Как работает рпд. Строение и принцип работы роторного двигателя. Как работает роторный мотор Ванкеля на видео

В 1957 году немецкие инженеры Феликс Ванкель и Вальтер Фройде продемонстрировали первый работоспособный роторный двигатель. Уже через семь лет его усовершенствованная версия заняла место под капотом немецкого спорткара «NSU-Спайдер» - первого серийного автомобиля с таким мотором. На новинку купились многие автомобильные компании - «Мерседес-Бенц», «Ситроен», «Дженерал моторс». Даже ВАЗ многие годы мелкими партиями выпускал машины с двигателями Ванкеля. Но единственной компанией, которая решилась на крупносерийное производство роторных двигателей и не отказывалась от них долгое время, несмотря ни на какие кризисы, стала «Мазда». Ее первая модель с роторным мотором - «Космо Спортс (110S)» - появилась еще в 1967 году.

ЧУЖОЙ СРЕДИ СВОИХ

В поршневом моторе энергия сгорания топливовоздушной смеси сначала преобразуется в возвратно-поступательное движение поршневой группы, а уже затем во вращение коленчатого вала. В роторном же двигателе это происходит без промежуточной ступени, а значит, с меньшими потерями.

Есть две версии бензинового 1,3‑литрового атмосферника 13B-MSP с двумя роторами (секциями) - стандартной мощности (192 л.с.) и форсированная (231 л.с.). Конструктивно это бутерброд из пяти корпусов, которые образуют две герметичные камеры. В них под действием энергии сгорания газов вращаются роторы, закрепленные на эксцентриковом валу (подобие коленчатого). Движение это весьма хитрое. Каждый ротор не просто вращается, а обкатывается своей внутренней шестерней вокруг стационарной шестерни, закрепленной по центру одной из боковых стенок камеры. Эксцентриковый вал проходит сквозь весь бутерброд корпусов и стационарные шестерни. Ротор движется таким образом, что на каждый его оборот приходится три оборота эксцентрикового вала.

В роторном моторе осуществляются те же циклы, что и в четырехтактном поршневом агрегате: впуск, сжатие, рабочий такт и выпуск. При этом в нем нет сложного механизма газораспределения - привода ГРМ, распредвалов и клапанов. Все его функции выполняют впускные и выпускные окна в боковых стенках (корпусах) - и сам ротор, который, вращаясь, открывает и закрывает «окна».

Принцип работы роторного двигателя показан на схеме. Для простоты приведен пример мотора с одной секцией - вторая функционирует так же. Каждая боковая сторона ротора образует со стенками корпусов свою рабочую полость. В положении 1 объем полости минимален, и это соответствует началу такта впуска. По мере вращения ротор открывает впускные окна и в камеру всасывается топливовоздушная смесь (позиции 2–4). В положении 5 рабочая полость имеет максимальный объем. Далее ротор закрывает впускные окна и начинается такт сжатия (позиции 6–9). В положении 10, когда объем полости вновь минимален, происходит воспламенение смеси с помощью свечей и начинается рабочий такт. Энергия сгорания газов вращает ротор. Расширение газов идет до положения 13, а максимальный объем рабочей полости соответствует позиции 15. Далее, до положения 18, ротор открывает выпускные окна и выталкивает отработавшие газы. Затем цикл начинается снова.

Остальные рабочие полости работают так же. А поскольку полостей три, то за один оборот ротора происходит аж три рабочих такта! А учитывая, что эксцентриковый (коленчатый) вал вращается в три раза быстрее ротора, на выходе получаем по одному рабочему такту (полезная работа) на один оборот вала для односекционного мотора. У четырехтактного поршневого двигателя с одним цилиндром это соотношение в два раза ниже.

По соотношению числа рабочих тактов на оборот выходного вала двухсекционный 13B-MSP похож на привычный четырехцилиндровый поршневой мотор. Но при этом с рабочего объема 1,3 л он выдает примерно столько же мощности и крутящего момента, сколько поршневой с 2,6 л! Секрет в том, что движущихся масс у роторного мотора в несколько раз меньше - вращаются только роторы и эксцентриковый вал, да и то в одну сторону. У поршневого же часть полезной работы уходит на привод сложного механизма ГРМ и вертикальное движение поршней, которое постоянно меняет свое направление. Еще одна особенность роторного мотора - более высокая стойкость к детонации. Именно поэтому он перспективнее для работы на водороде. В роторном двигателе разрушительная энергия аномального сгорания рабочей смеси действует только в направлении вращения ротора - это следствие его конструкции. А у поршневого мотора она направлена в противоход движению поршня, что и вызывает плачевные последствия.

Двигатель Ванкеля: НЕ ВСЁ ТАК ПРОСТО

Хотя у роторного мотора и меньше элементов, чем у поршневого, в нем применены более хитрые конструктивные решения и технологии. Но между ними можно провести параллели.

Корпусы роторов (статоры) изготовлены по технологии вставки листового металла: в корпус из алюминиевого сплава вставлена подложка из специальной стали. Благодаря этому конструкция легкая и прочная. Стальная подложка имеет хромовое покрытие с микроскопическими канавками для лучшего удержания масла. По сути, такой статор напоминает привычный цилиндр с сухой гильзой и хоном на ней.

Боковые корпусы - из специального чугуна. В каждом есть впускные и выпускные окна. А на крайних (переднем и заднем) закреплены стационарные шестерни. У моторов предыдущих поколений эти окна были в статоре. То есть в новой конструкции увеличили их размер и количество. За счет этого улучшились характеристики впуска и выпуска рабочей смеси, а на выходе - КПД двигателя, его мощность и топливная экономичность. Боковые корпусы в паре с роторами по функционалу можно сравнить с механизмом ГРМ поршневого мотора.

