Трехфазный индукционный мотор. Асинхронный электродвигатель

Электродвигателей, а также рассказано, как ими управлять. Но видов электродвигателей существует гораздо больше! И у каждого из них свои свойства, область применения и особенности.

В этой статье будет небольшой обзор по разным типам электродвигателей с фотографиями и примерами применений. Почему в пылесос ставятся одни двигатели, а в вентилятор вытяжки другие? Какие двигатели стоят в сегвее? А какие двигают поезд метро?

Каждый электродвигатель обладает некоторыми отличительными свойствами, которые обуславливают его область применения, в которой он наиболее выгоден. Синхронные, асинхронные, постоянного тока, коллекторные, бесколлекторные, вентильно-индукторные, шаговые… Почему бы, как в случае с двигателями внутреннего сгорания, не изобрести пару типов, довести их до совершенства и ставить их и только их во все применения? Давайте пройдемся по всем типам электродвигателей, а в конце обсудим, зачем же их столько и какой двигатель «самый лучший».

Двигатель постоянного тока (ДПТ)

С этим двигателем все должны быть знакомы с детства, потому что именно этот тип двигателя стоит в большинстве старых игрушек. Батарейка, два проводка на контакты и звук знакомого жужжания, вдохновляющего на дальнейшие конструкторские подвиги. Все ведь так делали? Надеюсь. Иначе эта статья, скорее всего, не будет вам интересна. Внутри такого двигателя на валу установлен контактный узел – коллектор, переключающий обмотки на роторе в зависимости от положения ротора. Постоянный ток, подводимый к двигателю, протекает то по одним, то по другим частям обмотки, создавая вращающий момент. Кстати, не уходя далеко, всех ведь, наверное, интересовало – что за желтые штучки стояли на некоторых ДПТ из игрушек, прямо на контактах (как на фото сверху)? Это конденсаторы – при работе коллектора из-за коммутаций потребление тока импульсное, напряжение может также меняться скачками, из-за чего двигатель создает много помех. Они особенно мешают, если ДПТ установлен в радиоуправляемой игрушке. Конденсаторы как раз гасят такие высокочастотные пульсации и, соответственно, убирают помехи.

Двигатели постоянного тока бывают как очень маленького размера («вибра» в телефоне), так и довольно большого – обычно до мегаватта. Например, на фото ниже показан тяговый электродвигатель электровоза мощностью 810кВт и напряжением 1500В.

Почему ДПТ не делают мощнее? Главная проблема всех ДПТ, а в особенности ДПТ большой мощности – это коллекторный узел. Скользящий контакт сам по себе является не очень хорошей затеей, а скользящий контакт на киловольты и килоамперы – и подавно. Поэтому конструирование коллекторного узла для мощных ДПТ – целое искусство, а на мощности выше мегаватта сделать надежный коллектор становится слишком сложно (рекорд - 12,5МВт).
В потребительском качестве ДПТ хорош своей простотой с точки зрения управляемости. Его момент прямо пропорционален току якоря, а частота вращения (по крайней мере холостой ход) прямо пропорциональна приложенному напряжению. Поэтому до наступления эры микроконтроллеров, силовой электроники и частотного регулируемого привода переменного тока именно ДПТ был самым популярным электродвигателем для задач, где требуется регулировать частоту вращения или момент.

Также нужно упомянуть, как именно в ДПТ формируется магнитный поток возбуждения, с которым взаимодействует якорь (ротор) и за счет этого возникает вращающий момент. Этот поток может делаться двумя способами: постоянными магнитами и обмоткой возбуждения. В небольших двигателях чаще всего ставят постоянные магниты, в больших – обмотку возбуждения. Обмотка возбуждения – это еще один канал регулирования. При увеличении тока обмотки возбуждения увеличивается её магнитный поток. Этот магнитный поток входит как в формулу момента двигателя, так и в формулу ЭДС. Чем выше магнитный поток возбуждения, тем выше развиваемый момент при том же токе якоря. Но тем выше и ЭДС машины, а значит при том же самом напряжении питания частота вращения холостого хода двигателя будет ниже. Зато если уменьшить магнитный поток, то при том же напряжении питания частота холостого хода будет выше, уходя в бесконечность при уменьшении потока возбуждения до нуля. Это очень важное свойство ДПТ. Вообще, я очень советую изучить уравнения ДПТ – они простые, линейные, но их можно распространить на все электродвигатели – процессы везде схожие.

Универсальный коллекторный двигатель

Как ни странно, это самый распространенный в быту электродвигатель, название которого наименее известно. Почему так получилось? Его конструкция и характеристики такие же, как у двигателя постоянного тока, поэтому упоминание о нем в учебниках по приводу обычно помещается в самый конец главы про ДПТ. При этом ассоциация коллектор = ДПТ так прочно заседает в голове, что не всем приходит на ум, что двигатель постоянного тока, в названии которого присутствует «постоянный ток», теоретически можно включать в сеть переменного тока. Давайте разберемся.

Как изменить направление вращения двигателя постоянного тока? Это знают все, надо сменить полярность питания якоря. А ещё? А еще можно сменить полярность питания обмотки возбуждения, если возбуждение сделано обмоткой, а не магнитами. А если полярность сменить и у якоря, и у обмотки возбуждения? Правильно, направление вращения не изменится. Так что же мы ждем? Соединяем обмотки якоря и возбуждения последовательно или параллельно, чтобы полярность изменялась одинаково и там и там, после чего вставляем в однофазную сеть переменного тока! Готово, двигатель будет крутиться. Есть один только маленький штрих, который надо сделать: так как по обмотке возбуждения протекает переменный ток, её магнитопровод, в отличие от истинного ДПТ, надо изготовить шихтованным, чтобы снизить потери от вихревых токов. И вот мы и получили так называемый «универсальный коллекторный двигатель», который по конструкции является подвидом ДПТ, но… прекрасно работает как от переменного, так и от постоянного тока.

Этот тип двигателей наиболее широко распространен в бытовой технике, где требуется регулировать частоту вращения: дрели, стиральные машины (не с «прямым приводом»), пылесосы и т.п. Почему именно он так популярен? Из-за простоты регулирования. Как и в ДПТ, его можно регулировать уровнем напряжения, что для сети переменного тока делается симистором (двунаправленным тиристором). Схема регулирования может быть так проста, что помещается, например, прямо в «курке» электроинструмента и не требует ни микроконтроллера, ни ШИМ, ни датчика положения ротора.

Асинхронный электродвигатель

Еще более распространенным, чем коллекторные двигатели, является асинхронный двигатель. Только распространен он в основном в промышленности – где присутствует трехфазная сеть. Про принцип его работы написана . Если кратко, то его статор – это распределенная двухфазная или трехфазная (реже многофазная) обмотка. Она подключается к источнику переменного напряжения и создает вращающееся магнитное поле. Ротор можно представлять себе в виде медного или алюминиевого цилиндра, внутри которого находится железо магнитопровода. К ротору в явном виде напряжение не подводится, но оно индуцируется там за счет переменного поля статора (поэтому двигатель на английском языке называют индукционным). Возникающие вихревые токи в короткозамкнутом роторе взаимодействуют с полем статора, в результате чего образуется вращающий момент.

