Гидравлическая система: расчет, схема, устройство. Типы гидравлических систем. Ремонт. Гидравлические и пневматические системы

Компрессор является источником сжатого воздуха, питающим все агрегаты пневматической системы. На грузовых автомобилях и автобусах применяют одноступенчатые двухцилиндровые компрессоры одностороннего действия.

Производительность компрессора зависит от частоты вращения коленчатого вала n , хода и диаметра поршня. Она находится в пределах (40¸ 170) л/мин при n =1000 мин -1 . Мощность, потребляемая компрессором составляет (0,5¸ 2,2) кВт (0,7¸ 3,0 л.с.).

С целью экономии затрат энергии на привод компрессора предусмотрено отключение подачи воздуха в систему, когда давление в ней достигнет заданного уровня (7,0¸ 7,3 кг/см 2). При этом давлении срабатывает регулятор давления, и открывает доступ сжатому воздуху в разгрузочное устройство.

У автомобиля ЗИЛ-130 регулятор давления подает сжатый воздух по горизонтальному каналу в блок цилиндров компрессора под плунжеры 1 разгрузочного устройства, изображенного на рис. 8.2. Плунжеры через толкатели 2 открывают впускные клапаны 3 обоих цилиндров, сообщая полости цилиндров между собой. Таким образом, воздух не сжимается, а перекачивается из цилиндра в цилиндр не поступая в систему. (Теоретическая удельная работа, затрачиваемая в компрессоре определяется по формуле , из которой видно, что, при равенстве давлений воздуха в начале р 1 и в конце р 2 процесса сжатия, она равна нулю). При снижении давления воздуха в системе автомобиля до определенного уровня (5,6¸ 6 кг/см 2) регулятор давления прекращает подачу воздуха и соединяет подплунжерное пространство с атмосферой. Плунжеры 1 опускаются, освобождая впускные клапаны 3, и компрессор начинает нагнетать воздух в пневматическую систему.

Регулятор давления - служит для автоматического поддержания необходимого давления воздуха в пневматической системе. Он ограничивает минимальный и максимальный пределы давления в ПС путем подачи сжатого воздуха в разгрузочное устройство компрессора или удаления из него, обеспечивая при этом включение или выключение подачи воздуха компрессором в систему.

В отечественных автомобилях применяют регуляторы давления двух типов: с шариковыми клапанами и диафрагменные. Регулятор давления с шариковым клапаном АР-10 представлен на рис. 8.3.

В корпусе 6 размещены два шариковых клапана 4 и 5, которые действуют на стержень 3, связанный с регулировочной пружиной 9 через шарик 2. При давлении в пневматической системе ниже максимального, пружина 9 удерживает впускной клапан 5 в прижатом состоянии к гнезду в корпусе 6 и полость разгрузочного устройства компрессора сообщается с атмосферой. Если давление в системе превысит максимальное, то под действием силы давления впускной клапан 5 откроет отверстие и одновременно выпускной клапан 4 перекроет выпускное отверстие гнезда 8. В этом положении связь полости разгрузочного устройства компрессора с атмосферой прерывается. Сжатый воздух проходит через впускной клапан 5 и поступает в разгрузочное устройство компрессора.

Верхний предел давления регулируют колпаком 1 (изменяют натяжение пружины 9). Разность давлений, при которой включается или выключается разгрузочное устройство, устанавливается изменением количества прокладок 7 под корпус 6 выпускного клапана. При снятии прокладок разность давлений увеличивается, при добавлении - уменьшается.

Регулятор давления АР-11 крепится к блоку цилиндров компрессора и отличается от АР-10 наличием двух фильтров на входе и выходе, что повышает надежность.

Масловлагоотделитель (рис. 8.4) - устанавливается перед баллонами и предназначен для очистки сжатого воздуха, поступающего из компрессора от масла и влаги. Масло оказывает вредное действие нарезиновые детали пневматической системы, а пары воды, конденсируясь в узлах системы при отрицательных температурах замерзают, что приводит к нарушению работы основных элементов пневматической системы автомобиля.

В корпусе 1 установлен обратный клапан 2, прижимаемый к гнезду пружиной 3. Сверху корпус закрыт пробкой 4. Для уплотнения корпуса и стакана 7 установлено резиновое кольцо 8 (уплотнение происходит при затяжке конусного наконечника стяжного стержня 6). Воздух из компрессора поступает в отверстие А, проходит через латунную сетку элемента 5, отделяясь от масла и влаги, поступает в отверстие стержня, и, отжимая обратный клапан, выходит в трубопровод, связанный с баллоном.

Оставшееся на сетке масло и влага стекают в стакан 7. Для выпуска конденсата в нижней части стакана устанавливают сливной краник.

Для повышения надежности работы пневматической системы и исключения замерзания конденсата применяют антифризный насос, который устанавливают между масловлагоотделителем и регулятором давления. Он служит для подачи в пневматическую систему порции морозостойкой жидкости, которая находится в специальном бачке.

Антифризный насос должен работать только в холодное время года. В теплое время его снимают. Он заполняется смесью этилового (300 см 3) и изоамилового (2 см 3) спиртов.

Воздушные баллоны - служат для аккумулирования сжатого в компрессоре воздуха. Благодаря им компрессор работает под нагрузкой кратковременно, а при достижении определенного давления в баллонах разгружается на время, пока из них не израсходуется определенное количество воздуха.

В зависимости от расхода сжатого воздуха потребителями, необходимо иметь определенный запас, которого должно хватать на некоторый период работы пневматической системы при внезапном прекращении работы компрессора.

Общий объем баллонов влияет на работу компрессора. При установке баллонов большого объема компрессор включается реже, но работает дольше, что может привести к его перегреву и снижению производительности. При малых объемах сокращается время непрерывной работы компрессора, но увеличивается частота его включений.

Наиболее распространенный воздушный баллон состоит из цилиндрической обечайки и двух штампованных выгнутых днищ, приваренных к ней. На баллонах к днищам и к обечайке сверху и снизу приварены бобышки, имеющие резьбовые отверстия для присоединения воздухопроводов и сливных краников. После сварки баллоны снаружи и изнутри покрывают коррозионно-устойчивой краской и проверяют на герметичность под давлением (12¸ 20) кг/см 2 .

Предохранительный клапан - предназначен для защиты пневматической системы от чрезмерного повышения давления воздуха в случае неисправности автоматического регулятора давления. Он устанавливается на одном из воздушных баллонов.

В корпусе 2 клапана (рис. 8.5) с одного конца ввернут штуцер 1 с гнездом для клапана 3, а с другого - регулирующий винт 6. Стальной шарик прижат к гнезду через составной шток 7 усилием пружины 4. Пружина отрегулирована на предельное давление (9¸ 9,5) кг/см 2 , при котором воздух отжимает шарик от гнезда и выходит в атмосферу. Клапан регулируют винтом 6 и стопорят контргайкой 5.

Обратные клапаны - служат для предотвращения утечки воздуха в атмосферу из баллонов в случае повреждения части системы, подключенной к другим баллонам, или при резком падении давления в системе соединяющей компрессор с баллонами. Они устанавливаются на входе в воздушные баллоны.

Обратный клапан, представленный на рис. 8.6, состоит из корпуса 1, трубки с отверстиями 2, пластинчатого клапана 3 и пружины 4. Этот клапан устанавливается внутри баллона. Возможность накопления в нем конденсата и примерзания клапана исключены, т.к. конденсат стекает в воздушный баллон.

Сливные краны - предназначены для периодического слива конденсата из всех баллонов и масловлагоотделителя. Выпуск конденсата осуществляется наклоном клапана 3 с помощью кольца 5. Пружина 2 прижимает клапан к седлу 4 в нормальном состоянии. С помощью штуцера 1 кран вворачивается в баллон.


^ Пневматический привод
11.1. Общие сведения о применении газов в технике

Любой объект, в котором используется газообразное вещество, можно отнести к газовым системам . Поскольку наиболее доступным газом является воздух, состоящий из смеси множества газов, то его широкое применение для выполнения различных процессов обусловлено самой природой. В переводе с греческого pneumatikos - воздушный, чем и объясняется этимологическое происхождение названия пневматические системы . В технической литературе часто используется более краткий термин - пневматика .

Пневматические устройства начали применять еще в глубокой древности (ветряные двигатели, музыкальные инструменты, кузнечные меха и пр.), но самое широкое распространение они получили вследствие создания надежных источников пневматической энергии - нагнетателей, способных придавать газам необходимый запас потенциальной и (или) кинетической энергии.

