запуска состоит из клапана 93, сухаря 97 с мебраной 108, пружины 105, мембраны 103.,"рычага 99 и "иглы 101.

Ограничитель приведенной частоты вращения ротора турбокомпрессора уменьшает подачу топлива в двигатель по гидравлическому сигналу командного давления топлива ркоы, поступающего от командного агрегата КА-40 при достижении значения ограничения.

Ограничение введено с целью обеспечения необходимого запаса устойчивой работы компрессора. Срабатывание ограничителя может "произойти в диапазоне птк -101...105% (в зависимости от настройки и характеристики 4 ограничителя) как в полете, так и на земле (на земле при температуре наружного воздуха"- 30° С и ниже).

Ограничитель состоит из клапана 49, поршня 52, двуплечего рычага 51, иглы 55, пружин 48 и 53 и регулировочного винта 47.

При работе двигателя на режимах ниже зоны ограничения клапан 49 под действием пружин 48 и 53 перекрывает слив топлива из полости за жиклером 50. При достижении частоты вращения ограничения по птк и при увеличении рком сила от рком-?(Тн /гтк) преодолеет силы пружин 48 и 53, переместит поршень 52 вниз и через иглу 55, двуплечий рычаг 51 и клапан 49 откроет перепуск части дозированного топлива из полости за жиклером 50 на слив.

Открытие клапана 49 вызовет перемещение дозирующей 1 иглы 62, которое уменьшит подачу топлива в двигатель. Частота вращения ротора турбокомпрессора понизится, и система придет в равновесие при новом положении дозирующей иглы и при уменьшенной частоте вращения ротора турбокомпрессора.

Настройка ограничителя п тк производится с помощью регулировочного винта 47, изменяющего затяжку пружины 48.

Ограничитель максимального расхода топлива ограничивает мощность двигателя на взлетном режиме в определенном диапазоне температур наружного воздуха посредством уменьшения расхода топлива и поддержания его стабильности при изменении противодавления и утечек внутри агрегата.

Ограничитель состоит из втулки 112 с винтом 113, при помощи которых устанавливается определенное сечение на пути топлива после дозирующей иглы, и клапана 116 с мембранным усилителем 115, поддерживающих на выходном сечении постоянный перепад давлений, а следовательно и постоянный расход топлива.

Максимальный расход топлива регулируется винтом 113.

Запорный клапан открывает или закрывает доступ топлива к коллектору форсунок двигателя (первый контур) в зависимости от положения стоп-крана. При остановке двигателя клапан полностью прекращает выход топлива из агрегата. Клапан 69 состоит из поршня, перемещающегося по втулке под действием пружины 68, и резинового седла 70.

Момент открытия клапана при определенной частоте вращения (начало подачи топлива при запуске) регулируется подбором жиклера 100. ^ На выходе из агрегата к коллектору форсунок первого контура установлен тарельчатый подпорный клапан 71, нагруженный пружиной 74.

Распределительный клапан в зависимости от давления в коллекторе первого контура подает топливо в коллектор второго контура по заданному закону. Клапан состоит из золотника 124, перемещающегося во втулке 123.

На выходе из агрегата к коллектору второго контура установлен запорный клапан 119, нагруженный пружиной 120.

Запорные клапаны 69 и 119 закрываются пружинами 68 и 120," обеспечивая герметичность систем на выходе топлива из агрегата.

Регулятор частоты вращения РО-40М (рис. 16) работает совместно с насосом-регулятором НР-40ВА и обеспечивает:

П 20 2$ /4 13 Вид N

Рис. 16, Регулятор частоты вращения РО-40М:

1 - приводная рессора; 2 -уплотнение; 3 - пружина; 4 - датчик частоты вращения; 5 - подшипник; 6, 8, 16, 27 -рычаги; 7 - и г л а; 9 - центробежные грузики; 10, 28 - пружины;

// - термокомпенсатор; 12 - клапан стравливания; 13, 20 - регулировочные винты; 14 -винт фиксации режима (на разрезе винт 14 показан в положении КОНТРОЛЬ, а на виде сзад и - в рабочем положении): " / 5 - заглушка; 17 - золотник; 18 - толкатель; 19, 23 - клапан; 21 - седло клапана; 22 - втулка; 24 - гайка; 25 - паз контрольного режима; 26 - демпфер; 29 - паз рабочего режима; А - канал подвода топлива от насоса-регулятора НРВА; Б.- канал подвода топлива из пружинной полости КПП насоса-регулятора НР-40ВА;

В - к а к а л подвода топлива от насоса-регулятора НР-40ВА; Г - канал слива топлива; Д -* канал слива топлива от СО-40; Е - канал дренажа; м, т, "к - отверстия

- " 23поддержание частоты вращения несущего винта в заданных пределах;." " , останов двигателя в случае увеличения частоты вращения -свободной-турбины сверх допустимой..

Регулятор РО-40М состоит из датчика частоты вращения 4с грузиками 9 и приводной рессорой 1; клапана 19, закрепленного в рычаге 8 и нагруженного пружиной 10; аварийного золотника 17, нагруженного справа пружиной и перемещающегося во втулке 22;

клапана 23 с толкателем, нагруженного справа пружиной; рычагов 16, фиксирующих золотник 17 после аварийного- останова двигателя; демпфера 26"для стабилизации утечек по золотнику 17 во время регулировки регулятора при его изготовлении; термокомпенсатора 11, компенсирующего температурное расширение корпусов регулятора при нагреве топлива; винта фиксации режима 14, служащего для проверки срабатывания системы защиты турбины винта (СЗТВ) в контрольном режиме; клапана 12 для етразливания воздуха из регулятора и консервации регулятора на двигателе.

Клапан 19 регулятора РО-40М соединен каналом В с полостью между жиклером 65 и дроссельным пакетом 59 (см. рис. 15, штуцер Д) насоса-регулятора НР-40ВА.

По каналу А (см. рис. 16) подводится топливо высокого давления с выхода качающего узла насоса-регулятора ЫР-40ВА (см. рис. 15, штуцер Л).

По каналу Б (см. рис. 16) подводится топливо из пружинной полости клапана постоянного перепада насоса-регулятора НРВА- (см. рис. 15, поз. 128).

Частота вращения турбины винта задается регулировочным винтом 13 (см. рис. 16), осуществляющим через термокомпенсатор // изменение натяжения пружины 10..

Момент срабатывания аварийного золотника 17 задается регулировочным винтом 20.

Датчик частоты вращения 4 приводится во вращение от турбины винта через рессору /.

По мере увеличения частоты вращения центробежная сила от грузиков растет. Эта сила, приложенная к оси иглы 7, до достижения заданной частоты вращения не может преодолеть"силу пружины 10. Клапан 19 запирает выход топливу из канала В на слив.

При увеличении частоты вращения выше заданной центробежная сила от грузиков 9 преодолевает силу пружины 10, рычаг 5 поворачивается и перемещает клапан 19, между клапаном и седлом клапана 21 образуется щель, через которую топливо сливается из пружинной полости поршня дозирующей иглы агрегата НР-40ВА (штуцер Д). Дозирующая игла насоса-регулятора НРВА перемещается в сторону уменьшения подачи топлива и снижения частоты вращения турбины винта до заданной затяжкой пружины 10.

В случае дальнейшего увеличения частоты вращения турбины винта (если произошло нарушение кинематической связи редуктора с турбиной) вступает в работу золотник аварийного останова двигателя. Рычаг 8, поворачиваясь под воздействием: центррбежщых сил грузиков, перемещает рычаг 6, который через толкатель прижимает.клапан 23 к седлу аварийного золотника 17. Клапан закрывает слив топлива высокого давления, поступающего по.каналу А через демфер 26 и сливающегося через торцевые проточки в центральное отверстие аварийного золотника 17. Под действием топлива высокого давления аварийный золотник "17 начинает перемещаться вправо, открывая отверстие м во втулке 22. Дежурившее топливо высокого давления по каналу А через отверстие м во втулке 22 поступает под клапан 23 и аварийный золотник 17 вместе с клапаном резко перемещается вправо до захвата золотника рычагами 16... При этом через отверстия т в аварийном золотнике 17 и к во втулке 22 открывается слив топлива из пружинной полости КПП насоса-регулятора НР-40ВА, которое по каналу Б подводится к регулятору частоты вращения РО-40М. В результате клапан постоянного перепада давлений насоса-регулятора НР-40ВА перемещается в положение максимального слива топлива из магистрали перед дозирующей иглой, расход топлива падает и двигатель выключается..

При работе двух двигателей на вертолете их свободные турбины имеют одинаковые скорости вращения. Практически невозмржно настроить оба агрегата РО-40М на одинаковую частоту вращения, вследствие чего, если РО-40М одного двигателя будет настроен на большую частоту вращения; чем РО-40М второго, то топливная автоматика будет подавать в первый двигатель больше топлива, а во второй - меньше. Первый двигатель будет развивать большую мощность, чем второй, частота вращения компрессора первого двигателя будет выше, чем частота вращения второго.

С целью поддержания одинаковой мощности двигателей даже при неодинаковой настройке топливных систем на двигателях (на среднем корпусе компрессора) устанавливаются синхронизаторы мощности.

Синхронизатор мощности СО-40 (рис. 17) входит в систему автоматического под- Рис. 17.

Синхронизатор мощности держания частоты вращения СО-40:

свободной турбины двигате- 1 - пружина; 2 - золотник; 3 - регуля и предназначен для уст- лировочный винт; р, р - давление воздуха за компрессорами левого и ранения разнорежимности правого двигателя; а, б - мембранные" работы двигателей. камеры; А-штуцер слива топлива;

Б - штуцер подвода топлива к агрегаСинхронизатор СО-40 со- ту РО-40; Б - штуцер подвода топлива под высоким давлением от агрегата стоит из золотникового ме- НР-40 ханизма,.управляемого мембранным чувствительным элементом.

Принцип действия синхронизатора основан на поддержании одинаковых давлений за компрессорами двух двигателей и на устранении разницы между этими давлениями посредством подачи команды на увеличение режима работы двигателю, у которого давление-воздуха за компрессором меньше.

Золотниковый механизм каждого агрегата СО-40 включается последовательно в топливную магистраль, соединяющую агрегат НР-40 с агрегатом РО-40. К камерам мембранных чувствительных элементов агрегатов СО-40 подводится воздух под давлени-" ем из-за компрессоров двигателей.

Подключение агрегатов СО-40 на спаренных двигателях вертолета показано на рис. 18.

Рис. 18. Схема установки агрегатов СО-40 на спаренных двигателях вертолета:

р\ - давление за компрессором левого двигателя; р2 - давление за компрессором правого: двигателя; Л - штуцер слива топлива; а - канал слива топлива Положение золотника 2 (см. рис. 17) задано пружиной 1 таким образом, что при равенстве давлений в мембранных камерах или.при большем давлении в камере а золотник не дросселирует выходное отверстие и не влияет на работу агрегата РО-40, управляющего положением дозирующей иглы агрегата НР-40.

В случае, если агрегат РО-40 левого двигателя настроен на частоту вращения свободной турбины, несколько большую, чем агрегат РО-40 правого двигателя, золотник правого агрегата СО-40 вследствие большего давления в камере б по сравнению с давлением в камере а начнет перемещаться вниз (по схеме) и дросселировать выходное отверстие к агрегату РО-40 правого двигателя. Это вызовет перемещение дозирующей иглы агрегата НР-40 в сторону увеличения подачи топлива до момента установления равенства давлений в мембранных камерах агрегатов СО-40 в пределах, заданных конструкцией топливной системы. В результате режимы работы обоих двигателей будут выровнены. Регулировочным элементом СО-40 является винт 3.

Блок электромагнитных клапанов 16 с клапаном постоянного давления 17 (см. рис. 14) установлен у левого горизонтального разъема корпуса компрессора.

Топливо под высоким давлением, поступающее в клапан, дросселируется золотником и подается в пусковую форсунку при включении электромагнитного клапана № 1. Электромагнитный клапан № 2 служит для продувки пусковой системы после отключения клапана № 1.