Почему асинхронный двигатель так популярен? У него нет скользящего контакта, как у коллекторного двигателя, а поэтому он более надежен и требует меньше обслуживания. Кроме того, такой двигатель может пускаться от сети переменного тока «прямым пуском» – его можно включить коммутатором «на сеть», в результате чего двигатель запустится (с большим пусковым током 5-7 крат, но допустимым). ДПТ относительно большой мощности так включать нельзя, от пускового тока погорит коллектор. Также асинхронные привода, в отличие от ДПТ, можно делать гораздо большей мощности – десятки мегаватт, тоже благодаря отсутствию коллектора. При этом асинхронный двигатель относительно прост и дешев.

Асинхронный двигатель применяется и в быту: в тех устройствах, где не нужно регулировать частоту вращения. Чаще всего это так называемые «конденсаторные» двигатели, или, что тоже самое, «однофазные» асинхронники. Хотя на самом деле с точки зрения электродвигателя правильнее говорить «двухфазные», просто одна фаза двигателя подключается в сеть напрямую, а вторая через конденсатор. Конденсатор делает фазовый сдвиг напряжения во второй обмотке, что позволяет создать вращающееся эллиптическое магнитное поле. Обычно такие двигатели применяются в вытяжных вентиляторах, холодильниках, небольших насосах и т.п.

Минус асинхронного двигателя по сравнению с ДПТ в том, что его сложно регулировать. Асинхронный электродвигатель – это двигатель переменного тока. Если асинхронному двигателю просто понизить напряжение, не понизив частоту, то он несколько снизит скорость, да. Но у него увеличится так называемое скольжение (отставание частоты вращения от частоты поля статора), увеличатся потери в роторе, из-за чего он может перегреться и сгореть. Можно представлять это себе как регулирование скорости движения легкового автомобиля исключительно сцеплением, подав полный газ и включив четвертую передачу. Чтобы правильно регулировать частоту вращения асинхронного двигателя нужно пропорционально регулировать и частоту, и напряжение. А лучше и вовсе организовать векторное управление, как более подробно было описано в прошлой статье . Но для этого нужен преобразователь частоты – целый прибор с инвертором, микроконтроллером, датчиками и т.п. До эры силовой полупроводниковой электроники и микропроцессорной техники (в прошлом веке) регулирование частотой было экзотикой – его не на чем было делать. Но сегодня регулируемый асинхронный электропривод на базе преобразователя частоты – это уже стандарт-де-факто.

Синхронный электродвигатель

Про принцип работы синхронного двигателя также . Синхронных приводов бывает несколько подвидов – с магнитами (PMSM) и без (с обмоткой возбуждения и контактными кольцами), с синусоидальной ЭДС или с трапецеидальной (бесколлекторные двигатели постоянного тока, BLDC). Сюда же можно отнести некоторые шаговые двигатели. До эры силовой полупроводниковой электроники уделом синхронных машин было применение в качестве генераторов (почти все генераторы всех электростанций – синхронные машины), а также в качестве мощных приводов для какой-либо серьезной нагрузки в промышленности.


Все эти машины выполнялись с контактными кольцами (можно увидеть на фото), о возбуждении от постоянных магнитов при таких мощностях речи, конечно же, не идет. При этом у синхронного двигателя, в отличие от асинхронного, большие проблемы с пуском. Если включить мощную синхронную машину напрямую на трехфазную сеть, то всё будет плохо. Так как машина синхронная, она должна вращаться строго с частотой сети. Но за время 1/50 секунды ротор, конечно же, разогнаться с нуля до частоты сети не успеет, а поэтому он будет просто дергаться туда-сюда, так как момент получится знакопеременный. Это называется «синхронный двигатель не вошел в синхронизм». Поэтому в реальных синхронных машинах применяют асинхронный пуск – делают внутри синхронной машины небольшую асинхронную пусковую обмотку и закорачивают обмотку возбуждения, имитируя «беличью клетку» асинхронника, чтобы разогнать машину до частоты, примерно равной частоте вращения поля, а уже после этого включается возбуждение постоянным током и машина втягивается в синхронизм.
И если у асинхронного двигателя регулировать частоту ротора без изменения частоты поля хоть как-то можно, то у синхронного двигателя нельзя никак. Он или крутится с частой поля, или выпадает из синхронизма и с отвратительными переходными процессами останавливается. Кроме того, у синхронного двигателя без магнитов есть контактные кольца – скользящий контакт, чтобы передавать энергию на обмотку возбуждения в роторе. С точки зрения сложности, это, конечно, не коллектор ДПТ, но всё равно лучше бы было без скользящего контакта. Именно поэтому в промышленности для нерегулируемой нагрузки применяют в основном менее капризные асинхронные привода.

Но все изменилось с появлением силовой полупроводниковой электроники и микроконтроллеров. Они позволили сформировать для синхронной машины любую нужную частоту поля, привязанную через датчик положения к ротору двигателя: организовать вентильный режим работы двигателя (автокоммутацию) или векторное управление. При этом характеристики привода целиком (синхронная машина + инвертор) получились такими, какими они получаются у двигателя постоянного тока: синхронные двигатели заиграли совсем другими красками. Поэтому начиная где-то с 2000 года начался «бум» синхронных двигателей с постоянными магнитами. Сначала они робко вылезали в вентиляторах кулеров как маленькие BLDC двигатели, потом добрались до авиамоделей, потом забрались в стиральные машины как прямой привод, в электротягу (сегвей, Тойота приус и т.п.), всё больше вытесняя классический в таких задачах коллекторный двигатель. Сегодня синхронные двигатели с постоянными магнитами захватывают всё больше применений и идут семимильными шагами. И все это – благодаря электронике. Но чем же лучше синхронный двигатель асинхронного, если сравнивать комплект преобразователь+двигатель? И чем хуже? Этот вопрос будет рассматриваться в конце статьи, а сейчас давайте пройдемся еще по нескольким типам электродвигателей.

Вентильно-индукторный двигатель с самовозбуждением (ВИД СВ, SRM)



У него много названий. Обычно его коротко называют вентильно-индукторный двигатель (ВИД) или вентильно-индукторная машина (ВИМ) или привод (ВИП). В английской терминологии это switched reluctance drive (SRD) или motor (SRM), что переводится как машина с переключаемым магнитным сопротивлением. Но чуть ниже будет рассматриваться другой подвид этого двигателя, отличающийся по принципу действия. Чтобы не путать их друг с другом, «обычный» ВИД, который рассмотрен в этом разделе, мы на кафедре электропривода в МЭИ, а также на фирме ООО «НПФ ВЕКТОР» называем «вентильно-индукторный двигатель с самовозбуждением» или коротко ВИД СВ, что подчеркивает принцип возбуждения и отличает его от машины, рассмотренной далее. Но другие исследователи его также называют ВИД с самоподмагничиванием, иногда реактивный ВИД (что отражает суть образования вращающего момента).