Ротор - по сути, тот же самый поршень и одновременно шатун. Изготовлен из специального чугуна, пустотелый, максимально облегчен. На каждой его стороне есть кюветообразная камера сгорания и, конечно же, уплотнители. Во внутреннюю часть вставлен роторный подшипник - своего рода шатунный вкладыш коленчатого вала.

Если привычный поршень обходится всего тремя кольцами (два компрессионных и одно маслосъемное), то у ротора подобных элементов в несколько раз больше. Так, апексы (уплотнения вершин ротора) играют роль первых компрессионных колец. Они изготовлены из чугуна с электронно-лучевой обработкой - для повышения износостойкости при контакте со стенкой статора.

Апексы состоят из двух элементов - основного уплотнителя и уголка. К стенке статора их прижимает пружина и центробежная сила. Роль вторых компрессионных колец играют боковые и угловые уплотнения. Они обеспечивают газоплотность контакта ротора и боковых корпусов. Как и апексы, к стенкам корпусов они прижимаются своими пружинами. Боковые уплотнители металлокерамические (на них приходится основная нагрузка), а угловые сделаны из специального чугуна. А еще есть изолирующие уплотнения. Они препятствуют перетеканию части отработавших газов во впускные окна через зазор между ротором и боковым корпусом. На обеих сторонах ротора есть и подобие маслосъемных колец - масляные уплотнения. Они задерживают масло, подаваемое в его внутреннюю полость для охлаждения.

Система смазки тоже изощренная. Она имеет минимум один радиатор для охлаждения масла при работе мотора на больших нагрузках и несколько видов масляных форсунок. Одни встроены в эксцентриковый вал и охлаждают роторы (по сути, похожи на форсунки охлаждения поршней). Другие встроены в статоры - по паре на каждый. Форсунки расположены под углом и направлены на стенки боковых корпусов - для лучшей смазки корпусов и боковых уплотнений ротора. Масло попадает в рабочую полость и смешивается с топливовоздушной смесью, обеспечивая смазку остальных элементов, и сгорает вместе с ней. Поэтому важно использовать только минеральные масла или одобренную производителем специальную полусинтетику. Неподходящие виды смазки при сгорании дают большое количество углеродных отложений, а это приводит к детонации, пропускам зажигания и снижению компрессии.

Топливная система довольно проста - за исключением количества и расположения форсунок. Две - перед впускными окнами (по одной на ротор), еще столько же - во впускном коллекторе. В коллекторе форсированного мотора на две форсунки больше.

Камеры сгорания очень длинные, и, чтобы сгорание рабочей смеси было эффективным, пришлось применить по две свечи на каждый ротор. Они отличаются друг от друга длиной и электродами. Во избежание неправильной установки на провода и свечи нанесены цветные метки.

НА ДЕЛЕ

Ресурс мотора 13B-MSP составляет примерно 100 000 км. Как ни странно, он страдает теми же проблемами, что и поршневой.

Первым слабым звеном кажутся уплотнения ротора, которые испытывают сильный нагрев и высокие нагрузки. Это действительно так, но прежде естественного износа их прикончат детонация и выработка подшипников эксцентрикового вала и роторов. Причем страдают только торцевые уплотнения (апексы), а боковые изнашиваются крайне редко.

Детонация деформирует апексы и их посадочные места на роторе. В результате вдобавок к снижению компрессии уголки уплотнений могут вывалиться и повредить поверхность статора, который не подлежит обработке. Расточка бесполезна: во‑первых, сложно найти нужное оборудование, а во‑вторых, запчастей под увеличенный размер просто нет. Не подлежат ремонту и роторы при повреждении пазов под апексы. Как водится, корень беды - в качестве топлива. Честный 98‑й бензин найти не так уж просто.

Быстрее всего изнашиваются коренные вкладыши эксцентрикового вала. Видимо, из-за того, что он вращается в три раза быстрее роторов. В результате роторы получают смещение относительно стенок статора. А вершины роторов должны быть равноудалены от них. Рано или поздно уголки апексов выпадают и задирают поверхность статора. Эту беду никак не предугадать - в отличие от поршневого мотора, роторный практически не стучит даже при износе вкладышей.

У форсированных наддувных моторов бывают случаи, когда из-за очень бедной смеси апекс перегревается. Пружина под ним выгибает его - в результате компрессия значительно падает.

Вторая слабинка - неравномерный нагрев корпуса. Верхняя часть (здесь протекают такты впуска и сжатия) холоднее, чем нижняя (такты сгорания и выпуска). Однако корпус деформируется только у форсированных наддувных моторов мощностью более 500 л.с.

Как и следовало ожидать, мотор очень чувствителен к типу масла. Практика показала, что синтетические масла , пусть и специальные, образуют при сгорании очень много нагара. Он накапливается на апексах и снижает компрессию. Нужно использовать минеральное масло - оно сгорает почти бесследно. Сервисмены рекомендуют менять его через каждые 5000 км.

Масляные форсунки в статоре выходят из строя в основном из-за попадания грязи во внутренние клапаны. Атмосферный воздух проникает в них через воздушный фильтр, и несвоевременная замена фильтра ведет к проблемам. Клапаны форсунок промывке не поддаются.

Проблемы с холодным пуском мотора, особенно в зимнее время, обусловлены потерей компрессии вследствие износа апексов и появления отложений на электродах свечей из-за некачественного бензина.

Свечей хватает в среднем на 15 000–20 000 км.

Вопреки расхожему мнению, производитель рекомендует глушить мотор как обычно, а не на средних оборотах. «Знатоки» уверены, что при выключении зажигания в рабочем режиме сгорают все остатки топлива и это облегчает последующий холодный пуск. По мнению сервисменов, толку от подобных ухищрений ноль. А вот действительно полезным для мотора будет хотя бы небольшой прогрев перед началом движения. С теплым маслом (не ниже 50º) его износ будет меньше.

При качественной дефектовке роторного двигателя и последующем ремонте он отходит еще 100 000 км. Чаще всего требуется замена статоров и всех уплотнений роторов - за это придется выложить не менее 175 000 рублей.