Пневматический привод , состоящий из комплекса устройств для приведения в действие машин и механизмов, является далеко не единственным направлением использования воздуха (в общем случае газа) в технике и жизнедеятельности человека. В подтверждение этого положения кратко рассмотрим основные виды пневматических систем, отличающихся как по назначению, так и по способу использования газообразного вещества.

По наличию и причине движения газа все системы можно разделить на три группы.

К первой группе отнесем системы с естественной конвекцией (циркуляцией) газа (чаще всего воздуха), где движение и его направление обусловлено градиентами температуры и плотности природного характера, например, атмосферная оболочка планеты, вентиляционные системы помещений, горных выработок, газоходов и т.п.

Ко второй группе отнесем системы с замкнутыми камерами , не сообщающимися с атмосферой, в которых может изменяться состояние газа вследствие изменения температуры, объема камеры, наддува или отсасывания газа. К ним относятся различные аккумулирующие емкости (пневмобаллоны), пневматические тормозные устройства (пневмобуферы), всевозможные эластичные надувные устройства, пневмогидравлические системы топливных баков летательных аппаратов и многие другие. Примером устройств с использованием вакуума в замкнутой камере могут быть пневмозахваты (пневмоприсоски), которые наиболее эффективны для перемещения штучных листовых изделий (бумага, металл, пластмасса и т.п.) в условиях автоматизированного и роботизированного производства.

К третьей группе следует отнести такие системы, где используется энергия предварительно сжатого газа для выполнения различных работ. В таких системах газ перемещается по магистралям с относительно большой скоростью и обладает значительным запасом энергии. Они могут быть циркуляционными (замкнутыми) и бесциркуляционными . В циркуляционных системах отработавший газ возвращается по магистралям к нагнетателю для повторного использования (как в гидроприводе). Применение систем весьма специфично, например, когда недопустимы утечки газа в окружающее пространство или невозможно применение воздуха из-за его окислительных свойств. Примеры таких систем можно найти в криогенной технике, где в качестве энергоносителя используются агрессивные, токсичные газы или летучие жидкости (аммиак, пропан, сероводород, гелий, фреоны и др.).

В бесциркуляционных системах газ может быть использован потребителем как химический реагент (например, в сварочном производстве, в химической промышленности) или как источник пневматической энергии. В последнем случае в качестве энергоносителя обычно служит воздух. Выделяют три основных направления применения сжатого воздуха.

К первому направлению относятся технологические процессы, где воздух выполняет непосредственно операции обдувки, осушки, распыления, охлаждения, вентиляции, очистки и т.п. Очень широкое распространение получили системы пневмотранспортирования по трубопроводам, особенно в легкой, пищевой, горнодобывающей отраслях промышленности. Штучные и кусковые материалы транспортируются в специальных сосудах (капсулах), а пылевидные в смеси с воздухом перемещаются на относительно большие расстояния аналогично текучим веществам.

Второе направление - использование сжатого воздуха в пневматических системах управления (ПСУ) для автоматического управления технологическими процессами (системы пневмоавтоматики). Это направление получило интенсивное развитие с 60-х годов благодаря созданию универсальной системы элементов промышленной пневмоавтоматики (УСЭППА). Широкая номенклатура УСЭППА (пневматические датчики, переключатели, преобразователи, реле, логические элементы, усилители, струйные устройства, командоаппараты и т.д.) позволяет реализовать на ее базе релейные, аналоговые и аналого-релейные схемы, которые по своим параметрам близки к электротехническим системам. Благодаря высокой надежности они широко используются для циклового программного управления различными машинами, роботами в крупносерийном производстве, в системах управления движением мобильных объектов.

Третьим направлением применения пневмоэнергии, наиболее масштабным по мощности, является пневматический привод, который в научном плане является одним из разделов обшей механики машин. У истоков теории пневматических систем стоял И.И. Артоболевский. Он был руководителем Института машиноведения (ИМАШ) в Ленинграде, где под его руководством в 40 - 60-х годах систематизировались и обобщались накопленные сведения по теории и проектированию пневмосистем. Одной из первых работ по теории пневмосистем была статья А.П. Германа "Применение сжатого воздуха в горном деле", опубликованная в 1933 г., где впервые движение рабочего органа пневмоустройства решается совместно с термодинамическим уравнением состояния параметров воздуха.

Значительный вклад в теорию и практику пневмоприводов внесли ученые Б.Н. Бежанов, К.С. Борисенко, И.А. Бухарин, А.И. Вощинин, Е.В. Герц, Г.В. Крейнии, А.И. Кудрявцев, В.А. Марутов, В.И. Мостков, Ю.А. Цейтлин и другие.

^ 11.2. Особенности пневматического привода, достоинства и недостатки

Область и масштабы применения пневматического привода обусловлены его достоинствами и недостатками, вытекающими из особенностей свойств воздуха. В отличие от жидкостей, применяемых в гидроприводах, воздух, как и все газы, обладает высокой сжимаемостью и малой плотностью в исходном атмосферном состоянии (около 1,25 кг/м 3), значительно меньшей вязкостью и большей текучестью, причем его вязкость существенно возрастает при повышении температуры и давления. Отсутствие смазочных свойств воздуха и наличие некоторого количества водяного пара, который при интенсивных термодинамических процессах в изменяющихся объемах рабочих камер пневмомашин может конденсироваться на их рабочих поверхностях, препятствует использованию воздуха без придания ему дополнительных смазочных свойств и влагопонижения. В связи с этим в пневмоприводах имеется потребность кондиционирования воздуха, т.е. придания ему свойств, обеспечивающих работоспособность и продляющих срок службы элементов привода.

С учетом вышеописанных отличительных особенностей воздуха рассмотрим достоинства пневмопривода в сравнении с его конкурентами - гидро- и электроприводом.

1. ^ Простота конструкции и технического обслуживания . Изготовление деталей пневмомашин и пневмоаппаратов не требует такой высокой точности изготовления и герметизации соединений, как в гидроприводе, т.к. возможные утечки воздуха не столь существенно снижают эффективность работы и КПД системы. Внешние утечки воздуха экологически безвредны и относительно легко устраняются. Затраты на монтаж и обслуживание пневмопривода несколько меньше из-за отсутствия возвратных пневмолиний и применения в ряде случаев более гибких и дешевых пластмассовых или резиновых (резинотканевых) труб. В этом отношении пневмопривод не уступает электроприводу. Кроме того, пневмопривод не требует специальных материалов для изготовления деталей, таких как медь, алюминий и т.п., хотя в ряде случаев они используются исключительно для снижения веса или трения в подвижных элементах.

2. ^ Пожаро- и взрывобезопасность . Благодаря этому достоинству пневмопривод не имеет конкурентов для механизации работ в условиях, опасных по воспламенению и взрыву газа и пыли, например в шахтах с обильным выделением метана, в некоторых химических производствах, на мукомольных предприятиях, т.е. там, где недопустимо искрообразование. Применение гидропривода в этих условиях возможно только при наличии централизованного источника питания с передачей гидроэнергии на относительно большое расстояние, что в большинстве случаев экономически нецелесообразно.

3. ^ Надежность работы в широком диапазоне температур, в условиях пыльной и влажной окружающей среды . В таких условиях гидро- и электропривод требуют значительно больших затрат на эксплуатацию, т.к. при температурных перепадах нарушается герметичность гидросистем из-за изменения зазоров и изолирующих свойств электротехнических материалов, что в совокупности с пыльной, влажной и нередко агрессивной окружающей средой приводит к частым отказам. По этой причине пневмопривод является единственным надежным источником энергии для механизации работ в литейном и сварочном производстве, в кузнечно-прессовых цехах, в некоторых производствах по добыче и переработке сырья и др. Благодаря высокой надежности пневмопривод часто используется в тормозных системах мобильных и стационарных машин.

4. ^ Значительно больший срок службы , чем гидро- и электропривода. Срок службы оценивают двумя показателями надежности: гамма-процентной наработкой на отказ и гамма-процентным ресурсом. Для пневматических устройств циклического действия ресурс составляет от 5 до 20 млн. циклов в зависимости от назначения и конструкции, а для устройств нециклического действия около 10-20 тыс. часов. Это в 2 - 4 раза больше, чем у гидропривода, и в 10-20 раз больше, чем у электропривода.