Конструктивно это самый простой двигатель и по принципу действия похож на некоторые шаговые двигатели. Ротор – зубчатая железка. Статор – тоже зубчатый, но с другим числом зубцов. Проще всего принцип работы поясняет вот эта анимация:

Подавая постоянный ток в фазы в соответствии с текущим положением ротора можно заставить двигатель вращаться. Фаз может быть разное количество. Форма тока реального привода для трех фаз показа на рисунке (токоограничение 600А):


Однако за простоту двигателя приходится платить. Так как двигатель питается однополярными импульсами тока, напрямую «на сеть» его включать нельзя. Обязательно требуется преобразователь и датчик положения ротора. Причем преобразователь не классический (типа шестиключевой инвертор): для каждой фазы у преобразователя для SRD должны быть полумосты, как на фото в начале этого раздела. Проблема в том, что для удешевления комплектующих и улучшения компоновки преобразователей силовые ключи и диоды часто не изготавливаются отдельно: обычно применяются готовые модули, содержащие одновременно два ключа и два диода – так называемые стойки. И именно их чаще всего и приходится ставить в преобразователь для ВИД СВ, половину силовых ключей просто оставляя незадействованной: получается избыточный преобразователь. Хотя в последние годы некоторые производители IGBT модулей выпустили изделия, предназначенные именно для SRD.

Следующая проблема – это пульсации вращающего момента. В силу зубчатой структуры и импульсного тока момент редко получается стабильным – чаще всего он пульсирует. Это несколько ограничивает применимость двигателей для транспорта – кому хочется иметь пульсирующий момент на колесах? Кроме того, от таких импульсов тянущего усилия не очень хорошо себя чувствуют подшипники двигателя. Проблема несколько решается специальным профилированием формы тока фазы, а также увеличением количества фаз.

Однако даже при этих недостатках двигатели остаются перспективными в качестве регулируемого привода. Благодаря их простоте сам двигатель получается дешевле классического асинхронного двигателя. Кроме того, двигатель легко сделать многофазным и многосекционным, разделив управление одним двигателем на несколько независимых преобразователей, которые работают параллельно. Это позволяет повысить надежность привода – отключение, скажем, одного из четырех преобразователей не приведет к остановке привода в целом – трое соседей будут какое-то время работать с небольшой перегрузкой. Для асинхронного двигателя такой фокус выполнить так просто не получается, так как невозможно сделать несвязанные друг с другом фазы статора, которые бы управлялись отдельным преобразователем полностью независимо от других. Кроме того, ВИД очень хорошо регулируются «вверх» от основной частоты. Железку ротора можно раскручивать без проблем до очень высоких частот.
Мы на фирме ООО «НПФ ВЕКТОР» выполнили несколько проектов на базе этого двигателя. Например, делали небольшой привод для насосов горячего водоснабжения , а также недавно закончили разработку и отладку системы управления для мощных (1,6 МВт) многофазных резервируемых приводов для обогатительных фабрик АК «АЛРОСА» . Вот машинка на 1,25 МВт:


Вся система управления, контроллеры и алгоритмы были сделаны у нас в ООО «НПФ ВЕКТОР», силовые преобразователи спроектировала и изготовила фирма ООО «НПП «ЦИКЛ+». Заказчиком работы и проектировщиком самих двигателей являлась фирма ООО «МИП «Мехатроника» ЮРГТУ (НПИ)».

Вентильно-индукторный двигатель с независимым возбуждением (ВИД НВ)

Это совсем другой тип двигателя, отличающийся по принципу действия от обычного ВИД. Исторически известны и широко используются вентильно-индукторные генераторы такого типа, применяемые на самолетах, кораблях, железнодорожном транспорте, а вот именно двигателями такого типа почему-то занимаются мало.


На рисунке схематично показана геометрия ротора и магнитный поток обмотки возбуждения, а также изображено взаимодействие магнитных потоков статора и ротора, при этом ротор на рисунке установлен в согласованное положение (момент равен нулю).

Ротор собран из двух пакетов (из двух половинок), между которыми установлена обмотка возбуждения (на рисунке показана как четыре витка медного провода). Несмотря на то, что обмотка висит «посередине» между половинками ротора, крепится она к статору и не вращается. Ротор и статор выполнены из шихтованного железа, постоянные магниты отсутствуют. Обмотка статора распределенная трехфазная – как у обычного асинхронного или синхронного двигателя. Хотя существуют варианты такого типа машин с сосредоточенной обмоткой: зубцами на статоре, как у SRD или BLDC двигателя. Витки обмотки статора охватывают сразу оба пакета ротора.

Упрощенно принцип работы можно описать следующим образом: ротор стремится повернуться в такое положение, при котором направления магнитного потока в статоре (от токов статора) и роторе (от тока возбуждения) совпадут. При этом половина электромагнитного момента образуется в одном пакете, а половина – в другом. Со стороны статора машина подразумевает разнополярное синусоидальное питание (ЭДС синусоидальна), электромагнитный момент активный (полярность зависит от знака тока) и образован за счет взаимодействия поля, созданного током обмотки возбуждения с полем, созданного обмотками статора. По принципу работы эта машина отлична от классических шаговых и SRD двигателей, в которых момент реактивный (когда металлическая болванка притягивается к электромагниту и знак усилия не зависит от знака тока электромагнита).

С точки зрения управления ВИД НВ оказывается эквивалентен синхронной машине с контактными кольцами. То есть, если вы не знаете конструкцию этой машины и используете её как «черный ящик», то она ведет себя практически неотличимо от синхронной машины с обмоткой возбуждения. Можно сделать векторное управление или автокоммутацию, можно ослаблять поток возбуждения для повышения частоты вращения, можно усиливать его для создания большего момента – всё так, как будто это классическая синхронная машина с регулируемым возбуждением. Только ВИД НВ не имеет скользящего контакта. И не имеет магнитов. И ротор в виде дешевой железной болванки. И момент не пульсирует, в отличие от SRD. Вот, например, синусоидальные токи ВИД НВ при работе векторного управления:


Кроме того, ВИД НВ можно создавать многофазным и многосекционным, аналогично тому, как это делается в ВИД СВ. При этом фазы оказываются несвязанными друг с другом магнитными потоками и могут работать независимо. Т.е. получается как будто бы несколько трехфазных машин в одной, к каждой из которых присоединяется свой независимый инвертор с векторным управлением, а результирующая мощность просто суммируется. Координации между преобразователями при этом не требуется никакой – только общее задание частоты вращения.
Минусы этого двигателя тоже есть: напрямую от сети он крутиться не может, так как, в отличие от классических синхронных машин, ВИД НВ не имеет асинхронной пусковой обмотки на роторе. Кроме того, он сложнее по конструкции, чем обычный ВИД СВ (SRD).