Несмотря на вышеперечисленные проблемы, в России хватает поклонников роторных машин - что уж говорить о других странах! Хотя сама «Мазда» сняла роторную «восьмерку» с производства и с ее наследницей пока не спешит.

Mazda RX-8: ТЕСТ НА ВЫНОСЛИВОСТЬ

В 1991 году «Мазда‑787В» с роторным мотором победила в гонке «24 часа Ле-Мана». Это была первая и единственная победа автомобиля с таким двигателем. Кстати, сейчас далеко не все поршневые моторы доживают до финиша в «длинных» гонках на выносливость.

Роторно-поршневой двигатель или двигатель Ванкеля представляет собой мотор, где главным рабочим элементом осуществляются планетарные круговые движения. Это принципиально другой вид двигателя, отличный от поршневых собратьев в семействе ДВС.

В конструкции такого агрегата используется ротор (поршень) с тремя гранями, внешне образующим треугольник Рело, осуществляющий круговые движения в цилиндре особого профиля. Чаще всего поверхность цилиндра исполнена по эпитрохоиде (плоской кривой, полученной точкой, которая жестко связана с окружностью, осуществляющей движение по внешней стороне другой окружности). На практике можно встретить цилиндр и ротор иных форм.

Составные элементы и принцип работы

Устройство двигателя типа РПД предельно проста и компактна. На ось агрегата устанавливается ротор, который крепко соединяется с шестерней. Последняя сцепляется со статором. Ротор, имеющий три грани, двигается по эпитрохоидальной цилиндрической плоскости. В результате чего сменяющиеся объемы рабочих камер цилиндра отсекаются с помощью трех клапанов. Уплотнительные пластины (торцевого и радиального типа) прижимаются к цилиндру под действием газа и за счет действия центростремительных сил и ленточных пружин. Получаются 3 изолированные камеры разные по объемным размерам. Здесь осуществляются процессы сжимания поступившей смеси горючего и воздуха, расширения газов, оказывающих давление на рабочую поверхность ротора и очищающих камеру сгорания от газов. На эксцентриковую ось передается круговое движение ротора. Сама ось находится на подшипниках и передает момент вращения на механизмы трансмиссии. В этих моторах осуществляется одновременная работа двух механических пар. Одна, которая состоит из шестерен, регулирует движение самого ротора. Другая — преобразует вращающиеся движение поршня во вращающиеся движения эксцентриковой оси.

Детали Роторно-поршневого двигателя

Принцип работы двигателя Ванкеля

На примере двигателей, установленных на автомобилях ВАЗ, можно назвать следующие технические характеристики:
— 1,308 см3 – рабочий объем камеры РПД;
— 103 кВт/6000 мин-1 – номинальная мощность;
— 130 кг масса двигателя;
— 125000 км – ресурс двигателя до первого полного его ремонта.

Смесеобразование

В теории в РПД применяют несколько разновидностей смесеобразования: внешнее и внутреннее, на основе жидких, твердых, газообразных видов топлива.
Касательно твердых видов топлива стоит отметить, что их первоначально газифицируют в газогенераторах, так как они приводят к повышенному золообразованию в цилиндрах. Поэтому большее распространение на практике получили газообразные и жидкие топлива.
Сам механизм образования смеси в двигателях Ванкеля будет зависеть от вида применяемого топлива.
При использовании газообразного топлива его смешение с воздухом происходит в специальном отсеке на входе в двигатель. Горючая смесь в цилиндры поступает в готовом виде.

Из жидкого топлива смесь приготавливается следующим образом:

  1. Воздух смешивается с жидким топливом перед поступлением в цилиндры, куда поступает горючая смесь.
  2. В цилиндры двигателя жидкое топливо и воздух поступают по отдельности, и уже внутри цилиндра происходит их смешивание. Рабочая смесь получается при соприкосновении их с остаточными газами.

Соответственно, топливно-воздушная смесь может готовиться вне цилиндров или внутри их. От этого идет разделение двигателей с внутренним или внешним образованием смеси.

Особенности РПД

Преимущества

Преимущества двигателей роторно-поршневого типа по сравнению со стандартными бензиновыми двигателями:

— Низкие показатели уровня вибрации.
В моторах типа РПД отсутствует преобразование возвратно-поступательного движения во вращательное, что позволяет агрегату выдержать высокие обороты с меньшими вибрациями.

— Хорошие динамические характеристики.
Благодаря своему устройству такой мотор, установленный в машине, позволяет ее разогнать выше 100 км/ч на высоких оборотах без избыточной нагрузки.

Хорошие показатели удельной мощности при малой массе.
Из-за отсутствия в конструкции двигателя коленчатого вала и шатунов достигается небольшая масса движущихся частей в РПД.

— В двигателях такого типа практически отсутствует система смазки.
Непосредственно в топливо добавляется масло. Топливно-воздушная смесь сама осуществляет смазывание пар трения.

— Мотор роторно-поршневого типа имеет небольшие габаритные размеры.
Установленный роторно-поршневой мотор позволяет максимально использовать полезное пространство моторного отсека автомобиля, равномерно распределить нагрузку на оси автомашины и лучше рассчитать расположение элементов коробки передач и узлов. Например, четырехтактный двигатель такой же мощности будет в два раза больше роторного двигателя.

Недостатки двигателя Ванкеля

— Качество моторного масла.
При эксплуатации такого типа двигателей необходимо уделять должное внимание к качественному составу масла, применяемого в двигателях Ванкеля. Ротор и находящаяся внутри камера двигателя имеют большую площадь соприкосновения, соответственно, износ двигателя происходит быстрее, а также такой двигатель постоянно перегревается. Нерегулярная смена масла наносит огромный урон двигателю. Износ мотора возрастает в разы из-за наличия абразивных частиц в отработанном масле.