5. ^ Высокое быстродействие . Здесь имеется в виду не скорость передачи сигнала (управляющего воздействия), а реализуемые скорости рабочих движений, обеспечиваемых высокими скоростями движения воздуха. Поступательное движение штока пневмоцилиндра возможно до 15 м/с и более, а частота вращения выходного вала некоторых пневмомоторов (пневмотурбин) до 100 000 об/мин. Это достоинство в полной мере реализуется в приводах циклического действия, особенно для высокопроизводительного оборудования, например в манипуляторах, прессах, машинах точечной сварки, в тормозных и фиксирующих устройствах, причем увеличение количества одновременно срабатывающих пневмоцилиндров (например в многоместных приспособлениях для зажима деталей) практически не снижает время срабатывания. Большая скорость вращательного движения используется в приводах сепараторов, центрифуг, шлифовальных машин, бормашин и др. Реализация больших скоростей в гидроприводе и электроприводе ограничивается их большей инерционностью (масса жидкости и инерция роторов) и отсутствием демпфирующего эффекта, которым обладает воздух.

6. ^ Возможность передачи пневмоэнергии на относительно большие расстояния по магистральным трубопроводам и снабжение сжатым воздухом многих потребителей. В этом отношении пневмопривод уступает электроприводу, но значительно превосходит гидропривод, благодаря меньшим потерям напора в протяженных магистральных линиях. Электрическая энергия может передаваться по линиям электропередач на многие сотни и тысячи километров без ощутимых потерь, а расстояние передачи пневмоэнергии экономически целесообразно до нескольких десятков километров, что реализуется в пневмосистемах крупных горных и промышленных предприятий с централизованным питанием от компрессорной станции.

Известен опыт создания городской компрессорной станции в 1888 г. одним из промышленников в Париже. Она снабжала заводы и фабрики по магистралям протяженностью 48 км при давлении 0,6 МПа и имела мощность до 18500 кВт. С появлением надежных электропередач ее эксплуатация стала невыгодной.

Максимальная протяженность гидросистем составляет около 250-300 м в механизированных комплексах шахт для добычи угля, причем в них используется обычно менее вязкая водно-масляная эмульсия.

7. ^ Отсутствие необходимости в защитных устройствах от перегрузки давлением у потребителей . Требуемый предел давления воздуха устанавливается общим предохранительным клапаном, находящимся на источниках пневмоэнергии. Пневмодвигатели могут быть полностью заторможены без опасности повреждения и находиться в этом состоянии длительное время.

8. ^ Безопасность для обслуживающего персонала при соблюдении общих правил, исключающих механический травматизм. В гидро- и электроприводах возможно поражение электрическим током или жидкостью при нарушении изоляции или разгерметизации трубопроводов.

9. ^ Улучшение проветривания рабочего пространства за счет отработанного воздуха. Это свойство особенно полезно в горных выработках и помещениях химических и металлообрабатывающих производств.

10. ^ Нечувствительность к радиационному и электромагнитному излучению . В таких условиях электрогидравлические системы практически непригодны. Это достоинство широко используется в системах управления космической, военной техникой, в атомных реакторах и т.п.

Несмотря на вышеописанные достоинства, применяемость пневмопривода ограничивается в основном экономическими соображениями из-за больших потерь энергии в компрессорах и пневмодвигателях, а также других недостатков, описанных ниже.

1. ^ Высокая стоимость пневмоэнергии . Если гидро- и электропривод имеют КПД, соответственно, около 70 % и 90 %, то КПД пневмопривода обычно 5-15 % и очень редко до 30 %. Во многих случаях КПД может быть 1 % и менее. По этой причине пневмопривод не применяется в машинах с длительным режимом работы и большой мощности, кроме условий, исключающих применение электроэнергии (например, горнодобывающие машины в шахтах, опасных по газу).

2. ^ Относительно большой вес и габариты пневмомашин из-за низкого рабочего давления. Если удельный вес гидромашин, приходящийся на единицу мощности, в 5-10 раз меньше веса электромашин, то пневмомашины имеют примерно такой же вес и габариты, как последние.

3. ^ Трудность обеспечения стабильной скорости движения выходного звена при переменной внешней нагрузке и его фиксации в промежуточном положении. Вместе с тем мягкие механические характеристики пневмопривода в некоторых случаях являются и его достоинством.

4. ^ Высокий уровень шума , достигающий 95-130 дБ при отсутствии средств для его снижения. Наиболее шумными являются поршневые компрессоры и пневмодвигатели, особенно пневмомолоты и другие механизмы ударно- циклического действия. Наиболее шумные гидроприводы (к ним относятся приводы с шестеренными машинами) создают шум на уровне 85-104 дБ, а обычно уровень шума значительно ниже, примерно как у электромашин, что позволяет работать без специальных средств шумопонижения.

5. Малая скорость передачи сигнала (управляющего импульса), что приводит к запаздыванию выполнения операций. Скорость прохождения сигнала равна скорости звука и, в зависимости от давления воздуха, составляет примерно от 150 до 360 м/с. В гидроприводе и электроприводе, соответственно, около 1000 и 300 000 м/с.

Перечисленные недостатки могут быть устранены применением комбинированных пневмоэлектрических или пневмогидравлических приводов.

^ 11.3. Течение воздуха

Инженерные расчеты пневмосистем сводятся к определению скоростей и расходов воздуха при наполнении и опорожнении резервуаров (рабочих камер двигателей), а также с его течением по трубопроводам через местные сопротивления. Вследствие сжимаемости воздуха эти расчеты значительно сложнее, чем расчеты гидравлических систем, и в полной мере выполняются только для особо ответственных случаев. Полное описание процессов течения воздуха можно найти в специальных курсах газодинамики.

Основные закономерности течения воздуха (газа) такие же, как и для жидкостей, т.е. имеют место ламинарный и турбулентный режимы течения, установившийся и неустановившийся характер течения, равномерное и неравномерное течение из-за переменного сечения трубопровода и все остальные кинематические и динамические характеристики потоков. Вследствие низкой вязкости воздуха и относительно больших скоростей режим течения в большинстве случаев турбулентный.

Для промышленных пневмоприводов достаточно знать закономерности установившегося характера течения воздуха. В зависимости от интенсивности теплообмена с окружающей средой расчеты параметров воздуха выполняются с учетом вида термодинамического процесса, который может быть от изотермического (с полным теплообменом и выполнением условия Т = const) до адиабатического (без теплообмена).

При больших скоростях исполнительных механизмов и течении газа через сопротивления процесс сжатия считается адиабатическим с показателем адиабаты k = 1,4. В практических расчетах показатель адиабаты заменяют на показатель политропы (обычно принимают n = 1,3…1,35), что позволяет учесть потери, обусловленные трением воздуха, и возможный теплообмен.

В реальных условиях неизбежно происходит некоторый теплообмен между воздухом и деталями системы и имеет место так называемое политропное изменение состояния воздуха. Весь диапазон реальных процессов описывается уравнениями этого состояния

pV n = const

Где n - показатель политропы, изменяющийся в пределах от n = 1 (изотермический процесс) до n = 1,4 (адиабатический процесс).

В основу расчетов течения воздуха положено известное уравнение Бернулли движения идеального газа

Слагаемые уравнения выражаются в единицах давления, поэтому их часто называют "давлениями":
z - весовое давление;
p - статическое давление;
- скоростное или динамическое давление.

На практике часто весовым давлением пренебрегают и уравнение Бернулли принимает следующий вид

Сумму статического и динамического давлений называют полным давлением P 0 . Таким образом, получим

При расчете газовых систем необходимо иметь в виду два принципиальных отличия от расчета гидросистем.

Первое отличие заключается в том, что определяется не объемный расход воздуха, а массовый. Это позволяет унифицировать и сравнивать параметры различных элементов пневмосистем по стандартному воздуху (ρ = 1,25 кг/ м3, υ = 14,9 м2/с при p = 101,3 кПа и t = 20°C). В этом случае уравнение расходов записывается в виде

Q м1 = Q м2 или υ 1 V 1 S 1 = υ 2 V 2 S 2

Второе отличие заключается в том, что при сверхзвуковых скоростях течения воздуха изменяется характер зависимости расхода от перепада давлений на сопротивлении. В связи с этим существуют понятия подкритического и надкритического режимов течения воздуха. Смысл этих терминов поясняется ниже.

Рассмотри истечение газа из резервуара через небольшое отверстие при поддержании в резервуаре постоянного давления (рис.11.1). Будем считать, что размеры резервуара настолько велики по сравнению с размерами выходного отверстия, что можно полностью пренебрегать скоростью движения газа внутри резервуара, и, следовательно, давление, температура и плотность газа внутри резервуара будут иметь значения p 0 , ρ 0 и T 0 .

Рис.11.1. Истечение газа из отверстия в тонкой стенке

Скорость истечения газа можно определять по формуле для истечения несжимаемой жидкости, т.е.