На основе данного двигателя мы также сделали несколько успешных проектов. Например, один из них – это серия приводов насосов и вентиляторов для районных теплостанций г. Москвы мощностью 315-1200кВт (ссылка на проект). Это низковольтные (380В) ВИД НВ с резервированием, где одна машина «разбита» на 2, 4 или 6 независимых трехфазных секций. На каждую секцию ставится свой однотипный преобразователь с векторным бездатчиковым управлением. Таким образом можно легко наращивать мощность на базе однотипной конструкции преобразователя и двигателя. При этом часть преобразователей подключено к одному вводу питания районной теплостанции, а часть к другому. Поэтому если происходит «моргушка питания» по одному из вводов питания, то привод не встает: половина секций кратковременно работают в перегрузке, пока питание не восстановится. Как только оно восстанавливается, на ходу в работу автоматически вводятся отдыхавшие секции. Вообще, наверное, этот проект заслуживал бы отдельной статьи, поэтому пока про него закончу, вставив фото двигателя и преобразователей:

Заключение: какой же электродвигатель самый лучший?

К сожалению, двумя словами здесь не обойтись. И общими выводами про то, что у каждого двигателя свои достоинства и недостатки – тоже. Потому что не рассмотрены самые главные качества – массогабаритные показатели каждого и типов машин, цена, а также их механические характеристики и перегрузочная способность. Оставим нерегулируемый асинхронный привод крутить свои насосы напрямую от сети, тут ему конкурентов нет. Оставим коллекторные машины крутить дрели и пылесосы, тут с ними в простоте регулирования тоже потягаться сложно.

Давайте рассмотрим регулируемый электропривод, режим работы которого – длительный. Коллекторные машины здесь сразу исключаются из конкуренции по причине ненадежности коллекторного узла. Но остались еще четыре – синхронный, асинхронный, и два типа вентильно-индукторных. Если мы говорим о приводе насоса, вентилятора и чего-то похожего, что используется в промышленности и где масса и габариты особо не важны, то здесь из конкуренции выпадают синхронные машины. Для обмотки возбуждения требуются контактные кольца, что является капризным элементом, а постоянные магниты очень дороги. Конкурирующими вариантами остаются асинхронный привод и вентильно-индукторные двигатели обоих типов.

Как показывает опыт, все три типа машин успешно применяются. Но – асинхронный привод невозможно (или очень сложно) секционировать, т.е. разбить мощную машину на несколько маломощных. Поэтому для обеспечения большой мощности асинхронного преобразователя требуется делать его высоковольтным: ведь мощность – это, если грубо, произведение напряжения на ток. Если для секционируемого привода мы можем взять низковольтный преобразователь и наставить их несколько, каждый на небольшой ток, то для асинхронного привода преобразователь должен быть один. Но не делать же преобразователь на 500В и ток 3 килоампера? Это провода нужны с руку толщиной. Поэтому для увеличения мощности повышают напряжение и снижают ток. А высоковольтный преобразователь – это совсем другой класс задачи. Нельзя просто так взять силовые ключи на 10кВ и сделать из них классический инвертор на 6 ключей, как раньше: и нет таких ключей, а если есть, они очень дороги. Инвертор делают многоуровневым, на низковольтных ключах, соединенных последовательно в сложных комбинациях. Такой инвертор иногда тянет за собой специализированный трансформатор, оптические каналы управления ключами, сложную распределенную систему управления, работающую как одно целое… В общем, сложно всё у мощного асинхронного привода. При этом вентильно-индукторный привод за счет секционирования может «отсрочить» переход на высоковольтный инвертор, позволяя сделать привода до единиц мегаватт от низковольтного питания, выполненные по классической схеме. В этом плане ВИПы становятся интереснее асинхронного привода, да еще и обеспечивают резервирование. С другой стороны, асинхронные привода работают уже сотни лет, двигатели доказали свою надежность. ВИПы же только пробивают себе дорогу. Так что здесь надо взвесить много факторов, чтобы выбрать для конкретной задачи наиболее оптимальный привод.

Но всё становится еще интереснее, когда речь заходит о транспорте или о малогабаритных устройствах. Там уже нельзя беспечно относиться к массе и габаритам электропривода. И вот там уже нужно смотреть на синхронные машины с постоянными магнитами. Если посмотреть только на параметр мощности деленной на массу (или размер), то синхронные машины с постоянными магнитами вне конкуренции. Отдельные экземпляры могут быть в разы меньше и легче, чем любой другой «безмагнитный» привод переменного тока. Но здесь есть одно опасное заблуждение, которое я сейчас постараюсь развеять.

Если синхронная машина в три раза меньше и легче – это не значит, что для электротяги она подходит лучше. Всё дело в отсутствии регулировки потока постоянных магнитов. Поток магнитов определяет ЭДС машины. На определенной частоте вращения ЭДС машины достигает напряжения питания инвертора и дальнейшее повышение частоты вращения становится затруднительно. Тоже самое касается и повышения момента. Если нужно реализовать больший момент, в синхронной машине нужно повышать ток статора – момент возрастет пропорционально. Но более эффективно было бы повысить и поток возбуждения – тогда и магнитное насыщение железа было бы более гармоничным, а потери были бы ниже. Но опять же поток магнитов повышать мы не можем. Более того, в некоторых конструкциях синхронных машин и ток статора нельзя повышать сверх определенной величины – магниты могут размагнититься. Что же получается? Синхронная машина хороша, но только лишь в одной единственной точке – в номинальной. С номинальной частотой вращения и номинальным моментом. Выше и ниже – всё плохо. Если это нарисовать, то получится вот такая характеристика частоты от момента (красным):


На рисунке по горизонтальной оси отложен момент двигателя, по вертикальной – частота вращения. Звездочкой отмечена точка номинального режима, например, пусть это будет 60кВт. Заштрихованный прямоугольник – это диапазон, где возможно регулирование синхронной машины без проблем – т.е. «вниз» по моменту и «вниз» по частоте от номинала. Красной линией отмечено, что можно выжать из синхронной машины сверх номинала – небольшое повышение частоты вращения за счет так называемого ослабления поля (на самом деле это создание лишнего реактивного тока по оси d двигателя в векторном управлении), а также показана некоторая возможная форсировка по моменту, чтобы было безопасно для магнитов. Всё. А теперь давайте поставим эту машину в легковое транспортное средство без коробки передач, где батарея рассчитана на отдачу 60кВт. Желаемая тяговая характеристика изображена синим. Т.е. начиная с самой низкой скорости, скажем, с 10км/ч привод должен развивать свои 60кВт и продолжать их развивать вплоть до максимальной скорости, скажем 150км/ч. Синхронная машина и близко не лежала: её момента не хватит даже чтобы заехать на бордюр у подъезда (или на поребрик у парадной, для полит. корректности), а разогнаться машина сможет лишь до 50-60км/ч.
Что же это значит? Синхронная машина не подходит для электротяги без коробки передач? Подходит, конечно же, просто надо по-другому её выбрать. Вот так:


Надо выбрать такую синхронную машину, чтобы требуемый тяговый диапазон регулирования был весь внутри её механической характеристики. Т.е. чтобы машина одновременно могла развить и большой момент, и работать на большой частоте вращения. Как вы видите из рисунка… установленная мощность такой машины будет уже не 60кВт, а 540кВт (можно посчитать по делениям). Т.е. в электромобиль с батареей на 60кВт придется установить синхронную машину и инвертор на 540кВт, просто чтобы «пройти» по требуемому моменту и частоте вращения.