Исполнительный механизм ИМ-40 является составной частью системы ограничения температуры газов перед турбиной компрессора двигателя, и его описание помещено в подразделе «Система ограничения температуры газов»

–  –  –

Командный Агрегат КА-40 (рис. 21) устанавливается на коробке приводов двигателя.

Агрегат КА-40 обеспечивает:

подачу топлива с командным давлением к гидромеханизмам поворота лопаток ВНА и НА первых трех ступеней компрессора, а также к ограничителю приведенной частоты вращения турбокомпрессора агрегата НР-40ВА по заданной программе в зависимости от частоты вращения ротора компрессора и температуры воздуха на входе в двигатель;

подачу электромагнитных сигналов на отключение пусковой системы, отключение ^стартера, снятие блокировки системы, сигнализации о наличии обледенения (РИО-3) на заданной частоте вращения ротора компрессора двигателя;

подачу топлива под рабочим давлением к клапанам перепуска воздуха из компрессора на заданной частоте вращения ротора компрессора двигателя;.

подачу.топлива с сигнальным давлением по физической частоте вращения турбокомпрессора на механизм ограничителя температуры газов.

В командный агрегат КА-40 входят следующие элементы:

фильтр 29 с шариковым предохранительным клапаном 28;

центробежный датчик частоты вращения с грузиками 4, приводной рессорой 1 и вращающимся золотником 7;

датчик полной температуры воздуха на входе в двигатель {биметаллическая пластина 16 и толкатель 18):

датчик командного давления для гидропривода лопаток компрессора (жиклеры 36, 37 и 38, сильфон 33 с пружиной 34, ползун 22 с золотником 19 и пружиной 32);

двухпозиционный датчик для гидропривода клапанов перепуска воздуха (золотник 24 с пружиной 25);

блок контактов (мембраны 42 и 46 с пружиной 45, шток 43, микропереключатели 41 я 47 с колодкой штепсельного разъема 44);

клапан стравливания воздуха 23.

В агрегат КА-40 топливо подается под постоянным давлением от плунжерного насоса ПН-40Р.

После фильтра агрегата КА-40 топливо поступает к центробежному датчику частоты вращения, затем под давлением, пропорциональным квадрату частоты вращения привода, подходит к мембране 42 блока электроконтактов, под золотник 24 двухпозиционного датчика, а также через систему трех жиклеров 38, 37, 36 в сильфон 33.

Через фильтр 29 топливо под постоянным давлением подается также к жиклеру 31, пройдя который попадает в полость, окружающую сильфон 33, частично стравливаясь по отверстиям в золотнике 19 в сливную полость.

Давление топлива снаружи сильфона 33 (командное давление) зависит от давления внутри него и положения конца биметаллической пластины 16.

Командное давление через штуцер подается к гидромеханизмам поворотных лопаток компрессора и ограничителю приведенной частоты вращения турбокомпрессора агрегата НР-40.

В зависимости от физической частоты вращения привода агрегата двухпозиционный датчик через штуцер Е подает к.клапанам перепуска воздуха топливо под рабочим давлением" (перепуск. | открыт) или соединяет клапаны перепуска со сливом (перепуск закрыт).

Гидромеханизмы служат для поворота лопаток входного направляющего аппарата и направляющих аппаратов первых трех ступеней компрессора. Угол поворота лопаток зависит от подаваемого командного давления.-На двигателе (на корпусе компрессора) установлено два гидромеханизма, по одному справа и слева-(см. рис. 19). Для контроля за углом поворота лопаток на гидромеханизме имеются стрелки 8 и шкала 7. Стрелка укреплена ка оси рычага направляющего аппарата третьей ступени компрессора.

Клапан противообледенения (рис. 22) установлен на среднем корпусе компрессора. По электрическому сигналу системы противообледенения соленоид электромагнитного клапана перемещает золотник 2 влево, открывая доступ топливу под давлением, г*

–  –  –

Рис. 24. Принципиальная схема системы электропитания и запуска двигателя:

/ - стартер-генератор ГС-18; 2 - фильтр ФГС-2; 3 - к ДМР-600Т двигателя II; 4 - к реле блоки- лампа работы генератора (СЛИ-51, СМ-30); 26 - предохранитель АЗС-5 в цепи включения ДМР;

ровки двигателя II; 5 - к ШР1 двигателя II; 6 - к агрегату зажигания двигателя II; 7 - комплекс- 27- промежуточное реле ТВЕ101В; 28 - резистор (0,8-0,1 Ом); 29 - кнопка включения блокировный аппарат ДМР-600Т; 8 - регулятор напряжения РН-180 II серии; 9 - выносное регулировочное ки тормоза винта; 30 - предохранитель системы зажигания 37,5 А; 31 - предохранитель АЗС-20 авсопротивление ВС-25Бг 10-автомат.защиты генератора постоянного тока от перенапряжения томатики; 32 - кнопка запуска двигателя; 33 - кнопка прекращения запуска двигателя; 34 - пеАЗП-8М IV серии; П - бортовой аккумулятор 12САМ-28; 12 - розетка ШРА-500 подключения реключатель ППН-45 ЗАПУСК - ХОЛОДНАЯ ПРОКРУТКА; 35 - переключатель ППН-45 запуаэродромного источника; 13 - контактор ТКС601ДТ подключения аэродромного питания; 14 - кон- скаемого двигателя: 36 - сигнальная лампа работы ПСГ-15 (СМ-30, СЛИ-51); 37- контактор тактор ТКС601ДТ бортового аккумулятора; 15 - реле ТД210 контроля полярности подключаемого ТКД5ПА переключения шунта стартер-генератора; 38 - контактор ТКС601А включения якоря стартеристочника; 16-промежуточное реле ТКЕ56ПД; 17 - промежуточное реле ТКЕ53ПД; 18 - переклю- гене"ратора; 39- пусковая панель ПСГ-15; О - блокировка кнопки запуска; А - переключение пичающие контакторы ТКС611А; 19 - промежуточное реле ТКЕ52ПК; 20 - выключатель питания тания стартер-генератора ГС-18ТО с 4...5 В на 24 В; Б - переключение питания стартер-генератора 2В-45; 21 - выключатель генератора В-45; 22 - реле ТКЕ52ПД блокировки включения ДМР при ГС-18ТО с 24 В на 48 В^ В - включение регулятора тока РУТ-600; Г - отключение системы заподключении аэродромного источника питания; 23 - реле ТКЕ52ПД блокировки включения ДМР жигания и пускового топлива; Д - холодная прокрутка; Е - отключение стартер-генератора ГС-13;

при запуске двигателя; 24 - реле ТК.Е52ПД параллельного включения генератора; 25 - сигнальная Ж - переключение питания стартер-генератора, ГС-18 с 48 В на 24 В Т/г Т/2

–  –  –

Рис. 25. Принципиальная схема управления агрегатами:

1 - агрегат зажигания; 2 - свеча зажигания; 3 - блок электромагнитных клапанов; 4 - нитов; 24 - разъем Ш1; 25 -разъем ШЗ; 26 - штепсельный разъем ШР1; 27 - штепсельдатчик температуры масла; 5 - датчик давления масла; 6 - датчик давления топлива; ный разъем ШР2; 28 - электромагнит исполнительного механизма ограничителя температууказатель температуры и давления; 8 - датчик тахометра; 9 - измеритель тахометра; ры; 29 - реле включения пускового соленоида; 30 - компенсационный провод хромелевый;

10 - термопара; // -колодка соединительная; 12 - термометр для измерения температуры 31 - компенсационный провод алюмелевый; 32 - кнопка выключения электромагнита провыходящих газов; 13 - центробежный выключатель; 14 - датчик обледенения; 15 - разъем тивообледенительной системы; 33 - сигнальная лампа проверки исправности обогрева датШ2; 16 - электромагнит; 17 - электронный блок; /8 - сигнальная лампа ОБОГРЕВ ВКЛЮ- чика; 34 - выключатель ручного включения обогрева датчика; 35 - переключатель контроЧЕН; 19 - реле блокировки; 20 - выключатель питания РИО-3; 21 - реле блокировки пи- ля цепи обогрева РИО-3; 36 - соединительный кабель датчика; 37 - сигнальная лампа ОБтания; 22 - переключатель зажигания; 23 - выключатель ручного включения электромаг- ЛЕДЕНЕНИЕ; 38 - импульсатор питания; 39 - реле; 40 - подгоночное сопротивление; 41 - выключатель; 42 - бортсеть Комплексный аппарат ДМР-600Т предназначен для автоматического включения (выключения) стартер-генератора в бортовую сеть, когда напряжение сети меньше (больше)/вырабатываемого им напряжения.

Регулятор напряжения РН-180 II серии предназначен для поддержания постоянного напряжения стартер-генератора в генераторном режиме при изменении его частоты вращения и нагрузки.

Автомат защиты АЗП-8М IV серии применяется для защиты от перенапряжения параллельно работающих стартер-генераторов постоянного тока с аккумуляторными батареями. Автомат работает только при работе стартер-генератора в генераторном режиме.

Система зажигания обеспечивает воспламенение топливо-воздушной смеси в камере сгорания при запуске двигателя на земле и в условиях полета.

Система зажигания включает в себя агрегат зажигания (СЗЩА-22-2А), две полупроводниковые свечи зажигания 2 (СПУА), блок электромагнитных клапанов 3 и переключатель зажигания 22 (рие. 25).

Агрегат зажигания СКНА-22-2А устанавливается на вертолете и представляет собой низковольтную конденсаторную систему зажигания, которая является источником электрической энергии, необходимой для образования электрического разряда между электродами запальной свечи.

В основу работы агрегата положен принцип накопления электрического заряда на накопительном конденсаторе для пробоя газонаполненного разрядника и мгновенного разряда накопленной энергии по полупроводниковому слою запальной свечи. ;

Запальная свеча СП-18УА предназначена для воспламенения топливовоздушной смеси емкостным разрядом высокой мощности, протекающим по полупроводниковому слою между ее электродами. Она представляет собой полупроводниковую свечу-угольник с керамической изоляцией и фланцевым креплением. Свечи устанавливаются в пусковых воспламенителях и соединяются с агрегатом зажигания высоковольтными проводами, заделанными в экранирующие шланги.

Импульсатор И-2, предназначенный для импульсного питания электромагнитного клапана пускового топлива, входит в вертолетную систему запуска. " Импульсная подача топлива при запуске двигателя увеличивает высотность запуска в полете и обеспечивает надежный запуск горячего двигателя.

Пусковая топливная система предназначена для подачи топлива в камеру сгорания при запуске двигателя. Она включает в себя блок электромагнитных клапанов и две пусковые форсунки, установленные в пусковых воспламенителях.

Блок электромагнитных клапанов (см. рис. 14, поз. 16) предназначен для открытия и закрытия канала подвода топлива к 3 Зак. 292 33 пусковым форсункам и включения продувки пусковых топливных магистралей после прекращения подачи пускового топлива. Работает он по сигналам пусковой панели ПСГ-15.

Автоматический запуск двигателя (см. рис. 24). Запуск двигателя, может быть осуществлен от аэродромного источника питания или от аккумуляторных батарей вертолета.