Массовый расход газа, вытекающего через отверстие, определяем по формуле

Где ω 0 - площадь сечения отверстия.

Отношение p/p 0 называется степенью расширения газа. Анализ формулы (11.7) показывает, что выражение, стоящее под корнем в квадратных скобках, обращается в ноль при p/p 0 = 1 и p/ p 0 = 0. Это означает, что при некотором значении отношения давлений массовый расход достигает максимума Q max . График зависимости массового расхода газа от отношения давлений p/p 0 показан на рис.11.2.

Рис.11.2. Зависимость массового расхода газа от отношения давлений

Отношение давлений p/p 0 , при котором массовый расход достигает максимального значения, называется критическим. Можно показать, что критическое отношение давлений равно

Как видно из графика, показанного на рис.11.2, при уменьшении p/p 0 по сравнению с критическим расход должен уменьшаться (пунктирная линия) и при p/p 0 = 0 значение расхода должно быть равно нулю (Q m = 0). Однако в действительности это не происходит.

В действительности при заданных параметрах p 0 , ρ 0 и T 0 расход и скорость истечения будут расти с уменьшением давления вне резервуара p до тех пор, пока это давление меньше критического. При достижении давлением p критического значения расход становится максимальным, а скорость истечения достигает критического значения, равного местной скорости звука. Критическая скорость определяется известной формулой

После того, как на выходе из отверстия скорость достигла скорости звука, дальнейшее уменьшение противодавления p не может привести к увеличению скорости истечения, так как, согласно теории распространения малых возмущений, внутренний объем резервуара станет недоступен для внешних возмущений: он будет "заперт" потоком со звуковой скоростью. Все внешние малые возмущения не могут проникнуть в резервуар, так как им будет препятствовать поток, имеющий ту же скорость, что и скорость распространения возмущений. При этом расход не будет меняться, оставаясь максимальным, а кривая расхода примет вид горизонтальной линии.

Таким образом, существует две зоны (области) течения:

подкритический режим , при котором

надкритический режим , при котором

В надкритической зоне имеет место максимальная скорость и расход, соответствующие критическому расширению газа. Исходя из этого при определении расходов воздуха предварительно определяют по перепаду давления режим истечения (зону), а затем расход. Потери на трение воздуха учитывают коэффициентом расхода μ, который с достаточной точностью можно вычислить по формулам для несжимаемой жидкости (μ = 0,1...0,6).

Окончательно скорость и максимальный массовый расход в подкритической зоне, с учетом сжатия струи определятся по формулам

^ 11.4. Подготовка сжатого воздуха

В промышленности используются различные конструкции машин для подачи воздуха под общим названием воздуходувки . При создании избыточного давления до 0,015 МПа они называются вентиляторами , а при давлении свыше 0,115 МПа - компрессорами .

Вентиляторы относятся к лопастным машинам динамического действия и кроме своего основного назначения - проветривания - применяются в пневмотранспортных системах и низконапорных системах пневмоавтоматики.

В пневмоприводах источником энергии служат компрессоры с рабочим давлением в диапазоне 0,4…1,0 МПа. Они могут быть объемного (чаще поршневые) или динамического (лопастные) действия. Теория работы компрессоров изучается в специальных дисциплинах.

По виду источника и способу доставки пневмоэнергии различают магистральный , компрессорный и аккумуляторный пневмопривод.

Магистральный пневмопривод характеризуется разветвленной сетью стационарных пневмолиний, соединяющих компрессорную станцию с цеховыми, участковыми потребителями в пределах одного или нескольких предприятий. Компрессорная станция оборудуется несколькими компрессорными линиями, обеспечивающими гарантированное снабжение потребителей сжатого воздуха с учетом возможной неравномерной работы последних. Это достигается установкой промежуточных накопителей пневмоэнергии (ресиверов) как на самой станции, так и на участках. Пневмолинии обычно резервируются, чем обеспечивается удобство их обслуживания и ремонта. Типовой комплект устройств, входящих в систему подготовки воздуха, показан на принципиальной схеме компрессорной станции (рис.11.3).

Рис.11.3. Принципиальная схема компрессорной станции

Компрессор 2 с приводным двигателем 3 всасывает воздух из атмосферы через заборный фильтр 1 и нагнетает в ресивер 7 через обратный клапан 4, охладитель 5 и фильтр-влагоотделитель 6. В результате охлаждения воздуха водяным охладителем 5 происходит конденсация 70-80 % содержащейся в воздухе влаги, улавливаемой фильтром- влагоотделителем и со 100-процентной относительной влажностью воздух поступает в ресивер 7, который аккумулирует пневмоэнергию и сглаживает пульсацию давления. В нем происходит дальнейшее охлаждение воздуха и конденсация некоторого количества влаги, которая по мере накопления удаляется вместе с механическими примесями через вентиль 10. Ресивер обязательно оборудуется одним или несколькими предохранительными клапанами 8 и манометром 9. Из ресивера воздух отводится к пневмолиниям 12 через краны 11. Обратный клапан 4 исключает возможность резкого падения давления в пневмосети при отключении компрессора.

^ Компрессорный пневмопривод отличается от вышеописанного магистрального своей мобильностью и ограниченностью числа одновременно работающих потребителей. Передвижные компрессоры наиболее широко используются при выполнении различных видов строительных и ремонтных работ. По комплекту устройств, входящих в систему подготовки воздуха, он практически не отличается от вышеописанной компрессорной станции (водяной охладитель заменяется на воздушный). Подача воздуха к потребителям осуществляется через резинотканевые рукава.

^ Аккумуляторный пневмопривод ввиду ограниченного запаса сжатого воздуха в промышленности применяется редко, но широко используется в автономных системах управления механизмов с заданным временем действия. На рис.11.4 показаны несколько примеров аккумуляторного питания пневмосистем.

Для бесперебойной подачи жидкости в гидросистему или топлива в двигатели внутреннего сгорания аппаратов с переменной ориентацией в пространстве применяется наддув бака с жидкостью (рис.11.4, а) от пневмобаллона 1.

Вытеснение жидкости из бака 5, разделенного мембраной на две части, обеспечивается постоянным давлением воздуха, зависящим от настройки редукционного клапана 3 при включении электровентиля 2. Предельное давление ограничивается клапаном 4.

Система ориентации летательного аппарата (рис.11.4, б) состоит из управляющих реактивных пневмодвигателей 4, питающихся от шарового пневмобаллона 1 через редукционный клапан 2 и электровентили 3.

Рис.11.4. Принципиальные схемы аккумуляторного питания
пневмосистем (а, б, в) и замкнутой пневмосистемы (г)

Для питания систем промышленной пневмоавтоматики часто используется не только средний (нормальный) диапазон давления воздуха (0,118…0,175 МПа), а и низкий диапазон (0,0012…0,005 МПа). Это позволяет уменьшить расход сжатого воздуха, увеличить проходное сечение элементов и, следовательно, снизить вероятность засорения дросселирующих устройств, а в некоторых случаях получить ламинарный режим течения воздуха с линейной зависимостью Q = f(Δp ), что весьма важно в устройствах пневмоавтоматики.

При наличии источника высокого давления можно обеспечить питание пневмосистемы низкого давления с большим расходом воздуха при помощи эжектора (рис.11.4, в). От пневмобаллона высокого давления 1, оборудованного редукционным клапаном 4, манометром 2 и зарядным клапаном 3 воздух поступает на питающее сопло 5 эжектора. При этом внутри корпуса эжектора создается пониженное давление, и из окружающей среды через фильтр 6 подсасывается воздух, который поступает в приемное сопло 7 большего диаметра. После эжектора воздух вторично очищается от пыли фильтром 8 и поступает к устройствам 10 пневмоавтоматики. Манометром 9 контролируется рабочее давление, величина которого может корректироваться редуктором 4.

Все вышеописанные пневмосистемы относятся к разомкнутым (бесциркуляционным). На рис.11.4, г показана замкнутая схема питания системы пневмоавтоматики, используемая в условиях пыльной атмосферы. Подача воздуха к блоку пневмоавтоматики 3 осуществляется вентилятором 1 через фильтр 2, причем всасывающий канал вентилятора соединен с внутренней полостью герметичного кожуха блока 3, которая одновременно через фильтр тонкой очистки 4 сообщается с атмосферой. Часто в качестве вентилятора используются бытовые электропылесосы, способные создавать давление до 0,002 МПа.