— Качество свечей зажигания.
Эксплуатантам таких двигателей приходится быть особо требовательным к качественному составу свечей. В камере сгорания из-за ее небольшого объема, протяженной формы и высокой температуры затруднен процесс зажигания смеси. Следствием является повышенная рабочая температура и периодическая детонация камеры сгорания.

— Материалы уплотнительных элементов.
Существенной недоработкой мотора типа РПД можно назвать ненадежную организацию уплотнений промежутков между камерой, где сгорает топливо, и ротором. Устройство ротора такого мотора достаточно сложное, поэтому уплотнения требуются и по граням ротора, и по боковой поверхности, имеющей соприкосновение с крышками двигателя. Поверхности, которые подвергаются трению, необходимо постоянно смазывать, что выливается в повышенный расход масла. Практика показывает, что мотор типа РПД может потребить от 400 гр до 1 кг масла на каждые 1000 км. Снижаются экологичные показатели работы двигателя, так как горючее сгорает вместе с маслом, в результате в окружающую среду выбрасывается большое количество вредных веществ.

Из-за своих недоработок такие моторы не получили широкого распространения в автомобилестроении и в изготовлении мотоциклов. Но на базе РПД изготавливаются компрессоры и насосы. Авиамоделисты часто используют такие двигатели для конструирования своих моделей. Из-за невысоких требований к экономичности и надежности конструкторы не применяют сложную систему уплотнений в таких моторах, что значительно снижает его себестоимость. Простота его конструкции позволяет без проблем встроить в авиамодель.

КПД роторно-поршневой конструкции

Не смотря на ряд недоработок, проведенные исследования показали, что общий КПД двигателя Ванкеля довольно-таки высокий по современным меркам. Его значение составляет 40 – 45%. Для сравнения, у поршневых двигателей внутреннего сгорания КПД составляет 25%, у современных турбодизелей – около 40%. Самый высокий КПД у поршневых дизельных двигателей составляет 50%. До настоящего времени ученые продолжают работу по изысканию резервов для повышения КПД двигателей.

Итоговый КПД работы мотора состоит из трех основных частей:

  1. Топливная эффективность (показатель, характеризующий рациональное использование горючего в моторе).

Исследования в этой области показывают, что только 75% горючего сгорает в полном объеме. Есть мнение, что данная проблема решается путем разделения процессов сгорания и расширения газов. Необходимо предусмотреть обустройство специальных камер при оптимальных условиях. Горение должно происходить в замкнутом объеме, при условии нарастания температурных показателей и давления, расширительный процесс должен происходить при невысоких показателях температур.

  1. КПД механический (характеризует работу, результатом которой стало образование переданного потребителю крутящего момента главной оси).

Порядка 10% работы мотора расходуется на приведение в движение вспомогательных узлов и механизмов. Исправить данную недоработку можно путем внесения изменений в устройство двигателя: когда главный движущийся рабочий элемент не прикасается к неподвижному корпусу. Постоянное плечо крутящего момента должно присутствовать на всем пути следования основного рабочего элемента.

  1. Термическая эффективность (показатель, отражающий количество тепловой энергии, образованной от сжигания горючего, преобразующейся в полезную работу).

На практике 65% полученной тепловой энергии улетучивается с отработанными газами во внешнюю среду. Ряд исследований показал, что можно добиться повышения показателей термической эффективности в том случае, когда конструкция мотора позволяла бы осуществлять сгорание горючего в теплоизолированной камере, чтобы с самого начала достигались максимальные показатели температуры, а в конце эта температура понижалась до минимальных значений путем включения паровой фазы.

Современное состояние роторно-поршневого двигателя

На пути массового применения двигателя встали значительные технические трудности:
— отработка качественного рабочего процесса в камере неблагоприятной формы;
— обеспечение герметичности уплотнения рабочих объемов;
— проектировка и создания конструкции корпусных деталей, которые надежно прослужат весь жизненный цикл работы двигателя без коробления при неравномерном нагрева этих деталей.
В результате огромной проделанной научно-исследовательской и опытно-конструкторской работы этим фирмам удалось решить почти все наиболее сложные технические задачи на пути создания РПД и выйти на этап их промышленного производства.

Первый массовый автомобиль NSU Spider с РПД начала выпускать фирма NSU Motorenwerke. Вследствие частых переборок двигателей из-за выше сказанных технических проблем на раннем этапе развития конструкции двигателя Ванкеля, взятые NSU гарантийные обязательства привели ее к финансовому краху и банкротству и последовавшему слиянию с Audi в 1969 году.
Между 1964 и 1967 годом произведено 2375 автомобилей. В 1967 году Spider был снят с производства и заменён на NSU Ro80 с роторным двигателем второго поколения; за десять лет производства Ro80 выпущено 37398 машин.

Наиболее успешно с данными проблемами справились инженеры фирмы Mazda. Она и остается единственным массовым производителем машин с роторно-поршневыми двигателями. Доработанный мотор серийно начался ставить на автомобиль Mazda RX-7 с 1978 года. С 2003 преемственность приняла модель Mazda RX-8, она и является на данный момент массовой и единственной версией автомобиля с двигателем Ванкеля.

Российские РПД

Первое упоминание о роторном двигателе в Советском Союзе относится к 60-м годам. Исследовательские работы по роторно-поршневым двигателям начались в 1961 году, соответствующим постановлением Минавтопрома и Минсельхозмаша СССР. Промышленное же изучение с дальнейшем выводом на производство данной конструкции началось в 1974 году на ВАЗе. специально для этого было создано Специальное конструкторское бюро роторно-поршневых двигателей (СКБ РПД). Поскольку лицензию купить не было возможности, был разобран и скопирован серийный «ванкель» от NSU Ro80. На этой основе разработали и собрали двигатель Ваз-311, а произошло это знаменательное событие в 1976 году. На ВАЗе разрабатывали целую линейку РПД от 40 до 200 сильных двигателей. Доработка конструкции тянулась почти шесть лет. Удалось решить целый ряд технических проблем связанные с работоспособностью газовых и маслосъемных уплотнений, подшипников, отладить эффективный рабочий процесс в камере неблагоприятной формы. Свой первый серийный автомобиль ВАЗ с роторным двигателем под капотом представил публике в 1982 году, это был Ваз-21018. Машина внешне и конструктивно была как и все модели данной линейки, за одним исключением, а именно, под капотом стоял односекционный роторный двигатель мощностью 70 л.с. Длительность разработки не помешала случиться конфузу: на всех 50 опытных машинах при эксплуатации возникли поломки мотора, заставившие завод установить на его место обычный поршневой.