Запуск происходит следующим образом:

при нажатии на кнопку ЗАПУСК электропитание подается на стартер-генератор ГС-18, агрегат зажигания СКНА-22-2А и электромагнитный клапан пускового топлива. Причем на ГС-18 подается ток с пониженным напряжением (2...3 В). Начинается медленная раскрутка ротора двигателя (выборка люфтов в передачах);

через 3 с на стартер-генератор подается питание 24 В и начинается энергичная раскрутка ротора двигателя;

при достижении за качающим узлом давления топлива 3,5...4 кгс/см2 открывается клапан постоянного давления блока электромагнитных клапанов. Топливо поступает в форсунки пусковых воспламенителей (непрерывно или импульсами) и происходит поджиг пускового тодлива. При этом показания температуры газов на указателе ИТГ-1 еще нет;

при частоте вращения турбокомпрессора птк-17...24% открывается запорный клапан агрегата НР-40ВА. В камеру сгорания поступает основное топливо и происходит его поджиг. Начинает повышаться температура газов (по указателю ИТГ-1). Частота вращения турбокомпрессора начинает интенсивно расти;

на девятой секунде происходит переключение источников питания с напряжения 24 В на напряжение 48 В. На клеммах стартер-генератора резко возрастает напряжение и еще более увеличивается частота вращения турбокомпрессора двигателя;

при частоте вращения турбокомпрессора я тк =(34±3) % (но не ранее чем через 12 с) одновременно отключается подача пускового топлива и включается продувка пусковых форсунок и магистралей пусковой топливной системы. Если это не происходит при указанной частоте вращения турбокомпрессора, то происходит на 30-й секунде. Зажигание также отключается на 30 с;

при частоте вращения турбокомпрессора /г тк =(53±3)% по гидравлическому сигналу от командного агрегата 1СА-40 закрываются клапаны перепуска воздуха из компрессора;

при частоте вращения турбокомпрессора п тк =(60±3)|% блок контактов командного агрегата КА-40 выдает сигнал на отключение стартер-генератора и пусковой панели ПСГ-15.

При этом обмотка возбуждения стартер-генератора подключается к регулятору напряжения РН-180 и ГС-18 и переходит на генераторный режим работы. Если стартер-генератор и пусковая панель не отключились при указанной частоте вращения птк, то они отключатся по времени на 40-й секунде программным механизмом ПСГ-15;

дальнейшее увеличение частоты вращения до д тк = 64+^ °/о происходит за счет теплового перепада на турбине.

Система ограничения температуры газов Система ограничения температуры газов обеспечивает автоматическое ограничение температуры газов перед турбиной компрессора посредством уменьшения подачи топлива к рабочим форсункам двигателя.

В систему ограничения температуры входит комплект сдвоенных термопар Т-80Т, усилитель регулятора температуры УРТ-27 и исполнительный механизм ИМ-40 с электромагнитом МКТ-4-2.

Агрегат УРТ-27 устанавливается на вертолете и является измерительным и усилительным устройством, выполняемым с применением магнитных и полупроводниковых приборов. Датчиком температуры для агрегата являются сдвоенные термопары Т-80Т.

Основными элементами агрегата ИМ-40 (рис. 26) являются электромагнитный клапан 1, жиклер 2, клапан, блокировки 5, постоянный жиклер с фильтром 3 и сменный жиклер 4.

Рис. 26. Исполнительный механи"зм ограничителя максимальной температуры газов ИМ-40:

/ - электромагнитный клапан; 2 - жиклер; 3 - постоянный жиклер с фильтром; 4 - сменный жиклер;

5,- клапан блокировки; 6 - пружина; 7 - регулировочный винт; А - штуцер подвода топлива сигнального давления от агрегата КА-40;

Б - штуцер подвода топлива -высокого давления от агрегата НР-40;

В - штуцер слива топлива Ограничиваемая температура газов определяется настройкой усилителя регулятора температуры УРТ-27.

При достижении определенной температуры газов УРТ-27 начинает подавать электрические - импульсы на электромагнитный клапан. МКТ-4-2 исполнительного механизма, который открывает жиклер 2, перепуская топливо из полости сервомеханизма на слив. Это приводит к падению давления в полости сервомеханизма и перемещению дозирующей иглы агрегата НР-40ВА в сторону уменьшения подачи топлива. С уменьшением подачи топлива снижается режим работы двигателя и температура газов перед турбиной..

Противообледенительная система Противообледенительная система двигателя обеспечивает защиту от обледенения входной части двигателя посредством обогрева подверженных обледенению мест входной части двигателя горячим воздухом,.отбираемым из полости между кожухом и жаровой трубой камеры сгорания.

Воздухозаборник вертолета и заборник подвода воздуха к, агрегату КА-40 обогревается воздухом, отбираемым из-за восьмой ступени компрессора.

Противообледенительная система двигателя включает в себя трубу отбора горячего воздуха с фланцем отбора воздуха на пылезащитное устройство (ПЗУ), клапан пр"отивообледенения с электромагнитом ЭМТ-244 и две трубы подвода горячего воздуха

От клапана к корпусу Г опоры.

Сигнализация обледенения, а также агрегаты автоматического и ручного, включения подачи горячего воздуха в систему установлены на вертолете (электронный блок -РИО-3, выключатели и сигнальные лампы). Датчик сигнализатора обледенения устанавливается в воздухозаборнике правого двигателя, или на входе вентилятора обдува радиаторов.

Противопожарная система Противопожарная система двигателя обеспечивает подачу огнегасяще.й жидкости от противопожарной системы вертолета в случае возникновения пожара на двигателе или в двигательном отсеке вертолета. Для тушения пожара применяется огнегасящая смесь.

Противопожарная система включается автоматически при получении сигнала от датчиков-сигнализаторов, установленных в двигательном отсеке, или принудительно.

Противопожарная система двигателя, состоит из подводящих труб, двух коллекторов с распыливающими отверстиями (форсунками) и приемным штуцером.

Система защиты турбины винта Для повышения надежности эксплуатации и предотвращения раскрутки ротора свободной турбины (турбины винта) двигателя ТВ2-117А в случае нарушения кинематики передачи мощности от турбины винта к несущему винту двигатели оборудованы системой защиты турбины винта (СЗТВ).

Система защиты турбины винта с регулятором частоты вращения РО-4"ОМ обеспечивает выключение двигателя при частоте вращения несущего винта (126±3)%.посредством прекращения подачи топлива в рабочие форсунки. Повторный запуск двигателя в воздухе невозможен.

Система защиты турбины винта включает в себя:

насос-регулятор НР-40ВА;

регулятор частоты вращения РО-40М;

топливные магистрали с трубопроводами подвода топлива из пружинной полости КПП и из-за качающего узла насоса-регуляаВарИЙНОМ ЗОЛО ™ ИК У Регулятора частоты враУ

1.2. РЕДУКТОР Особенности конструкции Главный редуктор ВР-8А Спиг 97 ^я оо оп\ навертолете длУ, р"аботЛовЕ™7" с"^"двГгатеГмГ ТВ?

П7А и служи для понижения частоты вращения ротора свобод

–  –  –

Редуктор устанавливается в верхней части фюзеляжа вертолета. Для крепления к лапам подредукторной рамы на жестком поясе корпуса редуктора имеются пять наружных фланцев, а в передней части редуктора - два фланца крепления сферических опор двигателей.

–  –  –

Механическая передача от двигателей к валу несущего винта в редукторе ВР-8А осуществляется через три ступени редукции.

Вращение от двух двигателей через муфты свободного хода (обгонные муфты) и зубчатые колеса / и 4 передается на цилиндрическое зубчатое колесо 2 с косыми зубьями. Эти три зубчатых колеса образуют первую-ступень редукции с передаточным отношением 0,347 (табл. 2).

Вторая ступень редукции состоит из двух конических зубчатых колес 3 и 5 со спиральными зубьями. Передаточное отношение этой ступени 0,4697.

Третья ступень редукции (дифференциально-замкнутая) состоит из зубчатых колес 13, 12 и 11, составляющих дифференциал (все три звена вращающиеся), и зубчатых колес 9, 8 и 10, составляющих замыкающую цепь дифференциала.

Рис. 31. Кинематическая схема редуктора:

а - гривод генератора (1=0,6679), б - привод датчика частоты воащения (/ = 0,1984); в - привод насоса НШ-39М (#=0,2026); д - привод двигателя; е - муфта свободного хода (обгонная муфта); ж - привод вентилятора (2=0,5018); з - привод несущего винта вертолета =0,016). и - привод хвостового винта вертолета (г 0,2158); к - привод компрессооа АК-50Т1 (АК.-50Т) (/ = 0,1671), л - привод масляного агрегата (I = 0,2463); 1-37 - номера зубчатых колес

–  –  –

Суммарное передаточное отношение трех ступеней составляет 0,016. Частота вращения входных валов редуктора, равная 12000 мин"1, понижается до 192 мин"1 на валу несущего винта.

Передача на хвостовой винт осуществляется через первую и вторую, ступени редукции (общими с передачей на несущий винт) и через дополнительную повышающую ступень из двух конических зубчатых колес 7 и 6 со спиральными зубьями.

Приводы редуктора к агрегатам выведены на корпус следующим образом:

спереди - к вентилятору;" сзади - к генератору;

слева - к датчикам счетчиков частоты вращения и гидронасосу;

справа - к гидронасосам и воздушному компрессору.

В маслящую систему редуктора входят: масляный.агрегат, масляный фильтр, ФОС-1 ч и магнитные оробки (для новых ре-;, дукторов выпуска до 1 октября 1990 г.) или пройки-сигаализаторы стружки ПС-"1 (для редукторов выпуска или ремонта предприятия-изготовителя с 1 октября 1990 г„ а также отремонтированных на АРП с выполнением бюллетеня.

№ С79-"867-Б|Р-Т), манометр и термом-етр. с,1л_пг-,с В поддон редуктора вставлены три магнитные пробки с магнитными сердечниками (пробки-сигнализаторы стружки ПС-1), улавливающие стальные частицы, которые могут попасть в масло, вследствие износа зубчатых колес или по каким-либо другим причинам. Между поддоном и корпусом редуктора расположен предохранительный фильтр в виде сетки Привод к вентилятору осуществляется от вала цилиндрического зубчатого колеса 2 через зубчатые "колеса 17, 16, 15 и 14.

Привод к генератору осуществляется от центрального зубчатого колеса 30 через цилиндрические зубчатые колеса 29 и 28 и конические зубчатые колеса 27 и 26.

Приводы на левую сторону редуктора осуществляются от валика привода к масляному агрегату через конические зубчатые колеса 22, 21 и набор цилиндрических зубчатых колес 20, 23, 24, 2.5, 18, 19.

Приводы на правую сторону редуктора осуществляются от зубчатых колес 30 и 31 через конические зубчатые колеса 32, 33 и набор цилиндрических зубчатых колес 35, 34, 36, 37.

Масляная система редуктора Главный редуктор ВР-8А имеет автономную, не зависимую от двигателЯдМасляную систему, работающую на синтетическом маеледБ-ЗВтаПШгючающую в себя масляный агрегат из трех секций насоса (одна нагнетающая и две откачивающие).

Система смазки редуктора предназначена для смазывания подшипников и зубьев зубчатых колес, а также для отвода тепла от трущихся элементов передач.

Д ыаиллияи и1иимГТ5дуктора входяТГ-МаОШТы^~агрЯгат, м^г^^мй._фдд*г"р^-т|ттт^^ гтруж.ки щ|.|.-|--ИГгГНОСхема масляной системы изображена на рис. 32.

Емкостью для масла служит поддон редуктора. Масло в поддон редуктора заливается через заливную, горловину с фильтром.

Для контроля за уровнем масла на горловине установлено масломерное стекло с рисками: "На корпусе заливной горловины против этих рисок имеются надписи ДОЛЕЙ. И ПОЛНО.

В поддоне имеется специальный отсек охлажденного масла, поступающего из радиатора, которое забирается нагнетающей секцией масляного агрегата.

В поддон редуктора вставлены три магнитнма_дре&ю с магнитныТин^ердечниками, улавливающим^^стальные частицы, которые мог-уТТгоггае^рЬи^вмасло вследствие изйтэба-^бчатых колес или по каким-либо Д1^та^г-н^ааддам. Между поддонйм ^г корпупредохранительный фильтров виде

Соткп^Масло из нагнетающей секции насоса под давлеьлем, поддерживаемым редукционным клапаном, проходит через масляный.

фильтр и,поступает по каналам в корпус редуктора, в корпусы передач и по специальному маслопроводу (расположенному в вале несущего винта) к жиклерам и форсункам, подающим масло на зубчатые колеса и подшипники редуктора.

Смазывание нижнего зубчатого колеса привода вентилятора и зубчатых колес привода счетчиков частоты вращения - барботажное.

н се со И К

Л а о о "п.

–  –  –

Смазывание подшипников муфт свободного хода производится за счет насосного действия роликов муфт.

Масло от подшипников и зубчатых колес сливается в поддон редуктора самотеком.