Воздух, поступающий к потребителям, должен быть очищен от механических загрязнений и содержать минимум влаги. Для этого служат фильтры-влагоотделители, у которых в качестве фильтрующего элемента обычно используется ткань, картон, войлок, металлокерамика и другие пористые материалы с тонкостью фильтрации от 5 до 60 мкм. Для более глубокой осушки воздуха его пропускают через адсорбенты, поглощающие влагу. Чаще всего для этого используется силикагель. В обычных пневмоприводах достаточную осушку обеспечивают ресиверы и фильтры- влагоотделители, но вместе с тем воздуху необходимо придавать смазочные свойства, для чего служат маслораспылители фитильного или эжекторного типа.

Рис.11.5. Типовой узел подготовки воздуха:
а - принципиальная схема; б - условное обозначение

На рис.11.5 показан типовой узел подготовки воздуха, состоящий из фильтра-влагоотделителя 1, редукционного клапана 2 и маслораспылителя 3.

Поступающий на вход фильтра воздух получает вращательное движение за счет неподвижной крыльчатки . Центробежной силой частицы влаги и механических примесей отбрасываются к стенке прозрачного корпуса и оседают в его нижнюю часть, откуда по мере необходимости удаляются через сливной кран. Вторичная очистка воздуха происходит в пористом фильтре Ф, после которого он поступает на вход редуктора, где происходит дросселирование через зазор клапана Кл , величина которого зависит от выходного давления над мембраной М . Увеличение усилия сжатия пружины П обеспечивает увеличение зазора клапана Кл и, следовательно, выходного давления. Корпус маслораспылителя 3 делается прозрачным и заполняется через пробку смазочным маслом. Создаваемое на поверхности масла давление вытесняет его через трубку T вверх к соплу С , где масло эжектируется и распыляется потоком воздуха. В маслораспылителях фитильного типа вместо трубки Т установлен фитиль, по которому масло поступает в распылительное сопло за счет капиллярного эффекта.

^ 11.5. Исполнительные пневматические устройства

Исполнительными устройствами пневмоприводов называются различные механизмы, обеспечивающие преобразование избыточного давления воздуха или вакуума в рабочее усилие. Если при этом рабочий орган совершает движение относительно пневмоустройства, то он называется пневмодвигателем, а если движения нет или оно происходит совместно с пневмоустройством, то оно называется пневмоприжимом или пневмозахватом.

Пневмодвигатели могут быть, как и гидродвигатели, вращательного или поступательного действия и называются, соответственно, пневмомоторами и пневмоцилиндрами . Конструктивное исполнение этих устройств во многом похоже на их гидравлические аналоги. Наибольшее применение получили шестеренные, пластинчатые и радиально-поршневые пневмомоторы объемного действия. На рис.11.6, а показана схема радиально- поршневого мотора с передачей крутящего момента на вал через кривошипно-шатунный механизм.

В корпусе 1 симметрично расположены цилиндры 2 с поршнями 3. Усилие от поршней передается на коленчатый вал 5 через шатуны 4, прикрепленные шарнирно к поршням и кривошипу коленчатого вала. Сжатый воздух подводится к рабочим камерам по каналам 8, которые поочередно сообщаются с впускным Вп и выхлопным Вх каналами распределительного золотника 6, вращающегося синхронно с валом мотора. Золотник вращается в корпусе распределительного устройства 7, к которому подведены магистрали впуска и выхлопа воздуха.

Радиально-поршневые пневмомоторы являются относительно тихоходными машинами с частотой вращения вала до 1000…1500 об/мин. Более быстроходны шестеренные и пластинчатые моторы (2000…4000 об/мин), но самыми быстроходными (до 20000 об/мин и более) могут быть турбинные пневмомоторы, в которых используется кинетическая энергия потока сжатого воздуха. В частности, такие моторы используются для вращения рабочих колес вентиляторов на горных предприятиях.

Рис.11.6. Схемы пневмомоторов объемного (а) и динамического (б) действия

На рис.11.6, б показана схема пневмопривода колеса вентилятора, состоящего из ступицы 9 с лопаток 10, к которым жестко прикреплен вращающийся обод с лопатками пневмомотора 11. Поток сжатого воздуха, вытекающий из сопла 12 по касательной к изогнутым лопаткам 11, отдает свою энергию и заставляет вращаться колесо вентилятора с большой скоростью. Описанное устройство можно назвать пневмопреобразователем, преобразующим поток воздуха высокого давления в поток низкого давления с гораздо большим расходом.

Пневмопривод отличается большим разнообразием оригинальных исполнительных устройств с эластичными элементами в форме мембран, оболочек, гибких нитей, рукавов и т.н. Они широко используются в зажимных, фиксирующих, переключающих и тормозных механизмах современных автоматизированных производств. К ним относятся мембранные и сильфонные пневмоцилиндры с относительно малой величиной рабочего хода штока. Плоская резиновая мембрана позволяет получить перемещение штока на 0,1...0,5 от ее эффективного диаметра. При выполнении мембраны в форме гофрированного чулка рабочий ход увеличивается до нескольких диаметров мембраны. Такие пневмоцилиндры называются сильфонными . Они могут быть с внешним и внутренним подводом воздуха. В первом случае длина гофрированной трубки под действием давления уменьшается, во втором увеличивается за счет деформации гофров. В качестве эластичного элемента применяется резина, резинотканевые и синтетические материалы, а также тонколистовая сталь, бронза, латунь.

Увеличение скорости выполнения операций во многих случаях достигается применением пневмозахватов, схемы которых показаны на рис.11.7.

Для перемещения листовых изделий используются пневмоприсоски, относящиеся к вакуумным захватам безнасосного и насосного типа. В захватах безнасосного типа (рис.11.7, а) вакуум в рабочей камере К создается при деформации самих элементов захвата, выполненных в виде гибкой тарелки, прилегающей своей кромкой к детали и подвижным поршнем, к которому прикладывается внешнее усилие. Величина вакуума при подъеме детали пропорциональна ее весу и обычно бывает не более 55 кПа. Для обеспечения лучшего притяжения, особенно для недостаточно гладкой поверхности детали, применяют захваты насосного типа, у которых воздух из рабочей камеры отсасывается насосом до глубины вакуума 70…95 кПа.

Часто применяют простые устройства эжекторного типа (рис.11.7, б), в которых кинетическая энергия струи жидкости, пара или воздуха используется для отсасывания воздуха из рабочей камеры К , находящейся между присоской П и деталью. Сжатый воздух, поступающий на вход А , проходит с большой скоростью через сопло Б эжектора и создает пониженное давление в камере В и канале Г , сообщающимся с рабочей камерой К .

Рис.11.7. Схемы пневмозахватов

Для зажима деталей цилиндрической формы применяют пневмозахваты, выполненные по схемам в и г (рис.11.7). При подводе воздуха в рабочую камеру К упругий цилиндрический колпачок охватывает шейку вала и создает усилие, достаточное для его зажима. На схеме г показан двухсторонний пневмозахват, рабочими элементами которого служат сильфоны с односторонним гофром. При создании избыточного давления внутри сильфона гофрированная сторона растягивается на большую длину, чем гладкая, что вызывает перемещение незакрепленной (консольной) стороны трубки в направлении охватываемой детали. Такими устройствами можно фиксировать детали не только круглой формы, но и с любыми фасонными поверхностями.

В ряде случаев возникает потребность в перемещении рабочих органов на большие расстояния до 10…20 м и более по прямолинейной или искривленной траектории. Применение обычных штоковых пневмоцилиндров ограничено рабочим ходом до 2 м. Конструкции бесштоковых пневмоцилиндров, удовлетворяющих этим требованиям, показаны на рис.11.8.

Рис.11.8. Схемы бесштоковых пневмодвигателей
поступательного движения

Отсутствие жесткого штока позволяет практически в два раза уменьшить длину цилиндра в выдвинутом положении. На схеме а показан длинноходовой пневмоцилиндр с передачей усилия через сильный постоянный магнит. Абсолютно герметичная гильза цилиндра выполнена из немагнитного материала, а ее внутренняя полость разделяется поршнем на две камеры, к которым подводится сжатый воздух. В поршне и каретке К , соединенной с рабочим органом, встроены противоположные полюса магнита S и N , взаимодействие которых обеспечивает передачу движущего усилия на каретку, скользящую по направляющим на внешней поверхности гильзы. Ход каретки ограничивается конечными упорами У .

Практически неограниченную длину хода имеют пневмоцилиндры с эластичной гильзой (рис.11.8, б), охватываемой двумя роликами, соединенными кареткой К . Такие пневмоцилиндры очень эффективны для перемещения штучных грузов по сложной траектории и в приводах с небольшими рабочими усилиями.