Конечно же, так как описано, никто не делает. Никто не ставит машину на 540кВт вместо 60кВт. Синхронную машину модернизируют, пытаясь «размазать» её механическую характеристику из оптимума в одной точке вверх по скорости и вниз по моменту. Например, прячут магниты в железо ротора (делают инкорпорированными), это позволяет не бояться размагнитить магниты и ослаблять поле смелее, а также перегружать по току побольше. Но от таких модификаций синхронная машина набирает вес, габариты и становится уже не такой легкой и красивой, какой она была раньше. Появляются новые проблемы, такие как «что делать, если в режиме ослабления поля инвертор отключился». ЭДС машины может «накачать» звено постоянного тока инвертора и выжечь всё. Или что делать, если инвертор на ходу пробился - синхронная машина замкнется и может токами короткого замыкания убить и себя, и водителя, и всю оставшуюся живой электронику - нужны схемы защиты и т.п.

Поэтому синхронная машина хороша там, где большого диапазона регулирования не требуется. Например, в сегвее, где скорость с точки зрения безопасности может быть ограничена на 30км/ч (или сколько там у него?). А еще синхронная машина идеальна для вентиляторов: у вентилятора сравнительно мало изменяется частота вращения, от силы раза в два – больше особо нет смысла, так как воздушный поток ослабевает пропорционально квадрату скорости (примерно). Поэтому для небольших пропеллеров и вентиляторов синхронная машина – это то, что нужно. И как раз она туда, собственно, успешно ставится.

Тяговую кривую, изображенную на рисунке синим цветом, испокон веков реализуют двигатели постоянного тока с регулируемым возбуждением: когда ток обмотки возбуждения изменяют в зависимости от тока статора и частоты вращения. При увеличении частоты вращения уменьшается и ток возбуждения, позволяя машине разгоняться выше и выше. Поэтому ДПТ с независимым (или смешанным) управлением возбуждением классически стоял и до сих пор стоит в большинстве тяговых применений (метро, трамваи и т.п.). Какая же электрическая машина переменного тока может с ним поспорить?

К такой характеристике (постоянства мощности) могут лучше приблизиться двигатели, у которых регулируется возбуждение. Это асинхронный двигатель и оба типа ВИПов. Но у асинхронного двигателя есть две проблемы: во-первых, его естественная механическая характеристика – это не кривая постоянства мощности. Потому что возбуждение асинхронного двигателя осуществляется через статор. А поэтому в зоне ослабления поля при постоянстве напряжения (когда на инверторе оно закончилось) подъем частоты в два раза приводит к падению тока возбуждения в два раза и моментоообразующего тока тоже в два раза. А так как момент на двигателе – это произведение тока на поток, то момент падает в 4 раза, а мощность, соответственно, в два. Вторая проблема – это потери в роторе при перегрузке с большим моментом. В асинхронном двигателе половина потерь выделяется в роторе, половина в статоре. Для уменьшения массогабаритных показателей на транспорте часто применяется жидкостное охлаждение. Но водяная рубашка эффективно охладит лишь статор, за счет явления теплопроводности. От вращающегося ротора тепло отвести значительно сложнее – путь отвода тепла через «теплопроводность» отрезан, ротор не касается статора (подшипники не в счет). Остается воздушное охлаждение путем перемешивая воздуха внутри пространства двигателя или излучение тепла ротором. Поэтому ротор асинхронного двигателя получается своеобразным «термосом» - единожды перегрузив его (сделав динамичный разгон на машине), требуется долгое время ждать остывания ротора. А ведь его температуру еще и не измерить… приходится только предсказывать по модели.

Здесь нужно отметить, как мастерски обе проблемы асинхронного двигателя обошли в Тесла в своей Model S. Проблему с отводом тепла из ротора они решили… заведя во вращающийся ротор жидкость (у них есть соответствующий патент, где вал ротора полый и он омывается внутри жидкостью, но достоверно я не знаю, применяют ли они это). А вторую проблему с резким уменьшением момента при ослаблении поля… они не решали. Они поставили двигатель с тяговой характеристикой, почти как у меня нарисована для «избыточного» синхронного двигателя на рисунке выше, только у них не 540кВт, а 300кВт. Зона ослабления поля в тесле очень маленькая, где-то два крата. Т.е. они поставили «избыточный» для легкового автомобиля двигатель, сделав вместо бюджетного седана по сути спорт-кар с огромной мощностью. Недостаток асинхронного двигателя обратили в достоинство. Но если бы они попытались сделать менее «производительный» седан, мощностью 100кВт или меньше, то асинхронный двигатель, скорее всего, был бы точно таким же (на 300кВт), просто его искусственно задушили электроникой бы под возможности батареи.

А теперь ВИПы. Что могут они? Какая тяговая характеристика у них? Про ВИД СВ я точно сказать не могу – это по своему принципу работы нелинейный двигатель, и от проекта к проекту его механическая характеристика может сильно меняться. Но в целом он скорее всего лучше асинхронного двигателя в плане приближения к желаемой тяговой характеристике с постоянством мощности. А вот про ВИД НВ я могу сказать подробнее, так как мы на фирме им очень плотно занимаемся. Видите вон ту желаемую тяговую характеристику на рисунке выше, которая нарисована синим цветом, к которой мы хотим стремиться? Это на самом деле не просто желаемая характеристика. Это реальная тяговая характеристика, которую мы по точкам по датчику момента сняли для одного из ВИД НВ. Так как ВИД НВ имеет независимое внешнее возбуждение, то его качества наиболее приближены к ДПТ НВ, который тоже может сформировать такую тяговую характеристику за счет регулирования возбуждения.

Так что же? ВИД НВ – идеальная машина для тяги без единой проблемы? На самом деле нет. Проблем у него тоже куча. Например, его обмотка возбуждения, которая «висит» между пакетами статора. Хоть она и не вращается, от неё тоже сложно отводить тепло – получается ситуация почти как ротором асинхронника, лишь немного получше. Можно, в случае надобности, «кинуть» трубку охлаждения со статора. Вторая проблема – это завышенные массогабаритные показатели. Глядя на рисунок ротора ВИД НВ, можно видеть, что пространство внутри двигателя используется не очень эффективно – «работают» только начало и конец ротора, а середина занята обмоткой возбуждения. В асинхронном двигателе, например, вся длина ротора, всё железо «работает». Сложность сборки – засунуть обмотку возбуждения внутрь пакетов ротора надо еще суметь (ротор делается разборным, соответственно, есть проблемы с балансировкой). Ну и просто массогабаритные характеристики пока получаются не очень-то выдающимися по сравнению с теми же асинхронными двигателями Тесла, если накладывать тяговые характеристики друг на друга.
А также есть еще общая проблема обоих типов ВИД. Их ротор – пароходное колесо. И на высоких частотах вращения (а высокая частота нужна, так высокочастотные машины при той же мощности меньше тихоходных) потери от перемешивания воздуха внутри становятся очень значительными. Если до 5000-7000 об/мин ВИД еще можно сделать, то на 20000 об/мин это получится большой миксер. А вот асинхронный двигатель на такие частоты и гораздо выше сделать вполне можно за счет гладкого статора.