В магистраль отвода масла из редуктора в маслорадиатор установлен фильтр-еигналиатор стружки ФСС-1 сетчато-щелевого типа с электрической сигнализацией (см. рис. 45).

На редукторах, имеющих пробки-сигнализаторы стружки ПС-1, фильтр-сигнализатор стружки ФСС-1 отсутствует.

Примечание. На редукторах, оборудованных ПС-1, загорание сигяпьнлй пямпочки «Стпужка гл. ГЮЛУКТ.» ппоисходит пои замыкании Суфлирование полости редуктора осуществляется через суфлер //, установленный на корпусе вала несущего винта.

Для контроля работы масляной системы на редукторе установлены датчики температуры и давления масла..

–  –  –

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

ДВИГАТЕЛЯ И РЕДУКТОРА

2.!. ОСНОВНЫЕ Т Е Х Н И Ч Е С К И Е ДАННЫЕ ДВИГАТЕЛЯ ТВ2-ША

–  –  –

1.1. На стр. 49 перед примечаниями подраздела «Приборы контроля работы двигателя» текстом следующего содержания:

«Комплект аппаратуры контроля вибрации..................ИВ-500А - условное обозначение датчика

датчики частоты вращения Д-2, что и для измерителей ИТЭ-2. Краткие сведения пе аппаратуре КТА-5 приведены в конце данного раздела.

Датчик температуры масла на выходе из двигателя............ П-2 Датчик давления масла на входе в двигатель ИД-8 Датчик давления топлива перед рабочими форсунками........... ИД-100 Трехстрелочный измеритель от датчиков П-2, ИД-8-^ИД-ЮО.,....... УИЗ-3 Комплект измерителя (датчики П-2, ИД-8,.11в-500Ь е&г.

ИД-100 и измеритель УИЗ-3)..... ЭМИ-ЗРИЯ^.^,.

П р и м е ч а н и я: 1. Система СПЗ-15, агрегат зажигания СКНА-22-2А, усилитель регулятора температуры УРТ-27, измеритель Т1ТГ-1 Т, измеритель ИТЭ-2, аппаратура КТА-5, датчик температуры масла П-2 и комплект измерителя ЭМИ-ЗРЙ устанавливаются на вертолете и с двигателем не поставляются. Также не поставляются с двигателем датчики Д-2, ИД-8 и ИД-100, устанавливаемые на двигатель.

2. Передаточные числа приводов всех агрегатов (кроме агрегата РО-40М) даны относительно частоты вращения ротора турбокомпрессора.

3. Направление вращения валиков агрегатов указано, если смотреть на агрегат со стороны хвостовика валика.

Режимы работы и значения параметров двигателя (табл..З) при /н =15° С и р0 = 760 мя.рт. ст. (Н = 0, У=0) Таблица 3

–  –  –

Удельный расход топли- 275 295 100 кг/ч ва, г/ л. с. ч "не более) *Для ремонтных двигателей температура газов перед турбиной компрессора не более 850°С П р и м е ч а н и я: 1. Частота вращения ротора турбокомпрессора дана в процентах по указателю ИТК-5 (й т к =100% по шкале указателя соответствует 21 200 мин -1; /г т к =1% соответствует 212 мин-1-).

Зак. 292 49 теля ТВ2-117А», примечания подраздела «Режимы работы и значения параметров двигателя» на стр.

50 дополнить пунктом 7 следующего содержания:

«При о"фицательных температурах наружного воздуха во время прогрева двигателя допускается кратковременное (не более 3 минут) повышение давления масла на режиме малого газа не выше 5,5 кгс/см"».

2. Частота вращения несущего винта («в), дана з процентах по указателю ИТЭ-Г (пв 1 =95,3% пъ шкале указателя соответствует частоте вращения 12000 мин- ротора свободной турбины или 192 мин-1 несущего винта; пе =1% соответствует частоте вращения 126 мин- 1 ротора свободной турбины).

3. На взлетном режиме частота вращения ротора турбокомпрессора в зависимости от температуры наружного воздуха изменяется согласно графику, приведенному на рис. 36.

4. Изменение частоты вращения ротора турбокомпрессора на номинальном и крейсерском режимах в зависимости от температуры наружного воздуха следует поддерживать согласно графику, приведенному на рис. 36.

5. Рабочий диапазон частоты вращения несущего винта в полете 92... 9 7 %.

6. При работе двигателя с ПЗУ без отбора воздуха на эжектор мощность двигателя на всех режимах уменьшается на 2%, температура" газов увеличивается примерно на 10° С; при работе с ПЗУ с отбором воздуха на"эжектор (при включении ПЗУ) мощность двигателя на всех режимах уменьшается примерно на 3,5%, температура газов увеличивается примерно на 15° С. При этом температура газов и частота вращения турбокомпрессора по режимам не должны превышать максимально допустимых значений.

Максимально допустимые замеренные параметры на всех высотах и скоростях (табл. 4)

–  –  –

П р и м е ч а н и е. Максимально допустимая замеренная температура газов перед турбиной компрессора на взлетном режиме при работе двигателя на земле не выше 875 °С.

При работе двигателя в полете на режимах выше малого газа допускается понижение частоты вращения несущего винта до 89% и повышение частоты вращения несущего винта до 103% на время не более 30 с.

1.2. На стр. 51 в конце подраздела «Максимально допустимые замеренные параметры на всех высотах и скоростях»

текстом следующего содержания:

«Уровень вибрации двигателя:

а) повышенный

(контролируется по загоранию желтого табло и стрелочному указателю УК-68В комплекта аппаратуры ИВ-500А);

б) опасный

(контролируется по загоранию красного табло и стрелочному указателю УК-68В комплекта аппаратуры ИВ-500А)»-.

На режиме малого газа допускается повышение частоты вращения несущего винта до 105% на время не более 5 с. При забросе частоты вращения несущего винта выше 105% эксплуатацию силовой установки (двигателей и редуктора) не производить (см.

Допускается максимальный заброс температуры газов при проверке приемистости на 20° С выше температуры газов, полученной на взлетном режиме данного двигателя, по не выше максимально допустимой (875° С).

Краткие сведения об аппаратуре КТА-5 Комбинированная тахометрическая аппаратура КТА-5 предназначена для непрерывного дистанционного измерения физической частоты вращения роторов турбокомпрессоров двух двигателей в процентах от максимальной и контроля режимов работы двигателей в условиях полета и на земле.

В эксплуатационный комплект КТА-5 входят измеритель ИТК-5 (2 шт.), усилитель УТК-5 (1 шт.), датчик Д-2 (2 шт.), приемник П-1 (1 шт.), датчик ДВ-15М (1 шт.).

Принципиальная схема аппаратуры КТА-5 показана на рис. 33.

Контроль режимов работы двигателя основан на преобразовании сигналов о наружной температуре (от приемника П-1) и высоте полета (от датчика ДВ-15М) в угловое перемещение подвижной шкалы измерителя ИТК-5 (рис. 34), расположенной вокруг неподвижной шкалы последнего. Подвижная шкала имеет две риски. Нижняя риска указывает верхнюю границу частоты вращения на крейсерском, верхняя - на номинальном режимах работы двигателя при определенных наружной температуре воздуха и высоте полета.

П р и м е ч а н и е Верхняя граница взлетного режима на земле определяется по графику п тк = /г(г!н) (см рис 36).

Указания по контролю режимов работы двигателя на вертолетах, оборудованных аппаратурой КТА-5, помещены в соответствующих главах руководства.

Техническое обслуживание аппаратуры КТА-5 (установка, настройка, проверка, регулировка, регламентные и другие работы) производится по вертолетной технической документации, а также согласно техническому описанию и инструкции по эксплуатации аппаратуры КТА-5.

–  –  –

1. Проверить холодную, регулировку системы «Шаг-газ» и синхронность работы системы управления двигателями по всему диапазону лимбов агрегата НР-40ВА (ВГ). Разница показаний лимбов должна быть не более!"..

2. Проверить и, при необходимости, отрегулировать углы поворота направляющих лопаток компрессора.

Порядок проверки и регулирования частоты вращения несущего винта Проверка работы агрегата РО-40М (ВР) двигателя производится при неработающем втором двигателе.

1. Перевести рычаг раздельного управления проверяемого двигателя вверх до упора, рукоятку коррекции повернуть полностью вправо. При этом частота вращения турбокомпрессора должна соответствовать значению верхней границы крейсерского режима для фактической температуры наружного воздуха (см. рис. 38, линия 5) с допуском минус 1%.

Примечания. При несоответствии частоты вращения турбокомпрессора указанным значениям необходимо увеличить режим работы двигателя рычагом «Шаг-газ» или уменьшить рычагом раздельного управления (РРУД);

при проверке частоты вращения несущего винта второго двигателя рекомендуется выдерживать ту же частоту вращения ротора турбокомпрессора, что и при проверке первого.

–  –  –

При заворачивании (выворачивании) регулировочного винта на 1 оборот частота вращения несущего винта увеличивается (уменьшается) на:

3% для агрегата РО-40ВР,для агрегата РО-40М.

Примечание. Для исключения возникновения разнорежимности («вилки») в работе двигателей регулировку ч"астоты вращения несущего винта рекомендуется выполнят;»

на одинаковую величину п н. в.

3. Загружая несущий винт до получения частоты его вращения 92,5±0,5%, вывести двигатель на взлетный режим. Зафиксировать полученную частоту вращения турбокомпрессора. Увеличить нагрузку несущего винта до получения п =90,5±0,5%, при этом допускается увеличен. в.

ние частоты вращения турбокомпрессора не более чем на 0,5%.

Примечание. В случае увеличения частоты вращения турбокомпрессора более чем на 0,5% при п = = 90,5+0,5% н. д произвести перепроверку регулировки агрегата РО-40М (ВР).

4. Перевести рычаг «Шаг-газ» в крайнее нижнее положение (рычаг раздельного управления должен оставаться в верхнем положении, рукоятка коррекции - в правом). Частота вращения несущего винта не должна увеличиться более 97%.

При необходимости произвести подрегулировку агрегата РО-40М (ВР) согласно пункту 2, после чего проверит* настройку агрегата РО-40М (ВР) согласно пунктам 1, :2, 3, 4.

5. После регулирования частоты вращения несущего винта на двигателе с агрегатом РО-40М произвести проверку и, при необходимости, подрегулировку частоты вращения срабатывания СЗТВ по методике бюллетеня № 079701592 (С79-108Э).

11.7. РЕГУЛИРОВАНИЕ ЧАСТОТЫ ВРАЩЕНИЯ

НЕСУЩЕГО ВИНТА

Проверка работы агрегата РО-40 производится на рабртающем двигателе на земле при неработающем втором двигателе.

Во время проверки рычаг раздельного управления двигателем должен находиться в верхнем положении, рукоятка коррекции - в правом.

Проверка производится на физической частоте вращения ротора турбокомпрессора ятк, физ, соответствующей физическому часовому расходу топлива От.физ= (310±5) кг/ч. Частота вращения несущего винта при этом должна быть равна (95±0,5) %.

Определение исходной для проверки физической частоты вращения ротора турбокомпрессора пт..физ, соответствующей физическому часовому расходу топлива О т. ф"Иэ= (310±5) кг/ч, производится перед проверкой работы РО-40 на двигателе следующим образом:

а) определяется приведенный часовой расход топлива Ст. Пр, соответствующий при данных атмосферных условиях физическому часовому расходу топлива?т. ф И з= (310±5) кг/ч:

с, по- г? физ^ _ У т - "-"т. „ ^Р°~\/^О "т.