Пневмоцилиндр с гибким штоком показан на схеме рис.11.8, в. В такой конструкции тяговое усилие передается на каретку К от поршня через гибкий элемент (обычно стальной трос, облицованный эластичной пластмассой), охватывающий обводной и натяжной ролики, расположенные на крышках цилиндра.

^ Наверх страницы

УТВЕРЖДАЮ

Первый зам. директора

ФИО

«__»___________ 20__ г.

Фонд оценочных средств

основной образовательной программы

среднего профессионального образования (ППССЗ, ППКРС)

Форма обучения: очная

Квалификация: техник-технолог

Специальность: 15.02.01 Монтаж и техническая эксплуатация промышленного оборудования

Курс: 2

Гр.251

г. Улан-Удэ, 2016

СОДЕРЖАНИЕ

С.

  1. Паспорт

    фонда оценочных средств

    по дисциплине ГИДРАВЛИЧЕСКИЕ И ПНЕВМАТИЧЕСКИЕ СИСТЕМЫ

    1.Фонд оценочных средств позволяет оценивать:

    Освоение профессиональных компетенции (ПК), соответствующих виду профессиональной деятельности, и общих компетенции:

    ПК 1.2. Производить убой скота, птицы и кроликов.
    1. Умения применять различные виды машин и механизмов и их принцип действия,

      Практические работы №5,6

      ПК 1.3. Вести процесс первичной переработки скота, птицы и кроликов.

      Умение опреелять кинематические и динамические характеристики;

      типы кинематических пар;

      типы соединений деталей и машин;

      Практические работы №2,5,6

      ПК 1.4. Обеспечивать работу технологического оборудования первичного цеха и птицецеха.

      Умение работать с основные сборочные единицами и деталями;

      Практические работы №1,6

      ПК 2.2. Вести технологический процесс обработки продуктов убоя (по видам).

      принцип взаимозаменяемости;

      виды движений и преобразующие движения механизмы;

      Практические работы №5,7

      ПК 2.3. Обеспечивать работу технологического оборудования в цехах мясожирового корпуса.

      Умение различать виды передач, их устройство, назначение, преимущества и недостатки, условные обозначения на схемах;

      Практические работы №4,2

      ПК 3.2. Вести технологический процесс производства колбасных изделий.

      Умение рассчитывать характер соединения деталей и сборочных единиц;

      Практические работы №1,4

      ПК 3.3. Вести технологический процесс производства, копченых изделий и полуфабрикатов.

      Умение рассчитывать характер соединения деталей и сборочных единиц;

      Практические работы №3,5

      ПК 3.4. Обеспечивать работу технологического оборудования для производства колбасных изделий, копченых изделий и полуфабрикатов.

      Умение рассчитывать характер соединения деталей и сборочных единиц;

      Практические работы №2,3

      ОК 1.

      Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес.

      Практические работы №1, 5,6

      ОК 2.

      Организовывать собственную деятельность, определять методы и способы выполнения профессиональных задач, оценивать их эффективность и качество.

      Практические работы №2,5,6

      ОК 3.

      Принимать решения в стандартных и нестандартных ситуациях и нести за них ответственность.

      Практические работы №2,5,6

      ОК 4.

      Осуществлять поиск и использование информации, необходимой для эффективного выполнения профессиональных задач, профессионального и личностного развития.

      Практические работы №7,6

      ОК 5.

      Использовать информационно – коммуникационные технологии в профессиональной деятельности.

      Практические работы №2,5,6

      ОК 6

      Работать в коллективе и команде, эффективно общаться с коллегами, руководством, потребителем.

      Практические работы №1,6

      ОК 7

      Брать на себя ответственность за работу членов команды (подчиненных), результат выполнения заданий.

      Практические работы №2,4,3

      ОК 8

      Самостоятельно определять задачи профессионального и личностного развития, заниматься самообразованием, осознанно планировать повышение квалификации.

      Практические работы №5,7

      ОК 9.

      Ориентироваться в условиях частой смены технологий в профессиональной деятельности.

      Практические работы №1,5

  2. Приобретение в ходе освоения учебной дисциплины «Техническая механика» практического опыта

    Оценивать по установленным показателям эффективность, надежность и простоту конструкции гидравлических и пневматических приводов различного станочного оборудования.
    1. Оценка эффективности, надежности и простоты конструкции гидравлических и пневматических приводов различного станочного оборудования.

      Требования к их выполнению

      Овладение навыками руководства работами, связанными с применением грузоподъёмных механизмов, при монтаже и ремонте промышленного оборудования;

      Овладение навыками проведения контроля по монтажным видам работ.

      Овладение навыками проведения пуско-наладочных работ и проведение испытании пром.оборудования после монтажа и участия в них.

      Участие в проведении приемов определения методов восстановления деталей и участвовать в процессе их изготовления;

  3. Освоение умений и усвоение знаний

    Оценивания по установленным показателям эффективность, надежность и простоту конструкции гидравлических и пневматических приводов различного станочного оборудования.
    1. - способность обеспечивать контроль работ по монтажу и ремонту промышленного оборудования с использованием контрольно-измерительных приборов;

      Практические работы №2-4

      Усвоенные знания

      Основы гидравлики и пневматики;

      Способность применять основы гидравлики и пневматики в профдеятельности

      Понятие о гидро- приводе

      Особенности конструкций гидравлических и пневматических систем;

      - проведение контроля работ по монтажу и ремонту промышленного оборудования с использованием контрольно-измерительных приборов;

      Гидро- и пневмосистемы

      Принципы построения и конструирования гидравлических и пневматических приводов машиностроительного оборудования;

      Проведение пуско-наладочных работ и испытании промышленного оборудования после ремонта и монтажа;

      Структура объемной гидропередачи

      Основные показатели эффективности и надежности приводов

      - понимание основ восстановления деталей и участвовать в процессе их изготовления;

      Эффективность и надежность многоступенчатого компрессора.

  4. 1.2. Система контроля и оценки освоения программы учебной дисциплины

    «Гидравлические и пневматические системы»

    Формы промежуточной аттестации по ОПОП при освоении учебной дисциплины

    Текущий контроль освоения программы учебной дисциплины проводится в пределах учебного времени, отведенного на изучение учебной дисциплины с использованием таких методов как устный, письменный, практический, самоконтроль.
  5. Предметом оценки освоения учебной дисциплины являются умения и знания. Дифференцированный зачет по учебной дисциплине проводится с учетом результатов текущего контроля. Текущий контроль включает в себя оценку выполнения практических работ, выполнения самостоятельной работы студента и тестов по разделам учебной дисциплины.

    Контроль и оценка по производственной практике проводится на основе аттестационного листа обучающегося с места прохождения практики, составленного и завизированного представителем образовательного учреждения или ответственным лицом организации (базы практики). В аттестационном листе отражаются виды работ, выполненные обучающимся во время практики, качество выполнения в соответствии с технологией или требованиями организации, в которой проходила практика, характеристика учебной и профессиональной деятельности обучающегося во время практики.

    Итоговый контроль освоения вида профессиональной деятельности Выполнение работ по организации и проведения проф.задач осуществляется на диф.зачете.

    Условием допуска к зачету является сдача всех практических работ.

    Диф.зачет проводится в виде выполнения компетентностноориентированного практического задания, которое носит профессиональный и комплексный характер. Задания ориентированы на проверку освоения вида профессиональной деятельности в целом.

    Условием положительной аттестации (вид проф. Деятельности освоен) на квалификационном экзамене является положительная оценка освоения всех профессиональных компетенции по всем контролируемым показателям.