Так что же лучше всего в итоге для электротяги? Какой двигатель самый лучший?
Понятия не имею. Все плохие. Надо изобретать дальше. Но мораль статьи такова – если вы хотите сравнить между собой разные типы регулируемого электропривода, то нужно сравнивать на конкретной задаче с конкретной требуемой механической характеристикой по всем-всем параметрам, а не просто по мощности. Также в этой статье не рассмотрены еще куча нюансов сравнения. Например, такой параметр как длительность работы в каждой из точек механической характеристики. На максимальном моменте обычно ни одна машина не может работать долго – это режим перегрузки, а на максимальной скорости очень плохо себя чувствуют синхронные машины с магнитами – там у них огромные потери в стали. А еще интересный параметр для электротяги – потери при движении выбегом, когда водитель отпустил газ. Если ВИПы и асинхронные двигатели будут крутиться как болванки, то у синхронной машины с постоянными магнитами останутся почти номинальные потери в стали из-за магнитов. И так далее, и так далее…
Поэтому нельзя вот так просто взять и выбрать лучший электропривод.

UPD:
Обобщая замечания в комментариях, необходимо дополнить некоторые важные, как оказалось, вещи, которые я изначально опустил как маловажные.
1. Асинхронные двигатели до эры преобразователей частоты регулировали за счет применения так называемого фазного ротора - когда ротор делался в виде обмотки, а не беличьей клетки, а через контактные кольца (как у синхронной машины) фазы ротора выводились наружу. Включая в цепь ротора резисторы можно было мягко пускать АД и безопасно регулировать частоту вращения, изменяя сопротивление. Проблема в том, что очень много энергии при этом терялось в резисторах - иногда до половины от подводимой к приводу мощности.

2. В статье не упомянуты синхронные реактивные машины и их совмещение с синхронными машинами с постоянными магнитами. Если сделать ротор синхронной машины с магнитами явнополюсным - например таким, как нарисован ротор SRD двигателя на gif анимации, то развиваемый момент может быть не только активным, но и реактивным - как у SRD. Подбирая оптимальное сочетание активного и реактивного момента можно частично исключить проблемы классической синхронной машины с магнитами, значительно расширив диапазон работы с постоянством мощности. Получается некий гибрид реактивной машины и синхронной с магнитами.

3. Шаговые двигатели не рассмотрены, потому что по принципу действия они в первом приближении схожи либо с синхронными машинами с постоянными магнитами, либо с SRD двигателями - зависит от конкретного типа шаговика. Только шаговые двигатели, в отличие от «силовых» приводов, имеют гораздо большее количество пар полюсов (зубцов) для увеличения коэффициента электрической редукции: чтобы одному периоду тока соответствовало меньшее угловое перемещение вала. Управление шаговиками обычно тривиальное - последовательный перебор фаз друг за другом (шаги). Более продвинутые системы дробят шаг, подавая в двигатель «микрошаги» - по сути приближая управление к синусоидальному. Еще более продвинутые используют датчик положения ротора и применяют полноценное векторное управление. Но в таком случае и машину нужно делать более качественную, а называться в сумме это будет уже настоящим сервоприводом.

ИНДУКЦИОННЫЙ ДВИГАТЕЛЬ

То же, что асинхронный двигатель.

  • - ток, возникающий в проводящем контуре, находящемся в перем. магн. поле или движущемся в магн. поле. ...

    Физическая энциклопедия

  • - электрич. ток, возни кающий вследствие эл.-магн. индукции...

    Естествознание. Энциклопедический словарь

  • -) - геофиз...

    Геологическая энциклопедия

  • - электрич. ток, возникающий вследствие электромагнитной индукции...

    Большой энциклопедический политехнический словарь

  • - относительный лаг, принцип действия которого основан на возникновении при движении судна дополнительной эдс в контуре, находящемся в магнитном поле, создаваемом специальным соленоидом...

    Морской словарь

  • - ИНДУКЦИОННЫЙ ток - электрический ток, возникающий вследствие электромагнитной индукции...

    Большой энциклопедический словарь

  • - ...

    Орфографический словарь русского языка

  • - ИНДУ́К-ИЯ, -и,...

    Толковый словарь Ожегова

  • - ИНДУКЦИО́ННЫЙ, индукционная, индукционное...

    Толковый словарь Ушакова

  • Толковый словарь Ефремовой

  • - индукцио́нный I прил. соотн. с сущ. индукция I, связанный с ним II прил. соотн. с сущ. индукция II, связанный с ним III прил. соотн...

    Толковый словарь Ефремовой

  • - ...

    Орфографический словарь-справочник

  • - индукци"...

    Русский орфографический словарь

  • - индукцио́нный относящийся к индукции2, и-ная катушка - состоит из двух обмоток на сердечнике из магнитного материала; служит для возбуждения путем индукции токов высокого напряжения...

    Словарь иностранных слов русского языка

  • - ...

    Формы слова

  • - индуктивный, наведенный,...

    Словарь синонимов

"ИНДУКЦИОННЫЙ ДВИГАТЕЛЬ" в книгах

ДВИГАТЕЛЬ

Из книги Огненный Подвиг. часть I автора Уранов Николай Александрович

ДВИГАТЕЛЬ "Величайшая мощь лежит в магните сердца. Им мы ищем, им мы творим, им мы находим, им мы притягиваем. Так запомним. Так утверждаю".Беспред., § 558От рождения тела стучит физическое сердце, и тело живет лишь постольку, поскольку сердце не перестанет стучать. Можно

6. Двигатель

Из книги Техобслуживание и мелкий ремонт автомобиля своими руками. автора Гладкий Алексей Анатольевич

6. Двигатель 6.1. Содержание вредных веществ в отработавших газах и их дымность превышают величины, установленные ГОСТ Р 520332003 и ГОСТ Р 52160-2003.6.2. Нарушена герметичность системы питания.6.3. Неисправна система выпуска отработавших газов.6.4. Нарушена герметичность системы

Индукционный измерительный прибор

автора Коллектив авторов

Индукционный измерительный прибор Индукционный измерительный прибор – электроизмерительный прибор, работа которого основана на возникновении вращающего момента его подвижной части при воздействии на нее двух (или более) переменных магнитных потоков. Индукционным

Индукционный ракетный двигатель

Из книги Большая энциклопедия техники автора Коллектив авторов

Индукционный ракетный двигатель Индукционный ракетный двигатель – разновидность электротермического ракетного двигателя, в котором нагрев рабочего тела осуществляется посредством воздействия высокочастотного магнитного поля, которое создается индукционной

1847 г. Гальске, индукционный телеграф братьев фон Сименс

Из книги Популярная история - от электричества до телевидения автора Кучин Владимир

1847 г. Гальске, индукционный телеграф братьев фон Сименс В 1847 году берлинский электромеханик ИоганнГальске (1814–1890) сконструировал специальный пресс для бесшовной изоляции медных проводов с помощью гуттаперчи.В этом же 1847 году немецкий электротехник и предприниматель