УН " 1Н " где р0 = 760 мм рт. ст - стандартное атмосферное давление; рп- атмосферное давление в момент проверки, мм рт. ст.; Г0=288° С;

Тн- (273-г/н)°"С- абсолютные температуры наружного воздуха соответственно стандартная и в момент проверки; / н -температура наружного воздуха в момент проверки, ° С;

б) определяется приведенная частота вращения ротора турбокомпрессора Птк.пр, соответствующая полученному приведенному часовому расходу топлива От. п р. Определение производится при помощи характеристики С т. пр =/ (птк. пр), прикладываемой к формуляру каждого двигателя (см. рис. 63);

в) определяется исходная физическая частота вращения ротора турбокомпрессора п тк. физ, соответствующая физическому часовому расходу топлива От. фИЗ= (310±5) кг/ч:

–  –  –

97,1 99,1 100,1 95,1 98,1 94,1 96,1 97,5 98,5 99,5 100,5 95,5 94,5 96,5 97,8 98,8 99,8 100,8 95,8 96,8 94,8 96,1 98,1 99,1 100,1 97,1 95,1 98,5 9Э,5 100,5 96,5 95,5 97,5 98,9 99,9 100,9 96,9 95,8 97,9 99,2 97,1 100,2 96,1 98,2 99,5 96,4 97,4 100,5 98,4 95,9 97,9 98,9 100,2 97,2 98,2 99,2 100,5 97,5 98,5 99,5 100,8 97,7 98,8 99,8 98 100,1 99,1 98,3 99,4 100,4 98,7 99,7 100,8 99,3 100,3 99,6 300,7 99,9 100,3 100,6 !09 0,

–  –  –

Определив исходную для проверки работы агрегата РО-40М частоту вращения птк.физ, приступают к самой проверке на работающем двигателе.

Порядок проверки

1. Запустить, прогреть и вывести двигатель на физическую частоту вращения ротора турбокомпрессора, соответствующую физическому расходу топлива (310±5) кг/ч (в приведенном выше примере на птк.физ = 91,5%).

Частота вращения несущего винта при этом должна быть равна (95 ±0,5)%.

При необходимости подрегулировать агрегат РО-40.М.

2. Вывести двигатель на взлетный режим, загрузив несущий винт до частоты вращения (92,5±0,5) %; и зафиксировать частоту вращения ротора турбокомпрессора. Увеличить загрузку несущего винта до (90,5 + 0,5) %, частота вращения ротора турбокомпрессора может.увеличиваться при этом не более чем на 0,5%.

3. Перевести рычаг ШАГ - ГАЗ в крайнее нижнее положение (рычаг раздельного управления должен оставаться в верхнем положении, рукоятка коррекций - в правом). Частота вращения несущего винта при этом должна увеличиваться, но не более 97%.

Регулирование частоты вращения несущего винта производится, винтом 13 (рис. 64) агрегата РО-40М. При заворачивании винта на один оборот частота вращения несущего винта увеличивается на 7... 8%.

После регулирования частоты вращения несущего винта дополнительно произвести проверку частоты вращения срабатывания СЗТВ, как указано в разд. 11.8.

Пояснения к табл. 15 и 16

1. По табл. 15 определяется приведенный расход топлива (^т. П р), соответствующий при данных атмосферных условиях (I*, р н) физическому расходу Ст.ф(.3=310 кг/ч.

2. По характеристике двигателя (из формуляра) ^ определяется значение, приведенной частоты вращения ротора турбокомпрессора (п т к.пр), соответствующей приведенному расходу топлива, определенному по табл. 15.

3. По табл. 16 определяется исходная физическая частота вращения ротора турбокомпрессора (п тк.физ), соответствующая расходу топлива Ст.фЯЗ=310 кг/ч, на которой производится проверка частоты вращения несущего винта.

ПРИМЕР. Проверить частоту вращения несущего винта (/гв) при / н = -3°С, рн = 750 мм рт. ст.

Пользуясь табл. 15 и 16, находим исходную величину птк

а) по табл. 15 находим, что для указанных атмосферных вий приведенный расход топлива Ст пр = 324,5 кг/ч (средняя метическая величина для ^ н =_4° С и? н = -2° С);

Рис. 64. Агрегат РО-40М:

а - в и д справа; б - вид слева; / - к л а п а н стравливания воздуха; 2 - приводная -,исора; 3- штуцер слива топлива; 4 - штуцер дренажа; 5 - штуцер подвоза топлива поп высоким давлением от НР-40ВА через агрегат СО-40; 13 - регулировочный винт часто ты вращения срабатывания регулятора; 14- винт фиксации режима 15 ^заглушка фиксатора аварийного золотника; ^0 - регулировочный винт частоты вращения соабТ тывания аварийного золотника; 21 - паз контрольного режима 22 - голов^Гнас-оойкй частоты вращения срабатывания регулятора; 23 - замок контро"вочный г°-га11а- э?

штуцер подвода высокого давления от НР-40ВА. 35 - штуце/подвода" топлива из" |пгё згрегатэ гИг-чОНА 185б) по характеристике двигателя (из формуляра, а в нашем примере по рис. 66) определяем гатк.пр, соответствующую найденному в п. «а» расходу О т. П рятк. П Р =94,5% ;

в) по табл. 16 находим исходную, для проверки пв, физическую частоту вращения птк,физ, соответствующую Ст.физ=ЗГО кг/ч (при *„ =-3°С иге т к. П р=94,5%)-.

исходная птк. физ=91,5%.

Частота вращения несущего винта при этом должна быть (95+0,5) %.

11.8. ПРОВЕРКА И РЕГУЛИРОВАНИЕ ЧАСТОТЫ

ВРАЩЕНИЯ СРАБАТЫВАНИЯ СЗТВ

1. Вывернуть на агрегате РО-40М винт 14 (см." рис. 64) фиксации режима из паза рабочего режима, повернуть рычаг с винтом 14 против часовой стрелки дальше паза 21 контрольного режима с последующим возвратом к пазу контрольного режима в обратном направлении, т. е. по часовой стрелке; установить винт 14 в паз, контрольного режима, завернуть его до упора, используя ключ из бортового чемодана.

2. Запустить оба двигателя.

ПРЕДУПРЕЖДЕНИЕ. При запуске одного двигателя от бортовых аккумуляторов, а другого - с использованием генератора запущенного двигателя, первым запускать двигатель, СЗТВ которого находится в рабочем положении, так как при обратной последовательности запуск будет невозможен (двигатель с СЗТВ в положении КОНТРОЛЬ не выйдет на частоту вращения, необходимую для запуска соседнего двигателя).

3. Двигатель, у которого СЗТВ, находится в рабочем положении, плавно вывести раздельным управлением на п т к =82... 85% при минимальном общем шаге несущего винта, не допуская повышения частоты вращения несущего винта более 90%.

4. Для выхода проверяемого двигателя на частоту вращения срабатывания СЗТВ (? г в - 9 4 ± 4 %) ввести ручку коррекции вправо за 1... 2 с.

П р и м е ч а н и е. При" несрабатывании СЗТВ перевести двигатели на левую коррекцию и повторить дачу правой коррекции с темпом не более чем за 1 с.

При этом заброс частоты. вращения несущего винта должен быть не выше 105%. Если « в стремится возрасти более 103%, заброс парировать резким переводом коррекции влево.

Двигатель охладить и выключить. Выяснить причину заброса частоты вращения несущего винта и устранить ее, как указано в п. 11 разд. 8.1.

Момент срабатывания СЗТВ определяется по резкому падению давления топлива в первом контуре р\ я быстрому снижению температуры газов ТГ. Диапазон срабатывания СЗТВ должен находиться в пределах «„ =90... 98%.

5. После срабатывания СЗТВ закрыть стоп-кран проверяемого двигателя на п тк =50... 60 %. Остановить второй двигатель.

6. В случае отклонения от заданных норм частоты вращения (94±4%) срабатывания СЗТВ по п. 4 подрегулировать частоту вращения срабатывания аварийного золотника винтом 20, для чего расконтрить гайку 24 и отвернуть ее на 1... 1,5 оборота.

Суммарная допустимая величина подрегулировки винтом 20 в сторону выворачивания от положения, установленного при изготовлении или ремонте РО-40М на предприятии - изготовителе двигателей, АРП и в эксплуатации, не более "/2 оборота.

При заворачивании (выворачивании) винта 20 на один оборот частота вращения срабатывания СЗТВ увеличивается (уменьшается) на 2... 3 %.

7. Произвести пробный запуск проверяемого двигателя для проверки надежности СЗТВ по блокировке выключения рабочего топлива. Запуск не должен получиться из-за отсутствия подачи топлива в рабочие форсунки двигателя.

8. Разблокировать аварийный золотник, для чего:

расконтрить и вывернуть заглушку 15 на колпачке фиксатора "- ----аварийного золотника;

вместо заглушки завернуть от руки до упора прилагаемый к агрегату РО-40М винт разблокировки (рис. 65) для освобождения аварийного золотника от захвата рычага- накатка сетчатая шиг1 ми;, вывернуть винт разблокирования; Рис. 65. Винт разблокирования завернуть заглушку 15 (см.

рис. 64), предварительно проверив состояние уплотнительного резинового кольца. При необходимости кольцо заменить.

П р и м е ч а н и е. При отсутствии винта разблокирования разрешается аварийный золотник разблокировать при помощи винта 14 фиксации режима, предварительно промытым в бензине (керосине). Винт 14 заворачивать от руки до упора. Применение инструмента для заворачивания винта запрещается.

После разблокирования винт 14 фиксации режима установить на место.

9. Перевести СЗТВ из положения КОНТРОЛЬ в рабочее, для чего:

вывернуть винт 14 фиксации режима до выхода его из паза контрольного режима;

повернуть рычаг с винтом 14 по часовой стрелке в рабочее положение;

установить винт фиксации режима в паз рабочего режима, завернуть его до упора, законтрить и опломбировать.

ПРЕДУПРЕЖДЕНИЕ. Особое внимание обратить на установку винта 14 фиксации режима,в паз рабочего режима на левом двигателе из-за ограниченной видимости.

10. Повторить работы по пп. 1... 9 для второго двигателя.

11. Произвести запуск двигателей с целью проверки разблокировки СЗТВ и дать им проработать на режиме малого газа 1...

2 мин, затем, не выключая двигателей, произвести поочередно проверку отсутствия срабатывания СЗТВ двигателей в диапазоне рабочей частоты вращения несущего винта, для чего:

рычагом раздельного управления проверяемого двигателя увеличить режим работы до частоты вращения несущего винта /г в =85...90%;.

энергично (за 1...2 с) повернуть рукоятку коррекции вправо до упора, не повышая частоту вращения несущего винта более 103%, при этом двигатель не должен выключаться.

Указанную проверку производить с обязательной записью частоты вращения винта на САРПП с последующей расшифровкой.

В случае отсутствия САРПП частоту вращения несущего винта контролировать строго по прибору..

Произвести аналогичную проверку второго двигателя.

12. Выключить двигатели., "

13. Законтрить и опломбировать регулировочные элементы.

О произведенных регулировках и величине частоты вращения срабатывания СЗТВ сделать запись в разд. VIII формуляра двигателя и в разд. 7 паспорта агрегата РО-40М. ^ ПРЕДУПРЕЖДЕНИЕ. При срабатывании СЗТВ в рабочем положении двигатель и редуктор,.дальнейшей эксплуатации не подлежат.

Работы по выяснению причины аварийной остановки двигателя проводятся с участием представителя предприятия - изготовителя двигателя или АРП, а также представителя предприятия - изготовителя агрегатов РО-40М и НР-40ВА или АРП.

В случае замены регулятора РО-40М, а также при расконсервации топливной системы двигателя необходимо произвести расконсервацию аварийного золотника регулятора РО-40М.

Для расконсервации аварийного золотника необходимо произвести пробную проверку СЗТВ в положении КОНТРОЛЬ согласно пп. 1... 5. - П р и м е ч а н и е. При расконсервации аварийного золотника фактическую частоту вращения срабатывания СЗТВ не фиксировать. Расконсервацию аварийного золотника производит эксплуатирующая организация.