Ваз 21018 с Роторно-поршневым двигателем

Установив, что причиной неполадок являлись вибрации механизмов и ненадёжность уплотнений, конструкторы предприняли спасти проект. Уже в 83-ем появились двухсекционные Ваз-411 и Ваз-413 (мощностью, соответственно, 120 и 140 л.с.). Несмотря на низкую экономичность и малый ресурс, сфера применения роторного двигателя всё-таки нашлась – ГАИ, КГБ и МВД требовались мощные и незаметные машины. Оснащённые роторными двигателями «Жигули» и «Волги» легко догоняли иномарки.

С 80-ых годов 20 века СКБ был увлечён новой темой – применение роторных двигателей в смежной отрасли — авиационной. Отход от основной отрасли применения РПД привело к тому, что для переднеприводных машин роторный двигатель Ваз-414 создаётся лишь к 1992 году, да ещё три года доводится. В 1995 году Ваз-415 был представлен к сертификации. В отличие от предшественников он универсален, и может устанавливаться под капотом как заднеприводных («классика» и ГАЗ), так и переднеприводных машин (ВАЗ, Москвич). Двухсекционный «Ванкель» имеет рабочий объём 1308 см 3 и развивает мощность 135 л.с. при 6000об/мин. «Девяносто девятую» он ускоряет до сотни за 9 секунд.

Роторно-поршневой двигатель ВАЗ-414

На данный момент проект по разработке и внедрения отечественного РПД заморожен.

Ниже представлено видео устройства и работы двигателя Ванкеля.

Когда автомобили с поршневыми двигателями внутреннего сгорания уже широко распространились по всему миру, некоторые инженеры попытались разработать роторные двигатели, такие же эффективные и мощные. Существенных успехов добились специалисты из Германии, что неудивительно, ведь именно в этой стране изобрели автомобиль.

Немного истории

В 1957 году свет увидел первый роторно-поршневой двигатель. Впоследствии он был назван именем одного из разработчиков - Феликса Ванкеля. Второй человек, Вальтер Фройде, участвующий в процессе изобретения, незаслуженно попал в тень соавтора. Оба инженера были представителями немецкой компании NSU, производившей авто и мототехнику.

Годом позднее выпустили первый автомобиль с РПД. К сожалению, даже главных конструкторов модель новой машины не удовлетворила. Дви́гатель доработали, и в конце 60-х годов на свет появился седан, получивший звание «Авто года». Это был Ro-80 той же компании NSU. До 100 км он разгонялся всего за 12,8 с, развивал скорость до 180 км/ч, а весил немногим больше тонны. По тем временам это были грандиозные показатели. Лицензию на производство стали сразу же приобретать одна автомобильная компания за другой.

Неизвестно, как сложилась бы судьба изобретения Ванкеля, если бы в 1973 году не начался энергетический кризис, и цены на нефть резко повысились. внутреннего сгорания съедал слишком много топлива, поэтому от его применения начали отказываться.

В конце 90-х авто с моторами Ванкеля выпускали только Россия и Япония. Российские автомобили ВАЗ, оснащенные РПД, малоизвестны, а вот японским моделям удалось добиться мировой популярности.

В настоящее время автомобили с роторными двигателями производит лишь компания Mazda. Японским специалистам удалось усовершенствовать автомобильный мотор до такой степени, что он стал потреблять в 2 раза меньше масла и на 40% меньше топлива. Токсичность выхлопов также сократилась, и двигатель теперь соответствует европейским экологическим стандартам. Новым витком в развитии РПД стало применение водорода в качестве топлива.

Основы устройства роторного двигателя

Чтобы понять, как работает роторный двигатель, надо разобраться с его устройством. Две важные детали РПД - ротор и статор. Ротор, установленный на валу, вращается вокруг неподвижной шестерни - статора. Соединение с шестерней происходит посредством зубчатого колеса. Делают ротор из легированной стали и помещают в цилиндрический корпус.

Ротор двигателя в поперечном срезе имеет треугольную форму, его грани выпуклые, а три вершины постоянно контактируют с внутренней поверхностью корпуса. Таким образом, пространство цилиндра разделяется на три камеры. В результате вращения объем камер меняется. В определенный момент, из-за особенностей формы профиля корпуса, камер становится четыре.

  • На первом этапе в одну из камер через отверстие (впускное окно) запускается топливо.
  • Далее объем камеры с топливом уменьшается, впускное окно полностью закрывается и начинается сжатие топлива.
  • На следующем этапе образуется четыре камеры, срабатывают свечи (их две), происходит возгорание топлива, и совершается полезная работа мотора.
  • При дальнейшем вращении ротора открывается выпускное окно, в которое выходят продукты горения (выхлопные газы).

Как только выпускное окно закрывается, открывается впускное отверстие и цикл повторяется.

Один рабочий цикл совершается за один полный оборот вала. Чтобы поршневой двигатель совершил такую же работу, он должен быть двухцилиндровым.

Для обеспечения герметичности на вершинах ротора устанавливают уплотнительные пластины. К цилиндру их придавливают пружины и центробежная сила, добавляется также давление газа.