Индукционный нагрев

БСЭ

Индукционный насос

Из книги Большая Советская Энциклопедия (ИН) автора БСЭ

Индукционный прибор

Из книги Большая Советская Энциклопедия (ИН) автора БСЭ

Индукционный ускоритель

Из книги Большая Советская Энциклопедия (ИН) автора БСЭ

Двигатель

Из книги Большая Советская Энциклопедия (ДВ) автора БСЭ

2.2.6. Двигатель

Из книги 100 способов избежать аварии. Спецкурс для водителей категории В автора Каминский Александр Юрьевич

2.2.6. Двигатель Нарушена герметичность системы питания(п. 6.2 Приложения).Под этой неисправностью надо понимать протекание бензина. Очевидно, что неисправность очень опасна, ведь пары бензина могут загореться в любой момент. Казалось бы, об этом не имеет смысла говорить,

11 Электростатический индукционный генератор переменного тока

Из книги Статьи автора Тесла Никола

11 Электростатический индукционный генератор переменного тока Около полутора лет тому назад, будучи занят изучением переменных токов с коротким периодом, я пришел к мысли, что такие токи можно получать, вращая заряженные поверхности на малом расстоянии от проводников. И

Двигатель регресса Двигатель регресса Нынешняя система налогообложения - удавка для экономики России 13.02.2013

Из книги Газета Завтра 950 (7 2013) автора Завтра Газета

автора Коллектив авторов

6.6.7. ПОЛУПРОВОДНИКОВЫЕ ПРИБОРЫ В ЭЛЕКТРОПРИВОДЕ. СИСТЕМЫ ТИРИСТОРНЫЙ ПРЕОБРАЗОВАТЕЛЬ - ДВИГАТЕЛЬ (ТП - Д) И ИСТОЧНИК ТОКА - ДВИГАТЕЛЬ (ИТ - Д) В послевоенные годы в ведущих лабораториях мира произошел прорыв в области силовой электроники, кардинально изменивший многие

7.1.3. ИНДУКЦИОННЫЙ НАГРЕВ

Из книги История электротехники автора Коллектив авторов

7.1.3. ИНДУКЦИОННЫЙ НАГРЕВ Начальный период. Индукционный нагрев проводников основан на физическом явлении электромагнитной индукции, открытом М. Фарадеем в 1831 г. Теорию индукционного нагрева начали разрабатывать О. Хэвисайд (Англия, 1884 г.), С. Ферранти, С. Томпсон, Ивинг. Их

Cтраница 4


На этом первом изобретении я показал, как практическая польза может отступить перед изящным решением, венчающим задачу. В подобной ситуации нетрудно погрязнуть в анализе и убить на это годы. И наоборот, можно, как произошло со мной, провести эти годы с большой пользой, выясняя такие подробности работы индукционных двигателей, какие невозможно извлечь из книг, научных статей или лекций.  

При поступлении сигнала в управляющую обмотку возникает вращающееся эл-л ИПТичеСкое магнитное. Это поле наводит токи в теле цилиндра ротора индукционного двигателя. В результате взаимодействия наведенных токов с вращающимся полем создается вращающий момент. Величина и направление скорости вращения индукционного двигателя зависит ч от величины и фазы управляющего напряжения. С изменением фазы управляющего напряжения с 90 на - 90 (фаза управляющего напряжения при этом должна повернуться на 180) направление вращения ротора меняется на обратное.  

Вследствие неполной трансформаторной связи между обмотками возникает добавочное рассеяние через воздушный зазор. Величина добавочного рассеяния зависит от углового положения ротора. Поэтому эквивалентные параметры двигателя при неподвижном роторе могут значительно зависеть от углового положения ротора, что приводит к изменению пускового момента. Это явление будет наиболее ощутимо для исполнительных индукционных двигателей с небольшим числом пазов ротора.  

Согласно последней формуле при прочих равных условиях электромеханическая постоянная времени индукционного двигателя тем больше, чем больше скорость холостого хода. Индукционные двигатели находят применение в системах переменного тока различной частоты: от 50 до 1 000 гц. Поскольку увеличение частоты означает увеличение скорости холостого хода, это одновременно приводит к росту электромеханической постоянной времени. Для примера можно указать, что среднее значение Тэы для индукционных двигателей на 50 гц составляет около 0 03 - 0 05 сек, а для двигателей на 400 гц - около 0 1 - 0 2 сек.  

Согласно формулам (3 - 33) при прочих разных условиях электромеханическая постоянная времени индукционного двигателя тем больше, чем больше скорость холостого хода. Индукционные двигатели находят применение в системах переменного тока различной частоты: от 50 до 1 000 гц. Поскольку увеличение частоты означает увеличение скорости холостого хода, это одновременно приводит к росту электромеханической постоянной времени. Для примера можно указать, что среднее значение Тэы для индукционных двигателей на 50 гц составляет около 0 05 - 0 07 сек, а для двигателей на 400 гц - около 0 2 - 0 3 сек.  

В случае же значительного кранового и транспортного оборудования вопрос о ходе тока является менее определенным. Окончательное право коллекторные двигатели переменного тока отвоевали себе пови-димому лишь в регулируемых приводах текстильной пром-сти (кольцевой ватер), хотя вопрос о приводе ситцепечатных машин с пределами регулирования от 1: 4 до 1: 10 от двигателей постоянного или переменного тока является пока спорным. Здесь возможно применение как постоянного тока по принципу прямого и обратного включения, так и шунтовых коллекторных двигателей с возбуждением со статора. Регулируемый многомоторный привод рогулечных ватеров конструируется, как указано выше, в форме регулируемых индукционных двигателей с изменением частоты питающего тока при помощи особого преобразователя частоты. Борьба между постоянным и переменным током идет и в металлообрабатьтвающей промышленности. Надлежащее использование электрически регулируемых металлообрабатывающих станков современной конструкции требует регулируемых двигателей. Коллекторные двигатели переменного тока в силу высокой стоимости и большого веса совершенно не привились для металлообрабатывающих станков. Борьба постоянного тока, имеющего в случае регулируемых реверсивных и часто пускаемых приводов ряд технич.  

Одно из плеч моста включает емкостный датчик, переменная емкость которого может быть пропорциональна измеряемой величине. Во второе плечо моста включена постоянная емкость. Два противоположных плеча моста составлены из омических сопротивлений, одно из которых переменно. Нагрузкой выходного каскада усиления является трансформатор Тр %, во вторичной обмотке которого включена управляющая обмотка индукционного двигателя.  

К настоящему времени положение сильно изменилось. Рост мощности станций и отдельг-ных распределительных трансформаторов говорит за возможность применения коротко-замкнутых двигателей значительно бблыпих мощностей, чем допускалось в Европе и у нас до сих пор. Те преимущества, которыми обладают короткозамкнутые двигатели по сравнению с двигателями с кольцами (простота обслуживания, более высокий коэфици-ент мощности и кпд, меньшая стоимость), вызвали широкое применение короткозам-кнутых индукционных двигателей как в Европе, так и в СССР.  