11.9. ПРОВЕРКА И РЕГУЛИРОВАНИЕ УГЛОВ ПОВОРОТА

НАПРАВЛЯЮЩИХ ЛОПАТОК КОМПРЕССОРА

–  –  –

5 83,8 84,2 87,2 86,3 84,5 85,3 86,5 87,5 84,9 85,6 86 86,8

–  –  –

25 76,5 78,7 76,9 77,6 77,3 78,3 79,7 80,5 78 79,4 88,5 -15 84,7 85,7 87,5 85 88,2 86.2 86,5 85,4 86,8 87,2 87,8 95,6 94,7 -5.92,2 93,2 92,5 93,8 93,5 95,3 92,8 91,4 95

–  –  –

Рис. 67. Агрегат КА-40 (вид слева):

/ - винт термокорректора; 2 - винт регулирования частоты вращения закрытия клапанов перепуска воздуха; 3 - пробка фильтра; 4 - штуцер для замера командного давления; 5 - штуцер для замера давления топлива перёд клапанами перепуска воздуха; 6 - клапан стравливания воздуха

11.10. ПРОВЕРКА И РЕГУЛИРОВАНИЕ ЧАСТОТЫ ВРАЩЕНИЯ

ЗАКРЫТИЯ КЛАПАНОВ ПЕРЕПУСКА ВОЗДУХА

Перед началом проверки частоты вращения закрытия клапанов перепуска воздуха необходимо канал подвода топлива к клапанам перепуска воздуха соединять: при помощи специального шланга с датчиком прибора измерения давления топлива перед форсунками соседнего двигателя.

Произвести запуск двигателя. В начале запуска давление топлива перед клапанами должно возрасти до 25... 30 кгс/см2. Момент закрытия клапанов определяется по резкому падению давления топлива перед клапанами. Клапаны должны закрываться при « т к =(53±3)%.

Частота вращения закрытия клапанов перепуска воздуха регулируется винтом 2 (см. рис. 67) агрегата КА.-40.

При заворачивании винта на один оборот частота вращения.закрытия клапанов возрастает на 0,5%. После окончания проверки частоты вращения закрытия клапанов необходимо снять спедиальный шланг и установить трубопроводы.

11.11. ПРОВЕРКА И РЕГУЛИРОВАНИЕ ЧАСТОТЫ ВРАЩЕНИЯ

ОТКЛЮЧЕНИЯ ПОДАЧИ ПУСКОВОГО ТОПЛИВА

Отключение подачи пускового топлива происходит при запуске двигателя на частоте вращения ротора турбокомпрессора (34±3)%.

Момент отключения подачи пускового топлива можно определить по выключению лампочки 4 специального приспособления (рис. 68),"Которое состоит из проставки и провода с сигнальной

–  –  –

лампочкой. Проставка, состоящая из ответных частей штепсельного разъема, подсоединяется к штепсельному разъему.

2РТ20У4ЭШ8-А* (рис. 69, поз. 1) блока контактов агрегата КА-40.

Провод с сигнальной лампочкой протягивается через верхний люк вертолета в кабину.

При отсутствии специального приспособления момент отключения подачи пускового топлива определяется следующим образом:

соединить специальным шлангом из комплекта бортовогр инструмента штуцер измерения давления пускового топлива перед пусковыми форсунками 67 (см. рис. 46) с датчиком измерения давления масла соседнего двигателя;

произвести запуск. Пусковое топливо должно отключаться при п =(34±3)% (определяется по падению давления топлива на

Трехстрелочном указателе УИЗ-3, расположенном на правой приборной доске).

–  –  –

Ока к противообледенительной системе и отключения стартер Регулирование частоты вращения отключения подачи пускового топлива производится изменением толщины набора шайб-прокладок 4 (см. рис. 69) микровыключателя (ближнего к приводу) блока контактов агрегата КА-40.

Увеличение толщины набора шайб на 0,1 мм вызывает о^тключение пускового топлива на частоте вращения птк, меньшей примерно на 1%.

11.12. ПРОВЕРКА И РЕГУЛИРОВАНИЕ ЧАСТОТЫ ВРАЩЕНИЯ

ОТКЛЮЧЕНИЯ СТАРТЕРА

Проверка момента отключения стартера производится при запуске двигателя и определяется по уменьшению силы тока в бортовой сети, если запуск, производился от бортовых аккумуляторов (в кабине"вертолета имеются амперметры, замеряющие силу тока в бортовой сети).

13 Зак. 292 Момент отключения стартера также можно определить по щелчку, который слышен в кабине вертолета при срабатывании контактора, расположенного на электропанели за спиной пилота. Отключение стартера должно происходить при п тк = (60±3)% (через 40 с после начала запуска стартер отключается панельюПСГ-15).

Регулирование производится- изменением толщины набора регулировочных шайб 6 (см. рис. 69) микррвыключателя (дальне-, го от привода) блока контактов агрегата КА-40.

Увеличение толщины набора на 0,1 мм вызывает отключение стартера на частоте вращения птк, большей примерно на 1%.

11.13. ПРОВЕРКА РАБОТЫ И РЕГУЛИРОВАНИЕ АГРЕГАТА ИМ-40

9\Проверка работы агрегата ИМ-40 производится совместно с проверкой остальных, агрегатов системы ограничения температуры газов перед турбиной.

–  –  –

Регулирование частоты вращения несущего винта производится представителем предприятия - изготовителя двигателя или АРП (по принадлежности гарантии)».

–  –  –

Примечание. При температуре наружного воздуха ниже мину* 15°С проверку не производить, так как частота вращения ротора турбокомпрессора на взлетном режиме может быть ниже 93 """" ",.. "

3. Регулирование агрегата ИМ-40 производится представителем предприятия - изготовителя двигателя или АРП (по принадлежности гарантии).

4. Произвести запуск и прогрев одного двигателя. "Перевести" рукоятку коррекции в правое положение, рычаг раздельного управления - в верхнее.

При помощи ПКРТ на агрегат ИМ-40 подать сигнал скважностью 100%, Частота вращения ротора турбокомпрессора должна уменьшиться до 80...85%, при этом частота вращения несущего винта не должна превышать 90%. Если частота вращения несущего винта не понизится до 90%, увеличить шаг несущего винта до получения пв =(90 ±0,5)%.

Если частота вращения ротора турбокомпрессора не будет укладываться в интервале 80...85%, произвести регулировку агрегата ИМ-40 до получения лтк = (80±5)% (см. п. 2).

5. При правом положении коррекции, верхнем положении рычага раздельного управления и при положении рычага ШАГ - ГАЗ на +5 нижнем упоре на агрегат ИМ-40 подать сигнал скважностью 50 %. Если после подачи сигнала частота вращения несущего винта будет превышать 90%, то увеличить шаг несущего винта до получения пв =(90±0,5)%. Частота вращения турбокомпрессора должна соответствовать расходу топлива 280 кг/ч (см.

п. 3). Прекратить подачу сигналов на ИМ-40.

ч 6. Вывести двигатель на взлетный режим и загрузить несущий винт до пв =(90±0,5) %. Зафиксировать частоту вращения ротора турбокомпрессора. Рычагом раздельного управления при неизменном шаге несущего винта уменьшить частоту вращения ротора турбокомпрессора на 0,3... 0,6%.

Подать на агрегат ИМ-40 сигнал скважностью 10+5%.

Частота вращения ротора турбокомпрессора должна уменьшиться по сравнению с ранее зафиксированной частотой вращения на взлетном режиме не более чем на. 1,5%.

При необходимости разрешается заменять на агрегате ИМ-40 сменный жиклер 4 (см. рис. 26) на жиклер с диаметром (от 0,7 до 0,9 мм), отличным от исходного диаметра на ±0,1 мм.

При установке жиклера большего диаметра частота вращения двигателя уменьшается на большую величину при подаче на агрегат ИМ-40 сигнала любой скважности. После замены вновь проверить агрегат ИМ-40.

7. Прекратить подачу сигнала на агрегат ИМ-40. Перевести двигатель на режим малого газа, охладить и выключить. Завернуть винт агрегата ИМ-40 (поставить его в исходное положение).

Запустить двигатель: вывести на взлетный режим, подать на агрегат ИМ-40 сигнал скважностью 100%. Частота вращения при срезке должна быть 93+,] ;%.

13 -" 195 При необходимости произвести регулирование частоты вращения при срезке (см. п. 2).

П р и м е ч а н и е. При температуре наружного воздуха ниже -15° С проверку частоты.вращения при срезке не производить, так как, Частота вращения ротора турбокомпрессора на взлетном режиме может быть ниже частоты вращения при срезке.

8. Демонтировать ПКРТ. Проверить частоту вращения при срезке при помощи"тумблера проверки. Она должна быть 93^2 % ПРЕДУПРЕЖДЕНИЕ. 1. При проведении проверки работы агрегата ИМ-40 не допускать увеличение температуры газов перед турби"нбй выше 875° С и частоты вращения ротора турбокомпрессора выше взлётной. При подключении ПКРТ система ограничения температуры газов не "работает. "

2. При проведении работ в условиях, когда должна вступить в работу система ограничения темпеоатуры газов (начинает мигать сигнальная лампочка), проверка работы агрегата ИМ-40 при подаче сигнала, скважностью 10+5% не производится.

П р и м е ч а н и е. Стоящий на вертолете агрегат УРТ-27 системы ограничения температуры газов. должен при температуре 200-5° С выдавать сигнал скважнрстью 50%. При, температуре газов ^§§±40^0 система ограничения должна вступать в работу (сигнальная лампочка мигает Эксплуатация двигателя при неисправном агрегате УРТ-27 недопустима.

Работы с ПКРТ и УРТ-27 производит эксплуатирующая организация. ПКРТ должен быть аттестован в установленном порядке и иметь отметку в паспорте.

11.14. ПРОВЕРКА РАБОТЫ И РЕГУЛИРОВАНИЕ АГРЕГАТА СО-40,-* "

1. Произвести. запуск одного двигателя. Перевести рукоятку коррекции в правое положение, рычаг раздельного управления-^ в верхнее. Запирать значения частоты вращения ротора турбокомпрессора, и несущего винта.,

2. Увеличением шага несущего винта увеличить частоту вращения ротора турбокомпрессора на 1%. Записать полученные значения пте и п В-.... -.... _..

3. Работы,по-п. 2 повторить, каждый раз увеличивая частоту вращения ротора турбокомпрессора, на 1% до: тех, пор, пока двигатель не выйдет на взлетный режим.

4. Перевести двигатель на режим малого газа, охладить и выключить., "

5. Отсоединить все подходящие к агрегату СО-40 воздушные трубопроводы (соединить обе воздушные полости агрегата СО-40 при помощи специального трубопровода) и подвести к ним давление из-за компрессора. ". 6. Запустить двигатель и выполнить пп. 1, 2, "3, 4 (при проверке устанавливать п.тк так же, как и в пп. 2, 3)".

7. Сравнить частоту вращения несущего винта, полученную* при проверке по пп. 1, 2, 3 и 6. При одинаковых частотах вращения ротора турбокомпрессора частоты вращения несущего винта должны отличаться не более чем на ±0,5%.

Если частота вращения несущего винта при проверке по п. 6 возрастает более чем на 0,5% (агрегат СО-40 дросселирует подачу топлива к агрегату РО-40), необходимо завернуть винт 3 (рис. 71) агрегата СО-40 на!/2 оборота и повторить п. 6. РазреРис. 71.

Внешний вид агрегата СО-40:

/ - штуцер подвода воздуха от соседнего двигателя под давлением рг; 2 - штуцер отвода воздуха под давлением рг к агрегату СО-40 соседнего двигателя; 3 - регулировочный винт шается заворачивать винт агрегата СО-40 на два оборота по сравнению с положением, установленным на предприятии-изготовителе.

Если частота вращения несущего винта при проверке по п. 6 уменьшается более чем на 0,5%, то агрегат СО-40 подлежит замене.

После регулирования проверить синхронность работы двигателей, частоту вращения винта пв и заброс пв, как указано в разд. 11.7.

11.15. ПРОВЕРКА И РЕГУЛИРОВАНИЕ ДАВЛЕНИЯ

МАСЛА В ДВИГАТЕЛЕ

Если давление масла не укладывается в норму, обусловленную инструкцией, необходимо, убедившись в отсутствии посторонних частиц под редукционным клапаном, отрегулировать давление масла при помощи редукционного клапана (рис. 72) верхнего масляного агрегата в следующем порядке.

Отвернуть гайки крепления крышки 1 редукционного клапана, снять крышку и корпус 2 редукционного клапана с тарельчатым редукционным клапаном 6.