Чтобы лучше понять, как устроен роторный двигатель, и что это такое вообще, необходимо изучить схему. На ней представлено поперечное сечение агрегата и процессы, происходящие при движении ротора. Схема роторного мотора показывает, какие этапы проходит ротор, играющий роль поршня.

Типы роторных двигателей

Древнейшие роторные двигатели - это водяные мельницы, в которых колесо вращается от действия воды и передает энергию валу. Устройство современно роторного двигателя, работающего на топливе, значительно сложнее. В нем камера может быть:

  • герметично закрыта;
  • постоянно контактировать с внешней средой.

Первый тип устройств применяют на средствах передвижения, а второй в газовых турбинах. Двигатели с закрытой камерой в свою очередь разделяются на несколько видов. Классификация следующая.

  1. Ротор вращается попеременно то в одну, то в другую сторону, его движение неравномерно.
  2. Вращение происходит в одну сторону, но скорость меняется, движение пульсирующее.
  3. Двигатели с уплотнительными заслонками, сделанными в виде лопастей.
  4. Равномерно вращающийся ротор с заслонками, которые движутся вместе с ротором и выполняют функцию уплотнителя.
  5. Двигатели с ротором, совершающим планетарное движение.

Существует также еще два вида типа роторных двигателей, в которых главный элемент равномерно вращается. Они отличаются организацией рабочей камеры и конструкцией уплотнителей. относится к пятому пункту из представленного выше списка.

Преимущества РПД

Рассмотрев устройство роторного двигателя и принцип работы, можно понять, что он полностью отличается от поршневого. Роторный двигатель внутреннего сгорания более компактный, состоит из меньшего количества деталей, а его удельная мощность больше, чем у поршневого мотора.

РПД легче уравновесить, чтобы свести вибрации к минимуму. Это позволяет устанавливать его на легкий транспорт, например, микроавтомобили.

Количество деталей меньше, чем у поршневого двигателя почти в 2 раза. Размеры тоже значительно меньше, и такое преимущество упрощает развесовку по осям, позволяет добиться большей устойчивости на дороге.

Традиционный поршневой двигатель совершает полезную работу только за два оборота вала, а в роторном двигателе полезная работа совершается за один оборот ротора. Это является причиной быстрого разгона автомобилей с РПД.

Высокий расход топлива РПД

Устройство и на удивление просты, понятны и остроумны. Почему же он не получил распространения подобно поршневому ДВС? Не последнее место здесь занимает экономичность.

Роторный двигатель внутреннего сгорания потребляет слишком много топлива. При объеме всего 1,3 литра на каждые 100 км уходит почти 20 литров бензина. По этой причине запускать массовое производство автомобилей с РПД решились не многие компании.

В свете последних событий на Ближнем Востоке, когда за ресурсы ведется ожесточенная война, а цены на нефть и газ остаются по-прежнему довольно высокими, ограниченное применение РПД вполне понятно.

Другие важные недостатки

Следующим недостатком роторно-поршневого двигателя является быстрый износ уплотнителей, расположенных по ребрам ротора. Износ этот происходит по причине быстрого вращения, и как следствие, трения ребер о стенки камеры.

В дополнение к этому усложняется система смазки ребер. Компания Мазда сделала форсунки, которые впрыскивают масло в камеру сгорания. В связи с этим требования к качеству масла повысились. Постоянной обильной смазки также требует главный вал, вокруг которого происходит движение.

Техническое решение вопросов смазки требовало особого подхода, и справиться с задачей смогли только японские инженеры после долгих лет экспериментов.

Температура выхлопных газов у РПД выше, чем у поршневого двигателя. Это связано с относительно малой длиной рабочего хода грани ротора. Процесс горения едва успевает закончиться, как грань уже переместилась настолько, что открывается выпускное окно. В результате в выхлопную трубу выходят газы, которые полностью не передали давление ротору, и температура их высока. В атмосферу также попадает небольшая часть недогоревшей топливной смеси, что отрицательно сказывается на окружающей среде.

В роторном двигателе сложно обеспечить герметичность камеры сгорания. В процессе работы стенки статора неравномерно разогреваются и расширяются. В результате возможны утечки газа. Особенно нагревается та часть, в которой происходит сгорание. Чтобы справить с этой проблемой, различные части делают из разных сплавов. Это в свою очередь усложняет и удорожает процесс производства двигателей.

На стоимость производства роторно-поршневых двигателей Ванкеля не лучшим образом влияет сложная форма камеры. На самом деле у цилиндра не овальное сечение, как иногда говорят. Сечение имеет форму эпитрохоида и требует высокоточного исполнения.

Итак, становится понятно, что у роторного двигателя есть плюсы и минусы. Их можно свести в следующую таблицу.

Из-за быстрого износа деталей ресурс роторного двигателя составляет около 65 тыс. км. Для сравнения ресурс традиционного двигателя внутреннего сгорания в 2, а то и в 3 раза больше. Обслуживание роторно-поршневых двигателей требует большей ответственности, поэтому они привлекают внимание преимущественно профессионалов. Частично инженерам удалось устранить недостатки автомобилей с РПД, но некоторые из них все же остались.

Роторно-поршневые двигатели Мазды

В то время как другие мировые производители отказались от производства роторных двигателей, корпорация Mazda продолжила работу над ними. Ее специалисты усовершенствовали конструкцию и получили мощный мотор, способный конкурировать с лучшими европейскими агрегатами.

Работать с роторно-поршневым двигателем японцы начали еще в 1963 году. Они выпустили несколько моделей автобусов, грузовиков и легковых авто.

С 1978 по 2003 год компания производила знаменитый спорткар RX-7. Его приемником стала модель RX-8, получившая более 30 наград на международных моторных выставках.

На RX-8 был установлен двигатель Renesis (Rotary Engine Genesis). В разной комплектации автомобиль продавался по всему миру. Самые мощные модели (250 л. с., 8,5 тыс. оборотов в минуту) продавали в Северной Америке и Японии. В 2007 годы в Токио на автосалоне представили концепт кар с мотором Renesis II мощность 300 л. с.