    При отрицательном заключении хотя бы по одной из проф. Компетенции принимается решение «вид профессиональной деятельности не освоен»

  6. Наименование
  7. оценочного средства**

    1. Код контролируемой компетенции (или ее части)

      Гидравлика

      Индивидуальное задание

      ОК-1…9,

      ПК-1.1-1.5, 2.1-2.4, 3.1-3.4

      Пневмопривод

      Индивидуальное задание

      ОК-1…9,

      ПК-1.1-1.5, 2.1-2.4, 3.1-3.4

      Динамика

      Индивидуальное задание

      ОК-1…9,

      ПК-1.1-1.5, 2.1-2.4, 3.1-3.4

    1. 4.2. Типовые задания для текущей аттестации по учебной дисциплине

    2. Комплект лекционного материала

    3. ГИДРАВЛИЧЕСКИЕ И ПНЕВМАТИЧЕСКИЕ СИСТЕМЫ

      Приложены в электронном виде

                1. Введение

                  Физические основы функционирования

                  Понятие о гидроприводе

                  Законы газов

                  Понятие о пневмоприводе

                  Гидро- и пневмосистемы

                  Основы газовой динамики

      1. Практические работы

        1.Расчёт параметров гидравлической системы

        2. Определение основных размеров и параметров компрессора

        3. Построение индикаторных диаграмм

        4. Расчет потребляемой мощности и выбор электродвигателя

        5. Выбор электродвигателя

        6. Силовой расчет привода

        7. Силовой расчет привода

        8. Расчет пневмосистемы

        9. Расчет расхода воздуха

        10. Расчет времени срабатывания привода

        11. Расчет цилиндра В

        12. Расчет мощности привода

        13. Расчет пневмосистемы

        14. Расчет времени срабатывания привода

      2. Вопросы для итогового контроля

        1. Структурная схема гидропривода

        2. Классификация и принцип работы гидроприводов

        3. Преимущества и недостатки гидропривода

        4. Характеристика рабочих жидкостей

        5. Выбор и эксплуатация рабочих жидкостей

        6. Гидравлические линии

        7. Соединения

        8. Расчет гидролиний

        9. Гидравлические машины шестеренного типа

        10. Пластинчатые насосы и гидромоторы

        11. Радиально-поршневые насосы и гидромоторы

        12. Аксиально-поршневые насосы и гидромоторы

        13. Механизмы с гибкими разделителями

        14. Классификация гидроцилиндров

        15. Гидроцилиндры прямолинейного действия

        16. Расчет гидроцилиндров

        17. Поворотные гидроцилиндры

        18. Золотниковые гидрораспределители

        19. Крановые гидрораспределители

        20. Клапанные гидрораспределители

        21. Напорные гидроклапаны

        22. Редукционный клапан

        23. Обратные гидроклапаны

        24. Ограничители расхода

        25. Делители (сумматоры) потока

        26. Дроссели и регуляторы расхода

        27. Гидробаки и теплообменники

        28. Фильтры

        29. Уплотнительные устройства

        30. Гидравлические аккумуляторы

        31. Гидрозамки

        32. Гидравлические реле давления и времени

        33. Средства измерения

        34. Классификация гидроусилителей

        35. Гидроусилитель золотникового типа

        36. Гидроусилитель с соплом и заслонкой

        37. Гидроусилитель со струйной трубкой

        38. Двухкаскадные усилители

        39. Способы разгрузки насосов от давления

        40. Дроссельное регулирование

        41. Объемное регулирование

        42. Комбинированное регулирование

        43. Сравнение способов регулирования

        44. Гидросистемы с регулируемым насосом и дросселем

        45. Гидросистемы с двухступенчатым усилением

        46. Гидросистемы непрерывного (колебательного) движения

        47. Электрогидравлические системы с регулируемым насосом

        48. Гидросистемы с двумя спаренными насосами

        49. Питание одним насосом двух и несколько гидродвигателей

        50. Общие сведения о применении газов в технике

        51. Особенности пневматического привода, достоинства и недостатки

        52. Течение воздуха

        53. Подготовка сжатого воздуха

        54. Исполнительные пневматические устройства

        55. Монтаж объемных гидроприводов

        56. Эксплуатация объемных гидроприводов в условиях низких температур

        57. Основные неполадки в гидросистемах и способы их устранения

Линейные привода предназначены для приведения в движение частей машин и механизмов по линейному поступательному движению. Привода преобразуют электрическую, гидравлическую энергию или энергию сжатого газа в движение или силу. В этой статье представлен анализ линейных приводов, их преимуществ и недостатков.

Как работают линейные привода

В связи с отсутствием жидкостей отсутствует риск загрязнения окружающей среды.

Недостатки

Начальная стоимость электрических приводов выше чем пневматических и гидравлических.

В отличие от пневматических приводов электрические привода (без дополнительных средств) не подходят для применения во взрывоопасных местах.

При продолжительной работе электродвигатель может перегреваться, увеличивая износ редуктора. Электродвигатель может также иметь большие размеры, что может привести к трудностям установки.

Сила электропривода, допустимые осевые нагрузки и скоростные параметры электропривода определяются выбранным электродвигателем. При изменении заданных параметров необходимо менять электродвигатель.

Линейный электропривод, включающий вращающийся электродвигатель и механический преобразователь

Пневматические привода

Преимущества

Простота и экономичность. Большинство пневматических алюминиевых приводов имеют максимальное давление до 1 МПа с рабочим диаметром цилиндра от 12,5 до 200 мм, что приблизительно соответствует силе в 133 - 33000 Н. Стальные пневматические привода обычно имеют максимальное давление до 1,7 МПа с рабочим диаметром цилиндра от 12,5 до 350 мм и создают силу от 220 до 171000 Н .

Пневматические привода позволяют точно управлять перемещением обеспечивая точность в пределах 2,5 мм и повторяемость в пределах 0,25 мм.

Пневматические привода могут применяться в районах с экстремальными температурами. Стандартный диапазон температур от -40 до 120 ˚C. В плане безопасности использование воздуха в пневматических приводах избавляет от необходимости использования опасных материалов. Данные привода удовлетворяют требованиям взрывозащищенности и безопасности, так как они не создают магнитного поля, в связи с отсутствием электродвигателя.

В последние годы в области пневматики достигнуты успехи в миниатюризации, материалах и интеграции с электроникой. Стоимость пневматических приводов низкая в сравнении с другими приводами. Пневматические привода имеют маленький вес, требуют минимального обслуживания и имеют надежные компоненты.

Недостатки

Потеря давления и сжимаемость воздуха делает пневматические привода менее эффективными, чем другие способы создания линейного перемещения. Ограничения компрессора и системы подачи значит, что работа на низком давлении приведет к маленьким силам и скоростям. Компрессор должен работать все время даже если привода ничего не перемещают.

Для действительно эффективной работы пневматические привода должны иметь определенные размеры для каждой задачи. Из-за этого они не могут использоваться для других задач. Точное управление и эффективность требуют распределители и вентили соответствующего размера для каждого случая, что увеличивает стоимость и сложность.

Несмотря на то, что воздух легко доступен, он может быть загрязнен маслом или смазкой, что приводит к простою и необходимости в обслуживание.

Гидравлические привода

Преимущества

Гидравлические привода подходят для задач требующих большие силы. Они могут создавать силу в 25 раз больше чем пневматические привода того же размера. Они работают при давлениях до 27 МПа.

Гидравлические двигатели имеют высокий показатель мощность на объем.

Гидравлические привода могут держать силу и момент постоянным без подачи насосом дополнительной жидкости или давления, так как жидкости в отличии от газа практически не сжимаются.

Гидравлические привода могут располагаться на значительном расстоянии от насосов и двигателей с минимальной потерей мощности.

Недостатки

Подобно пневматическим приводам потеря жидкости в гидравлических приводах приводит к меньшей эффективности. Помимо этого утечка жидкости приводит к загрязнениям и потенциальным повреждениям рядом расположенных компонентов.

Гидравлические привода требуют много сопровождающих компонентов, включающих резервуар для жидкости, двигатели, насосы, стравливающий клапан, теплообменник и др. В связи с чем такие привода сложно разместить.


Федеральное агенство по образованию

Псковский государственный университет

ПНЕВМАТИЧЕСКИЕ И ГИДРАВЛИЧЕСКИЕ СИСТЕМЫ

АВТОТРАНСПОРТНОЙ ТЕХНИКИ И ГАРАЖНОГО

ОБОРУДОВАНИЯ

Учебно - методическое пособие

Введение

Широкое применение гидравлических и пневматических систем при использовании автомобильной техники и гаражного оборудования обусловлено определёнными преимуществами перед другими типами приводов (в частности, механическим приводом), позволяющими реализовать задачи, сформулированные на стадии конструирования.

Применение объёмного гидропривода позволяет получить значительную мощность на выходе при малой удельной массе. Возможность создания больших передаточных отношений, бесступенчатое регулирование скорости выходного звена, простое и надёжное предохранение от перегрузок, простота преобразования в поступательное обусловили широкое применение объёмного гидропривода в силовых системах автотранспортной техники ( , привод , буровые установки, автовышки, подъём кузова автомобиля и т. п.).

Динамический гидропривод (в частности, гидротрансформатор – ГДТ) получил широкое применение в автоматической трансмиссии легковых и грузовых автомобилей. С помощью ГДТ реализуют такие возможности автомобиля, как пуск двигателя под нагрузкой, плавное трогание с места и повышение проходимости вследствие плавного нарастания крутящего момента на колёсах автомобиля, возможность глубокого бесступенчатого регулирования, и др.