П р и м е ч а н и е. На двигателях с № С9231001 по № С9520ПОО перед снятием корпуса снять пружину 2 (см. рис. 40) и фильтр 1. Сборку редукционного клапана на указанных двигателях производить, как указано в разд.,9.11 (п. ф.

Снять стопорное кольцо 5 (см, рис. 72) редукционного клапана, вынуть втулку 4 и заменить ".набор регулировочных шайб (колец) 3. При увеличении толщины пакета шайб на 1 мм давление масла повышается на 0,7 кгс/см2.

–  –  –

Собрать узел клапана в обратном порядке.

Произвести опробование двигателя. После опробования убедиться в отсутствии течи масла.

ПРЕДУПРЕЖДЕНИЕ..После окончания сборки проверить правильность установки стопорного кольца.

П.16. РЕГУЛИРОВАНИЕ ДАВЛЕНИЯ МАСЛА В РЕДУКТОРЕ

–  –  –

При вращении винт.а по часовой стрелке давление увеличивается, при вращении против часовой стрелки - уменьшается. При повороте винта на один оборот давление изменяется на 0,5 кгс/см2.

5. Установить контровочную шайбу 1 на винт 4, совмещая усики с выборками в переходнике. "

6. Установить колпачок 3 вместе с прокладкой 2 на место.

7. Законтрить колпачок 3 проволокой 0 0,8 мм.

Глава 12 РАСПАКОВКА, УСТАНОВКА »

И СНЯТИЕ ДВИГАТЕЛЯ И ГЛАВНОГО РЕДУКТОРА

12.1. РАСПАКОВКА ДВИГАТЕЛЯ И РЕДУКТОРА Перед распаковкой двигателя или редуктора произвести наружный осмотр ящиков и убедиться в наличии пломб на гайках

Болтов крепления крышек ящиков и отсутствия повреждений.

Для вскрытия ящиков с двигателем или редуктором необходимо отвернуть в четырех местах гайки болтов, соединяющих крышку ящика с основанием, и снять крышку, поднимая ее вверх за.проушины с помощью.подъемного приспособления. Крышку ящика снимать осторожно без перекоса.

Перед снятием наружной упаковки с двигателя или редуктора (полиэтиленовый чехол, парафинированная бумага) необходимо осмотре-ть индикатор влажности, установленный под полиэтиленовым чехлом. Если индикатор показывает ОПАСНО-"вопрос об установке двигателя или редуктора на вертолет должен решаться совместно с представителем предприятия-изготовителя.

Разрезать полиэтиленовый чехол вблизи сварного шва и осторожно, не допуская его повреждения, закатать вниз. Снять с двигателя или редуктора мешочки с силикагелем и парафинированную бумагу.

Произвести наружный осмотр двигателя или редуктора и убедиться в отсутствии повреждений.

Проверить наличие документов на агрегаты и запасные части согласно прилагаемой описи.

Проверить соответствие номера двигателя номеру, указанному в его формуляре, а редуктора - в его паспорте или формуляре.

12.2. ПОДГОТОВКА ДВИГАТЕЛЯ К УСТАНОВКЕ НА ВЕРТОЛЕТ

1. Перед установкой двигателя на вертолет необходимо убедиться, что детали узла сферической опоры были одного номера комплекта, на двигателях с № С9041199 также одного номера ступени, а на двигателях с № С9931001 Также соответствовали номеру двигателя.

Места маркировки номерами комплекта, номером ступени, номером двигателя на деталях узла сферической опоры и способы ее нанесения (ударное, химическое, электрографическое) указаны на рис. 74.

П р и м е ч а н и е. Прокладку 4 (при необходимости ее замены) подбирать по толщине, указанной на корпусе главного привода.

Установка на двигатель некомплектного узла сферической опоры не допускается.

2. Произвести наружную расконсервацию двигателя, как указано в разд. 13.5 п. 1.

3. Произвести наружный осмотр двигателя.

4. Снять транспортировочные заглушки с двух клапанов перепуска воздуха.

5. Установись на двигатель датчики частоты вращения турбокомпрессора, давления масла, давления топлива.

П р и м е ч а н и е. Четные номера присваиваются правым двигателям, нечетные - левым.

–  –  –

При необходимости установить на вертолет правый двигатель, вместо левого (или наоборот) надо переставить жиклер стравливания воздуха, установленный на корпусе III опоры ротора двигателя на противоположную сторону и развернуть выхлопной патрубок.

На правом двигателе жиклер располагается справа, на левом1 двигателе - слева.

ПРЕДУПРЕЖДЕНИЕ. На двигателях с № 97201133, а такжеотремонтированных предприятием-изготовителем после 1 мая:

1977 г. или АРП согласно ремонтному бюллетеню, вместо чашечных жиклеров, установленных в магистралях подвода воздуха на наддув IV и V опор,.и их суфлирование, введены пластинчатыежиклеры, которые устанавливаются (в, магистрали суфлирования - при необходимости) под штуцера на корпус главного привода и при демонтаже трубопроводов не снимаются.

Наличие отгибного козырька на корпусе главного привода свидетельствует о поставке пластинчатого жиклера.

На ранее выпущенных и отремонтированных двигателях при демонтаже трубопроводов подвода воздуха на наддув IV и V опори их суфлирование обратить внимание на наличие чашечного жиклера, установленного (в магистрали суфлирования - при необходимости) в ниппельном соединении между гайкой трубопровода и-.

соответствующим штуцером на корпусе главного привода. При монтаже трубопроводов жиклеры установить на место.

Для разворота выхлопного патрубка необходимо:

отсоединить и снять заднюю часть общей трубки суфлирования двигателя (т. е. трубку суфлирования корпуса главного привода), идущую поверху выхлопного патрубка;

отсоединить и снять трубопровод подвода воздуха на наддув;

лабиринтов IV и V опор.

отсоединить стяжную ленту (отвернуть два стяжных болта) кожуха выхлопного патрубка;

вывернуть дренажные штуцера из корпуса свободной турбины и выхлопного патрубка;

отвернуть винты крепления двух половин кожуха, для чего, нижнюю половину снять, а верхнюю отодвинуть по возможности назад;

расконтрить и отвернуть винты крепления выхлопного патрубка.

Развернуть выхлопной патрубок через верх на 160° (на 16 резьбовых отверстий) и смонтировать его в обратной последовательности.

П р и м е ч а н и е. Перед монтажом выхлопного патрубка проверить целостность асбестовой нити, проложенной между фланцами выхлопного патрубка в корпусом III опоры. При необходимости проложить асбестовую нить 0 1,0 мм и /=1550 мм, пропитав ее мастикой на основе лака ГФ-024, и просушить на воздухе в течение 40...60 мин. Стыковку нити делать вверху.

: При монтаже выхлопного патрубка контровочные шайбы винтов крепления заменить новыми, резьбу винтов смазать меловой смазкой (для исключения пригорания). Ввертывать винты послеполной просушки нанесенной на них смазки.

Пр и м е ч а н и е. Меловая смазка состоит из 30% мела и 70% воды или спирта, перемешанных до кашеобразного состояния.

12.3. УСТАНОВКА 4-5

ДВИГАТЕЛЯ НА ВЕРТОЛЕТ

В случае одновременной установки двигателей и главного редуктора сначала устанавливают редуктор, а затем двигатели.

Для правильной установки двигателя относительно своей продольной оси на корпусе главного привода, а также на фланцах сферической крышки « втулки нанесены риски, расположенРис. 75. Расположение устаноные под углом 45° к вер- вочных рисок р! и р2 на флантикальной оси двигателя цах сферической втулки и;(рис. 75). крышки Порядок установки двигателя

1. Подсоединить траверсу подъемного устройства к подвескам двигателя - двум ушкам, одно из которых расположено на корпусе II опоры, а второе на корпусе III опоры двигателя (рис. 76).

Предварительно натянуть трос подъемника. Подъем двигателя должен производиться при горизонтальном его положении.

При регулировании положения троса подъемника необходимо учитывать, что центр тяжести двигателя расположен между II и III опорами на расстоянии 220±10 мм от II опоры.

Натянуть трос и, отсоединив заднюю точку крепления к подставке ящика, отсоединить и снять с двигателя узел сферы и транспортировочдый фланец двигателя (рис. 77).

–  –  –

Установить сферическую втулку 3 (рис. 78) на шпильки фланца корпуса привода главного редуктора 9 (поставив прокладку 8) таким образом, чтобы риски на втулке располагались в верхней части под одинаковыми углами (45°) к вертикальной оси двигателя.

2. На передний фланец сферической крышки 4 поставить прокладку 5.

3. Осторожно подвести двигатель и сочленить рессору с приводом редуктора, избегая несоосности двигателя и редуктора.

Информации (габаритные размеры, р...» ИДЕЙ ЯНИЦКИЙ Олег Николаевич – доктор философских наук, профессор, главный научный сотрудник, зав. сектором Института социологии РАН, Москва, Россия (oleg.y...» государственный технический университет) МОДИФИЦИРОВАННЫЙ АЛГОРИТМ ЛОКАЛИЗАЦИИ НОМ...» анализа РАН, Москва) ЧЕЛОВЕКО-МАШИННЫЕ М...»ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОУ ВПО "УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ЛЕСОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ" Кафедра автоматизации производственных процессов А.И. Бабин В.В. Беспалов ПРИНЦИПЫ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ПУСКОМ И ТОРМОЖЕНИЕМ ДВИГАТЕЛЯ Методические указания к контрольной р...»

«КАЛАНДР ГЛАДИЛЬНЫЙ “ЛОТОС” ЛК 1640 РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ ЛК 1640.00.00.000 РЭ Настоящий документ знакомит обслуживающий персонал с конструкцией, принципом действия и правилами эксплуатацией каландра гладильного с электрическим нагревом ЛК 1640 (далее по тексту – кал...»

«стр. 49 из 233 УДК 621.793 DOI: 10.12737/4851 ТЕХНОЛОГИИ МЕТАЛЛОПЛАКИРОВАНИЯ В ЖИЛИЩНОКОММУНАЛЬНОМ ХОЗЯЙСТВЕ Буткевич Михаил Николаевич, доктор технических наук, профессор, Хамицев Борис Гаврилович, кандидат технических наук, [email protected], Байкин Сергей Дмитри...»

«Автор выражает искреннюю благодарность ОАО "Ростовэнерго" за поддержку в работе над книгой Министерство высшего и среднего специального образования Российской Федерации Донской государственный технический университет ОАО Коммерческий банк "Центр-инвест" Высоков В.В.Малый...»

«Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Забайкальский государственный университет" Н. Д. Савченко Т. В. Кузьмина Т. В. Рахлецова ОСНОВЫ ФИЗИКИ Часть I Механика. Электродинамика. Термодин...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ Утверждаю Проректор по учебной работе _ И.Э.Вильданов “ ” _ 201г. РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ 1.Б.23 "Основы...» Строительство Сибирской желез...» "ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ" Кафедра геотехники Игашева С.П. ГЕОЛОГИЯ УЧЕБНОЕ ПОСОБ...»

Маслосистема двигателя включает в себя верхний масляный агрегат, нижний масляный агрегат, магистральные трубопроводы, воздушно-масляный радиатор, масляный бак и расширительный бачек.

Маслосистема обеспечивает постоянную подачу масла к подшипникам и к трущимся поверхностям деталей при работе двигателя для уменьшения трения и для отвода тепла. Для смазки применяется синтетическое масло Б-ЗВ, которое обладает хорошими смазывающими свойствами, высокой термохимической стабильностью, позволяющей работать при температурах масла выше 200° С, и обеспечивает запуск двигателя без подогрева масла при температуре окружающей среды до - 40° С.