В 2009 году автомобили Мазда с роторным мотором были запрещены в Европе, поскольку выброс углекислого газа превышал существующие на тот момент нормы. В 2102 году массовое производство японских автомобилей с роторными двигателями было прекращено. На данный момент РПД от компании Mazda устанавливают только на спортивные гоночные автомобили.

Конструкция

Установленный на валу ротор жёстко соединён с зубчатым колесом, которое входит в зацепление с неподвижной шестернёй - статором. Диаметр ротора намного превышает диаметр статора, несмотря на это ротор с зубчатым колесом обкатывается вокруг шестерни. Каждая из вершин трёхгранного ротора совершает движение по эпитрохоидальной поверхности цилиндра и отсекают переменные объёмы камер в цилиндре с помощью трёх клапанов.

Цикл двигателя Ванкеля: впуск (голубой), сжатие (зелёный), рабочий ход (красный), выпуск (жёлтый)

Такая конструкция позволяет осуществить любой 4-тактный цикл Дизеля , Стирлинга или Отто без применения специального механизма газораспределения. Герметизация камер обеспечивается радиальными и торцевыми уплотнительными пластинами, прижимаемыми к цилиндру центробежными силами, давлением газа и ленточными пружинами. Отсутствие механизма газораспределения делает двигатель значительно проще четырехтактного поршневого (экономия составляет около тысячи деталей), а отсутствие сопряжения (картерное пространство, коленвал и шатуны) между отдельными рабочими камерами обеспечивают необычайную компактность и высокую удельную мощность. За один оборот ванкель выполняет три полных рабочих цикла, что эквивалентно работе шестицилиндрового поршневого двигателя.

При всех преимуществах (высокая удельная мощность, простота устройства, несложный ремонт при правильной эксплуатации), важной проблемой является меньшая экономичность на низких оборотах по сравнению с обычными ДВС .

Другой особенностью двигателей Ванкеля является его склонность к перегреву. Камера сгорания имеет линзовидную форму, то есть при маленьком объёме у неё относительно большая площадь. При температуре горения рабочей смеси основные потери энергии идут через излучение. Интенсивность излучения пропорциональна четвёртой степени температуры, таким образом идеальная форма камеры сгорания - сферическая. Лучистая энергия не только бесполезно покидает камеру сгорания, но и приводит к перегреву рабочего цилиндра. Эти потери не только снижают эффективность преобразования химической энергии в механическую, но и вызывают проблемы с воспламенением рабочей смеси, поэтому в конструкции двигателя часто предусматривают 2 свечи.

Высокие требования к точности исполнения деталей делают его сложным в производстве. Оно требует высокотехнологичного и высокоточного оборудования - станков, способных перемещать инструмент по сложной траектории эпитрохоидальной поверхности камеры объёмного вытеснения.

Применение

Двигатель разрабатывался изначально именно для применения на автотранспорте. Первый серийный автомобиль с роторным двигателем - немецкий спорткар NSU Wankelspider.

Первый массовый (37,204 экземпляра) - немецкий седан бизнес-класса NSU Ro80. Автомобиль имел достаточно инноваций и помимо двигателя - в частности, кузов с рекордно-низким аэродинамическим сопротивлением, полуавтоматическую коробку передач с гидротрансформатором, блок-фары, и так далее. Ro80 отличалась не только уникальной конструкцией, но и передовым дизайном, который оказался непонятен публике середины шестидесятых; через десять лет именно он был положен в основу стиля моделей «Ауди» 100 и 200 поколения C2 .

К сожалению, ресурс двигателя оказался весьма мал (ремонт требовался уже после пробега порядка 50 тыс. км), поэтому автомобиль заслужил плохую репутацию и относительно малоизвестен. На многих сохранившихся автомобилях оригинальный двигатель заменён на поршневой V4 «Essex» фирмы Ford .

Citroën также экспериментировал с РПД - проект Citroën M35.

После этого серийное и мелкосерийное производство роторно-поршневых двигателей Ванкеля производились только фирмой ВАЗ, в конечном счёте взявшим за основу конструкцию двигателя

Современные двигатели

Инженерам фирмы Euro IV. Двухцилиндровый двигатель «Renesis» объёмом всего 1,3 л выдаёт мощность в 250 л. с. и занимает гораздо меньше места в моторном отсеке. Следующая модель двигателя Renesis 2 16X имеет меньший объём, но бо́льшую мощность, меньше нагревается.

Сноски

Литература

  • Роторно-поршневой двигатель // Большая советская энциклопедия

Ссылки

  • Последняя разработка РПД Mazda: Renesis 16X (англ.) , www.mazda.com
  • Wankel-ag.de (нем.) (англ.)
  • Англоязычный форум по РПД (англ.)

РПД СССР/России

  • ВАЗ: Описание моделей с РПД , Ladaonline.ru

Роторный двигатель (РД) считается двигателем внутреннего сгорания, который практически полностью отличается от привычного поршневого агрегата. Как известно, в цилиндре поршневого двигателя выполняется несколько тактов: впуск, сжатие, затем рабочий ход и в заключении – выпуск.

Что касается РД, то он осуществляет все те же такты, при этом они осуществляются в разных частях камеры. Сравнить их можно было бы лишь в том случае, если в поршневом агрегате присутствовал отдельный цилиндр для каждого из тактов и поршень постепенно перемещался бы от цилиндра к цилиндру.

Роторный движок изобрел и сконструировал доктор Феликс Ванкель, поэтому его часто называют двигателем Ванкеля.

Принцип работы

Роторный двигатель использует давление, возникающее во время сгорания топливовоздушной смеси. Такое давление в поршневых двигателях создается в цилиндрах, что привод в движение поршни.