Пневматический привод широко применяется в тормозных системах грузовых автомобилей, привода открывания и закрывания дверей автобуса, в подвеске автомобиля. Отличительными особенностями пневмопривода от гидропривода являются свойства рабочего тела (атмосферного воздуха) – и сжимаемость, которые ограничивают применение пневмопривода.

Расчёт любого пневмо - или гидропривода начинают с анализа поставленных задач и проектирования принципиальной схемы, отражающей работу привода. Для освоения навыков составления принципиальных схем и предназначено это пособие.

Данное учебно – методическое пособие предназначено для проведения практических занятий со студентами всех форм обучения по направлениям 190600.62 «Автомобили и автомобильное хозяйство», 43.03.01 «Сервис автотранспортных средств».

1. Гидрообъёмная трансмиссия

Гидрообъёмная трансмиссия (ГОТ) предназначена для передачи крутящего момента от двигателя внутреннего сгорания (ДВС) к колёсам транспортного средства. Механическая энергия на выходном валу ДВС с помощью насоса преобразуется в гидравлическую энергию потока рабочей жидкости, подводимого к гидромотору, который в свою очередь преобразует гидравлическую энергию жидкости в механическую энергию вращения, подводимую к колёсам транспортного средства. Структурная схема ГОТ изображена на рис. 1.

Рис. 1. Структурная схема ГОТ

Применение ГОТ обусловлено следующими преимуществами перед механической трансмиссией:

Возможность плавного бесступенчатого изменения передаточного отношения трансмиссии в широком диапазоне, что повышает проходимость транспортного средства и облегчает управление;

При бесступенчатом регулировании скорости не происходит разрыва потока мощности (при переключении передач в механической трансмиссии разрыв потока мощности может привести к срыву грунта колёсами при движении по поверхностям с низкой несущей способностью);

Отсутствие ряда механических агрегатов (фрикционное сцепление, карданная передача, коробка передач, главная передача, ) снижают вес транспортного средства;

Универсальность управления работой ГОТ позволяет размещать гидромоторы на достаточном удалении от насоса, что особенно важно для управления многоосными полноприводными транспортными средствами;

Защита от перегрузок и быстрый реверс.

К недостаткам ГОТ можно отнести мйньший КПД в сравнении с механической трансмиссией, достаточно высокую стоимость гидромашин и гидроаппаратов, невысокую долговечность и работу на малых скоростях.

Создание большого крутящего момента на выходном валу гидромотора обусловило применение следующих типов гидромашин:

Насос роторный аксиально – поршневой регулируемый реверсивный с наклонным диском или наклонным блоком;

Гидромотор роторный аксиально – поршневой или радиально – поршневой реверсивный нерегулируемый или регулируемый.

ГОТ применяют на транспортных средствах, предназначенных для работы на мягких грунтах при движении с небольшой скоростью. ГОТ оснащены такие мобильные средства, как карьерный самосвал «Белаз», автодорожная техника (например, самоходный вибрационный каток), сельскохозяйственные машины (зерноуборочные комбайны), самоходные погрузчики.

1.1. Типовая гидравлическая схема гидрообъёмной трансмиссии привода ведущих колёс транспортного средства

Рис. 2. Типовая схема ГОТ

Гидравлическая схема типовой ГОТ (рис. 2) включает в себя главный контур, который содержит регулируемый насос Н1 и нерегулируемый гидромотор М, систему управления трансмиссией, систему подпитки, обеспечивающую создание подпорного давления во всасывающей линии для устранения кавитации и утечек, систему предохранения трансмиссии от перегрузки, систему отвода избытка нагретой рабочей жидкости, прошедшей гидромотор, на слив, и систему кондиционирования рабочей жидкости, включающий фильтр тонкой очистки Ф, охладитель ОХ и гидробак.

Регулируемый реверсивный насос Н1 преобразует механическую энергию дизельного двигателя в гидравлическую, создавая в напорной линии поток рабочей жидкости под давлением. В зависимости от направления подачи жидкости одна из подходящих к насосу гидролиний будет напорной, другая – всасывающей. Нерегулируемый реверсивный гидромотор преобразует гидравлическую энергию потока рабочей жидкости в механическую. Таким образом, в системе «насос – гидромотор» происходит замкнутая циркуляция рабочей жидкости.

Система подпитки, которая обеспечивает подачу рабочей жидкости в главный контур вследствие отбора нагретой жидкости для охлаждения и утечек, включает шестерённый насос Н2, обратные клапаны КО1 и КО2, предохранительный клапан КП1. Насос Н2 подаёт охлаждённую рабочую жидкость из бака в главный контур через клапан КО1 или КО2, в зависимости от того, какая линия будет напорной. Например, если верхняя линия главного контура – напорная, клапан КО1 будет закрыт, так как давление в напорной линии будет больше, чем давление, создаваемое насосом Н2. В этом случае подача рабочей жидкости будет происходить в нижнюю (всасывающую) линию через клапан КО2. Клапан КП1 предотвращает случайное повышение давления.

Система управления ГОТ включает насос подпитки Н2, пропорциональный распределитель Р1 с ручным управлением, гидроцилиндр Ц для регулирования подачи рабочей жидкости насосом Н1, дроссель ДР. При изменении положения золотника распределителя Р1 (например, при перемещении золотника вправо), происходит подача рабочей жидкости от насоса Н1 в правую полость гидроцилиндра Ц1, вследствие чего подача жидкости насосом Н1 увеличивается, что в свою очередь увеличивает частоту вращения вала гидромотора М. Тяга, закреплённая на штоке гидроцилиндра Ц, перемещает корпус распределителя Р1, возвращая золотник в исходное положение, при котором в обе полости гидроцилиндра подаётся одинаковое количество рабочей жидкости. Таким образом, при прекращении перемещения золотника частота вращения вала гидромотора М сохраняется постоянной. Дроссель ДР служит для ограничения подачи рабочей жидкости.

Система предохранения от перегрузки включает два предохранительных клапана высокого давления КП1 и КП2, которые в случае превышения нагрузки на валу гидромотора М сбрасывает рабочую жидкость из напорной линии во всасывающую в обход гидромотора. Наличие двух клапанов обусловлено реверсивностью насоса Н1.

Система отвода нагретой жидкости включает распределитель Р2 с гидравлическим управлением, клапан КП 4 и охладитель ОХ. Так как подача насоса Н2 больше утечек, то образующийся во всасывающей линии излишек рабочей жидкости, нагретый после выхода из гидромотора, через гидравлически управляемый золотниковый распределитель Р2 и переливной клапан КП4 поступает через охладитель ОХ в бак. Золотник распределителя Р2 перемещается под воздействием давления в напорной линии. Клапан КП4 ограничивает давление подпитки, а распределитель Р2 обеспечивает соединение клапана КП4 с всасывающей линией и блокирует поступление к нему жидкости из напорной линии.

1.2. Гидравлическая схема гидрообъёмной трансмиссии с дополнительным насосом

Отличие схемы, изображённой на рис. 3, от предыдущей является наличие отдельного насоса подпитки Н3 и применение одного предохранительного клапана с предварительным управлением КП2 вместо двух.

Предохранительные клапаны КП2 и КП3, указанные в предыдущей схеме (рис. 2), имеют значительные размеры и высокую стоимость. Кроме того они должны содержать устройства для предотвращения колебаний запорно – регулирующего элемента клапана.

Рис. 3. Гидравлическая схема ГОТ с дополнительным насосом

В представленной схеме при увеличении давления в напорной линии выше установленного значения через один из обратных клапанов КО4 или КО5 рабочая жидкость подводится к клапану КП2 и, в случае превышения номинального давления через клапан КО2 или КО3 поступает во всасывающую линию. Например, если верхняя линия – напорная, то в случае превышения давления рабочая жидкость поступает через клапан КО4 к клапану КП2, и через клапан КО3 поступает в нижнюю всасывающую линию. Клапан КО1 предотвращает поступление рабочей жидкости к насосу Н3 системы подпитки и далее на слив.

Двухпозиционный распределитель Р3 с ручным управлением обеспечивает принудительное открытие клапана КП2 и слив рабочей жидкости из напорной линии во всасывающую при необходимости перевода трансмиссии в нейтральное положение.

Для обеспечения регулирования насоса Н1 установлен дополнительный насос Н2. Пропорциональный распределитель Р1 при нейтральном положении золотника обеспечивает поступление рабочей жидкости от насоса на слив через охладитель ОХ1, чем достигается дополнительное охлаждение жидкости и минимальные затраты потребляемой насосом Н2 мощности. Распределитель Р2 предназначен для направления потока рабочей жидкости из всасывающей линии через охладитель ОХ2.