Рис. 2. Схема масляной системы двигателя: 1 -- масляный бак; 2 -- масляный насос нагнетающий; 3 -- масляный фильтр; 4 и 11--запорные клапаны; 5 -- редукционный клапан; 6 -- манометр; 7 -- радиатор; 8, 9, 10, 13, 14 и 15 -- масляные насосы откачивающие; 12 -- термометр; 16 -- центробежный суфлер; 17 -- расширительный бачок

При работе двигателя масло из масляного бака 1 (рис. 2) вертолета по внешнему трубопроводу подводится к штуцеру в передней части корпуса коробки приводов. От штуцера по сверлению внутри корпуса коробки приводов масло подводится в заднюю часть коробки к фланцу крепления верхнего масляного агрегата и поступает на вход в нагнетающий масляный насос 2.

Нагнетаемое масляным насосом 2 масло проходит масляный фильтр 3, запорный клапан 4 по наружным трубопроводам, каналам в корпусах опор роторов двигателя и форсункам поступает к точкам смазки.

В нагнетающей магистрали системы смазки требуемое давление масла поддерживается редукционным клапаном 5. Давление измеряется манометром 6 в трубопроводе подачи масла к корпусам опор роторов двигателя.

Масло от точек смазки откачивается нижним масляным агрегатом, который включает в себя пять откачивающих насосов 8, 9, 10, 13 и 14. Из полости коробки приводов масло откачивается шестым откачивающим насосом 15, расположенным в верхнем масляном агрегате.

*Воздушно-масляный радиатор, масляный бак и расширительный бачек входят в состав внешней маслосистемы.

Из откачивающих насосов масло через запорный клапан 11 направляется в радиатор 7 и из него возвращается в масляный бак 1. Для предотвращения перетекания масла из бака в двигатель на стоянке в схеме предусмотрены два запорных клапана 4 и 11 в нагнетающей и откачивающей магистралях.

Температура выходящего из двигателя масла измеряется термометром 12 в магистрали отвода масла из нижнего масляного агрегата в радиатор.

В систему суфлирования двигателя входят центробежный суфлер 16, расположенный в коробке приводов, и расширительный бачок 17, установленный на вертолете.

Верхний масляный агрегат (рис. 3) расположен задней стенке корпуса коробки приводов с правой стороны и включает в себя блок масляных насосов 8, сетчатый фильтр 7, запорный клапан 6, редукционный клапан 19 и узел крышки фильтра. Все эти элементы заключены в общий магниевый корпус 4, имеющий два наружных штуцера: штуцер 1 для выхода масла, откачиваемого из коробки приводов, и штуцер 2 для отвода масла, нагнетаемого к точкам смазки двигателя.


Рис. 3. Верхний масляный агрегат: 1 -- штуцер отвода масла, откачиваемого из коробки приводов; 2 -- штуцер подачи масла к масляным полостям двигателя; 3 -- траверса; 4 -- корпус фильтра; 5 -- диск разделительный; 6 и 24 -- клапаны; 7 -- фильтр; 8 -- блок масляных насосов; 9, 14, 15 и 17 -- кольца уплотнительные; 10 -- насос откачивающий; 11-- насос нагнетающий; 12 -- фильтроэлементы; 13 -- каркас; 16 и 23 -- пружины; 18 и 26 -- крышки; 19 -- клапан редукционный; 20 -- кольцо стопорное; 21 -- трубки переходные; 22 -- кольцо регулировочное; 25 -- корпус клапана; 27 -- фильтр; 28-- пружина

Канал А для подачи масла в нагнетающий насос и канал Б для подачи масла в откачивающий насос соединены через переходные трубки 21 с соответствующими каналами в корпусе коробки приводов.

Блок 8 масляных насосов состоит из двух насосов -- нагнетающего 11 и откачивающего 10; оба насоса заключены в корпусы из магниевого сплава. Подшипниками ведущего валика насосов служат бронзовые втулки, запрессованные в корпус.

Масляный фильтр 7 состоит из 15 сетчатых дисковых фильтроэлементов 12, собранных на стальном каркасе 13, разделительного диска 5, запорного клапана 6 с пружиной 16, установленных в верхней части каркаса в зоне фильтрованного масла, и крышки 18 с траверсой 3. Крышка фильтра, разделительный диск и посадочный поясок корпуса фильтра снабжены уплотнительными резиновыми кольцами 17, 15, 14 и 9.

Нагнетаемое насосом масло подводится в полость Д корпуса агрегата, проходит внутрь фильтроэлементов и каркаса, отжимает запорный клапан и поступает в полость Г, откуда направляется к масляным полостям двигателя.

По каналу В масло направляется в коробку приводов и к первой опоре роторов двигателя, затем через штуцер 2 по наружной трубке -- к остальным опорам роторов двигателя.

Редукционный клапан 19 нагнетающего насоса состоит из стального корпуса 25 с цементированным седлом, тарельчатого клапана 24, имеющего четыре направляющих пера, пружины 23, регулировочных колец 22, стопорного кольца 20, сетчатого фильтра 27 и пружины 28. Редукционный клапан регулируют изменением поджатая пружины при помощи регулировочных колец 22. Редукционный клапан установлен в корпусе масляного агрегата и закрыт крышкой 26, которую пломбируют после регулировки клапана.

Внешний вид верхнего маслоагрегата и компоновка его основных узлов показаны на рисунке 4.

Схема работы верхнего маслоагрегата показана на рисунке 4.


Рис. 4. Верхний масляный агрегат: 1-- штуцер отвода масла, откачиваемого из коробки приводов; 2-- корпус; 3-- крышка фильтра; 4-- траверса; 5--вороток; 6-- крышка редукционного клапана; 7-- штуцер подачи масла к масляным полостям двигателя

Рис. 5. Схема работы верхнего масляного агрегата: 1-- канал подвода масла в откачивающий насос;2-- канал подвода масла в нагнетающий насос; 3-- откачивающий насос; 4-- нагнетающий насос; 5 -- сетчатый фильтр; 6-- редукционный клапан; 7-- штуцер подачи масла в нагнетающую магистраль; 8-- запорный клапан; 9-- канал откачивающей магистрали; А -- полость всасывания; Б -- полость нагнетания

Нижний масляный агрегат (рис. 6) расположен в нижней части двигателя и закреплен на шпильках к корпусу первой опоры ротора двигателя. Назначение агрегата -- откачивать отработанное (нагретое) масло от пяти точек двигателя, от всех пяти опор роторов двигателя и возвращать его по масляной магистрали через воздушно-масляный радиатор в масляный бак вертолета. Нижний масляный агрегат включает в себя пять откачивающих насосов, расположенных в два ряда: три насоса в верхнем ряду и два насоса в нижнем. На схеме масляной системы (см. рис. 6) насосы для наглядности расположены раздельно и в один ряд.

Рис. 6


Рис. 7 Нижний масляный агрегат: а и б -- разрезы; в -- схема циркуляции масла; г -- вид сверху;1 и 4 -- зубчатые колеса I ступени редуктора; 2 и 5 -- зубчатые колеса II ступени редуктора; 3 -- редуктор; 6 -- корпус насоса верхний; 7 --клапан запорный; 8 -- корпус насоса нижний; 9 -- крышка; 10 -- ось зубчатых колес; 11 -- нижний ряд насосов; 12 --верхний ряд насосов; 13 -- кран сливной; 14, 15, 17, 18 и 19 -- штуцеры подвода масла в агрегат; 16 -- штуцер отвода масла из агрегата

Нижний масляный агрегат состоит из следующих узлов (рис. 7): двух магниевых корпусов -- верхнего 6 и нижнего 8, крышки 9, двух рядов шестеренчатых насосов -- верхнего 12 и нижнего 11, трех бронзовых осей 10, на которых вращаются зубчатые колеса насосов, двухступенчатого редуктора 3, понижающего число оборотов привода насосов, запорного клапана 7, сливного крана 13, пяти приемных штуцеров 14, 15, 17, 18, 19 и выходного штуцера 16,

Верхний корпус, нижний корпус и крышка соединены между собой шпильками.

В агрегате верхний ряд насосов состоит из четырех зубчатых колес (для трех насосов), а нижний ряд насосов -- из трех зубчатых колес (для двух насосов). Каждое зубчатое колесо, кроме двух крайних, является рабочим элементом одновременно для двух насосов. Зубчатые колеса насосов верхнего и нижнего рядов по конструкции одинаковы, но колеса насосов верхнего ряда имеют большую высоту.

Следовательно, насосы верхнего ряда имеют большую производительность, чем насосы нижнего ряда.

Принцип работы одного ряда насосов показан на схеме (см. рис. 7). Зубчатые колеса нижнего масляного агрегата приводятся во вращение от центрального привода двигателя через нижнюю вертикальную рессору и понижающий редуктор.

Редуктор агрегата -- двухступенчатый, I ступень редуктора составляют зубчатые колеса 1 и 4, II ступень -- зубчатые колеса 2 и 5. Запорный клапан 7 агрегата смонтирован в приливе верхнего корпуса под штуцером 16 отвода масла в радиатор.

В нижнем корпусе агрегата установлены два штуцера -- 15 и 18 для трубопроводов магистрали откачки масла. Через штуцер 15 откачивается масло от третьей, а через штуцер 18 -- от пятой опор роторов двигателя.

В верхнем корпусе агрегата установлены четыре штуцера, из которых три штуцера 14, 17 и 19 служат для трубопроводов магистрали откачки масла, а штуцер 16 -- для трубопровода отвода масла из агрегата в радиатор. Через штуцер 14 откачивается масло из коробки приводов, через штуцер 17 -- от второй, а через штуцер 19 -- от четвертой опор роторов двигателя. От первой опоры роторов двигателя масло сливается в полость корпусов нижнего масляного агрегата.

Выходной штуцер 16, установленный на верхнем корпусе, соединен с полостью Л, объединяющей выходные стороны обоих рядов насосов. В нижней части этой полости установлен сливной кран 13. Для обеспечения герметичности полостей агрегата в соединения корпусов и крышки, а также в соединения всех штуцеров с корпусами установлены уплотнительные резиновые кольца.

Система суфлирования двигателя

Система суфлирования двигателя предназначена для сообщения масляных полостей двигателя с атмосферой, обеспечения работы масляных уплотнений и воздушно-масляных лабиринтов и для устранения возможности перетекания масла через уплотнения в проточную часть двигателя при повышении давления в масляных полостях опор роторов двигателя. Система суфлирования (рис. 8) состоит из системы суфлирующих каналов, трубопроводов и центробежного суфлера.

Суфлирование полостей опор роторов двигателя осуществляется двумя способами: суфлированием предмасляных полостей непосредственно в атмосферу и суфлированием масляных полостей через центробежный суфлер коробки приводов.

Предмасляные полости задней опоры ротора компрессора (полость Б) и задней опоры ротора турбины компрессора (полость Г), в которые может прорываться воздух под повышенным давлением из проточной части двигателя, суфлируются непосредственно в атмосферу через каналы в корпусах и наружные трубки 6 и 5. Концы трубок выведены к срезу выхлопного сопла.


Рис. 8. Схема системы суфлирования полостей опор роторов двигателя: I -- V -- опоры двигателя; 1 -- центробежный суфлер; 2 -- трубка суфлирования масляной полости II опоры; 3 -- трубка суфлирования масляной полости III опоры; 4 -- трубка суфлирования полости V опоры; 5-- трубка суфлирования предмасляной полости III опоры; 6--трубка суфлирования предмасляной полости II опоры

Масляные полости задней опоры ротора компрессора (полость В), задней опоры ротора турбины компрессора (полость Д) и опоры ротора свободной турбины (полости Е и Ж) через каналы в корпусах и наружные трубки 2, 3 и 4 суфлируются через приводной центробежный суфлер 1, расположенный в коробке приводов.

Воздух, отделенный в суфлере от масла, выводится за борт вертолета. Суфлирование коробки приводов также осуществляется через центробежный суфлер. Полость передней опоры ротора компрессора (полость А) не суфлируется.

Суфлирование масляного бака осуществлено независимо от системы суфлирования двигателя.

Масляный бак суфлируется через расширительный бачок 17 (см. рис.2), в котором масло отделяется от воздуха, путем конденсации. Масляный конденсат собирается в нижней части расширительного бачка, сообщающегося с маслобаком.

Схема объединенных масляной и суфлирующей систем двигателя приведена на рис. 9.

Рис. 9. Объединенная схема масляной и суфлирующей систем двигателя