Коленчатый вал и шатуны приводят поршень во вращательное движение и благодаря этому колеса автомобиля начинают вращаться. В данном двигателе, давление при сгорании возникает в камере, которая сформирована частью самого корпуса и закрыта одной из сторон треугольного ротора, выполняющего роль поршней.

В данном видео, вам покажут, как работает роторный двигатель для Mazda RX-8. Приятного просмотра!

Вращения ротора напоминают линию, которая нарисована спирографом. Такая траектория позволяет вершинам ротора контактировать с корпусом движка, что образует при этом три разделенных между собой объема газа.

Когда ротор вращается, эти объемы поочередно расширяются и сжимаются.Именно это обеспечивает поступление в движок топливовоздушной смеси, а также сжатие и выпуск выхлопа. Он обладает системой зажигания и впрыска топлива, которые похожи на используемые системы в поршневых агрегатах.

Его конструкция полностью отличается от поршневого движка. Ротор обладает тремя выпуклыми сторонами, которые исполняют роль поршней. На каждой стороне устройства, присутствует специальное углубление, увеличивающее скорость вращения самого ротора.

Это оставляет для топливовоздушной смеси больше свободного места. На вершине всех граней расположены металлические пластины, которые разделяют все свободное место на камеры. На каждой из сторон ротора присутствуют два кольца из металла, формирующие стенки камер.

В центральной части устройства, находится зубчатое колесо, зубья которого смотрят внутрь. Это колесо сопрягается с шестерней, которая закреплена на корпусе двигателя. Данное сопряжение задает направление и траекторию вращения в корпусе движка.

Особенности роторного двигателя

В данном видео, вам расскажут об истории двигателей, а так же чем они так примечательны.

Корпус двигателя отличается овальной формой.Форма самой камеры сконструирована таким образом, чтобы все вершины ротора контактировали со стеной камеры.

Они образуют три разделенные между собой объемы газа. В корпусе происходит процесс внутреннего сгорания. Свободное пространство корпуса делится на четыре части для впуска, сжатия, рабочего такта и выпуска.

Важно отметить, что порт впуска и выпуска находятся в корпусе. Клапаны в порте отсутствуют. Впускной порт напрямую соединен с дросселем, а выпускной порт – с выхлопной системой.

Выходной вал отличается закругленными выступами-кулачками, которые эксцентрично расположены. С каждым из выступов сопряжен ротор. Выходной вал представляет собой аналог коленчатого вала в поршневом движке.Вращаясь, ротор толкает выступы-кулачки.

Поскольку они расположены несимметрично, ротор давит на них с силой, которая заставляет вращаться выходной вал.

Роторный двигатель собирают слоями.Движок с двумя роторами собирается пятью слоями, которые крепятся длинными болтами, расположенными по кругу.

Через все элементы конструкции проходит охлаждающая жидкость. Два крайних слоя обладают уплотнениями и подшипниками для выходного вала.

Кроме того, они изолируют части корпуса двигателя, в которых находятся роторы. Внутренняя поверхность каждой части является гладкой и это обеспечивает должное уплотнение роторов.

Следует отметить, что впускной порт присутствует в крайних частях. Овальный корпус ротора и выпускной порт расположен в следующем слое. Здесь и установлен ротор.

В центральной части присутствуют впускные порты – для каждого ротора отведен один такой порт.

Роторный движок Mazda RX-8

Центральная часть разделяет между собой роторы, именно поэтому ее поверхность внутри является совершенно гладкой.

Достоинства и недостатки

На роторный двигатель в свое время обратило внимание множество ведущих производителей авто.

Благодаря своей конструкции и принципу работы, он обладал весомыми преимуществами перед поршневыми движками. В первую очередь, роторный агрегат отличается лучшей сбалансированностью и подвергается минимальной вибрации.

Помимо этого, такой двигатель отличается превосходными динамическими характеристиками (на низкой передаче автомобиль с таким движком можно без особых усилий разогнать более чем на 100 км/ч при высоких оборотах).

Данный агрегат гораздо легче и компактнее поршневого движка. В данном двигателе используется меньше узлов, и он отличается высокой мощностью по сравнению с поршневым агрегатом.

Среди недостатков роторного движка следует выделить:

  • повышенный расход топлива при низких оборотах;
  • сложность производства отдельных деталей, которое требует использования дорогостоящего высокоточного оборудования;
  • склонность к перегреву из-за особенной формы камеры сгорания;
  • износ уплотнителей, которые расположены между форсунками из-за частых перепадов давления;
  • потребность в своевременной и частой смене моторного масла (замена должна производиться каждые 5000 километров).

К эксплуатации роторных агрегатов нужно подходить ответственнее, чем к обслуживанию поршневых агрегатов.

Их капитальный ремонт и техобслуживание важно проводить вовремя.

Особенность двигателей автомобилей Mazda

Компания Mazda начала производство моделей с роторными движками еще в далеком 1963-ом году.

Наиболее успешным авто компании оснащенным роторным агрегатом стала модель RX-7, выпущенная в 1978-ом году. Правда, до нее было выпущено множество машин, автобусов и грузовиков с роторными двигателями. После модели RX-7, производство которой было остановлено в 1995-ом году, роторным двигателем начали снабжать модель RX-8.

Данный двигатель считался лучшим агрегатом в 2003-ом году. Данный движок с двумя роторами производил 250 лошадиных сил. Однако в 2008-ом году компания прекратила продажу Mazda RX-8 в Европе из-за выбросов ее движка, которые не соответствовали европейским стандартам.

Однако разработчики компании решили на этом не останавливаться и создали современный роторный двигатель Renesis 16X, соответствующий международным и европейским стандартам.

Система впрыска была значительно переработана, благодаря чему топливо расходуется гораздо экономнее.

Помимо этого, корпус движка изготовлен из современного алюминиевого сплава. Компания также выпустила роторный агрегат, который может работать на водороде. Последней разработкой производителя с роторным двигателем на данный момент является модель Premacy Hydrogen RE Hybrid.