Механические характеристики серводвигателя оказывают большое влияние на его поведение. Форма механической характеристики в значительной степени зависит от значения полного сопротивления ротора. На рис. 7 - 6 показаны кривые механических характеристик для нескольких значений сопротивления ротора. Сопротивление ротора обычно изменяется с увеличением удельного сопротивления проводящего материала, используемого в роторе. Индукционные двигатели, применяемые в качестве силовых, проектируются с минимальным сопротивлением ротора, что дает максимальный момент при малых значениях скольжения. Увеличение роторного сопротивления линеаризует механическую характеристику.  

Асинхронный (индукционный) двигатель (АД) – устройство, преобразовывающий электрическую энергию в механическую. «Асинхронный» означает разновременный. Электродвигатели асинхронные питаются от сети переменного тока.

Особенности асинхронных двигателей

Применение

Такие электродвигатели (частотные преобразователи) не используются в сетях постоянного тока. Но они имеют широкое применение во всех отраслях народного хозяйства. По статистике, до 70% электроэнергии, которая преобразуется в механическую энергию поступательного либо вращательного движения, потребляется именно индукционными электродвигателями.

Асинхронная машина не подключается к сети постоянного тока.

Асинхронные частотные преобразователи не требуют сложного производства и просты по своей конструкции, но в тоже время очень надежны. Такие двигатели могут работать от однофазной и трехфазной сети, используя разные частоты. Преобразователи не подходят для сетей постоянного тока. Для их управления применяют сравнительно несложные схемы.

При выборе асинхронного двигателя зачастую возникают проблемы с определением:

  • его мощности;
  • характеристик и приемлемой схемы, с помощью которой осуществляется управление электродвигателем;
  • расчетом мощности конденсаторов, которые нужны, чтобы преобразователь работал от одной фазы;
  • марки и сечения провода;
  • устройств защиты и управления, которыми оснащен преобразователь.

Чтобы во всем этом разобраться, необходимо знать устройство и особенности работы асинхронного агрегата. Это поможет правильно подобрать преобразователь для решения конкретной задачи.

Индукционный агрегат свое название получил благодаря тому, что магнитное поле вращается с более высокой скоростью, чем сам ротор, поэтому последний всегда пытается «догнать» скорость вращения поля.

Устройство АД

Ротор и статор – главные элементы индукционного двигателя.

Схема устройства асинхронного агрегата

Схема: вал (1), подшипники (2,6), лапы (4), крыльчатка (7), статор (10), коробка выводов (11), ротор (9), кожух вентилятора (5), щиты подшипниковые (3,8).

На рисунке представлено устройство типового агрегата. Статор АД имеет форму цилиндра. Внутренняя часть имеет размеры, обеспечивающие зазор между ротором и статором. В пазах сердечника расположены обмотки. Их оси для нормальной работы расположены относительно одна другой под углом 1200. Между собой концы обмоток собираются с помощью схемы «звезда» либо «треугольник», но это зависит непосредственно от напряжения. Ротор может быть фазным либо короткозамкнутым.

Ротор вращается по ходу движения магнитного поля.

Трехфазную обмотку устанавливают на фазный ротор, она напоминает обмотку статора. С одной стороны концы обмотки фазного ротора обычно соединяются в «звезду», а свободные концы подсоединяются к контактным кольцам. Для включения в цепь обмотки фазного ротора дополнительного сопротивления используются щетки, подключенные к кольцам. Такая конструкция не предназначена для работы в цепях постоянного тока, так как необходимое вращение обеспечивает изменение фазы.

Короткозамкнутый ротор – это сердечник, который сделан из стальных листов. Пазы в короткозамкнутом роторе заполняются расплавленным алюминием, в результате чего получаются стержни, замыкаемые накоротко торцевыми кольцами.

Таким короткозамкнутым ротором создаются условия для минимального электрического сопротивления. Эта конструкция получила название «беличья клетка» или «беличье колесо».

Конструкция «беличья клетка»

В короткозамкнутом роторе повышенной мощности пазы заполняются медью или латунью. Беличье колесо – это и есть короткозамкнутая обмотка ротора.

В зависимости от подключаемой фазы индукционный агрегат подразделяется на однофазный и трехфазный. С помощью учета данного параметра различают принцип действия асинхронного двигателя.

Однофазная индукционная машина

Чаще всего индукционный однофазный двигатель переменного тока устанавливается в бытовой технике, так как электроснабжение дома осуществляется от однофазной электросети. Преимуществом таких двигателей переменного тока является достаточно прочная конструкция и низкая стоимость, отсутствие сложных схем управления.

Они вполне подходят для длительной работы, так как не нуждаются в техническом обслуживании. Обычно однофазный двигатель малой мощности – до 0,5 кВт. Такие электродвигатели устанавливаются в стиральных машинах, компрессорах холодильников и другой бытовой технике, где ротором создается небольшая скорость вращения, сравнительно небольшой объем силы тока.

Схема работы однофазного двигателя малой мощности

В однофазных индукционных агрегатах на статоре установлено управление ротором от двух обмоток, которые сдвинуты одна от другой на 900 тока для образования пускового момента. Одна обмотка является пусковой, а вторая – рабочей.

Однофазные электродвигатели не подходят для сетей постоянного тока. Они характеризуются низкими энергопоказателями и малой перегрузочной способностью. Агрегаты функционируют в нормальном режиме, если не нарушен определенный диапазон частоты поля. После начала вращения устройство управления подключает рабочую обмотку. Это позволяет уменьшить потребление энергии.

В электрических приводах с обычным запуском устанавливаются, как правило, однофазные индукционные двигатели, имеющие экранированные полюса. В таком асинхронном электродвигателе в качестве вспомогательной фазы выступают короткозамкнутые витки, имеющие минимальные сопротивления, размещенные на выраженных полюсах статора.

Учитывая то, что пространственный угол, образованный витком и осями основной фазы, гораздо меньше 900, в таком электродвигателе есть эллиптическое поле. С помощью него создаются сравнительно небольшие силы, чем и объясняются невысокие рабочие и пусковые свойства индукционных электродвигателей, оснащенных экранированными полюсами с фазным включением.

Индукционные однофазные электродвигатели, имеющие короткозамкнутый ротор подразделяются на:

  • с усиленным сопротивлением фазы пуска;
  • агрегаты с короткозамкнутым ротором, оснащенные рабочим конденсатором;
  • оснащенные фазным пусковым конденсатором;комбинированные с фазным управлением, короткозамкнутым ротором;
  • комбинированные с фазным управлением, короткозамкнутым ротором;
  • с экранированными полюсами.

Трехфазный двигатель

В трехфазной индукционной машине обмотка предназначена для образования вращающегося по кругу магнитного поля, которое проходит через короткозамкнутую обмотку ротора. Созданные с фазным управлением аппараты не применяются в цепях постоянного тока. При прохождении поля через проводники обмотки статора образуется электродвижущая сила, которая и вызывает прохождение переменного тока в обмотке, управляющей ротором, имеющим собственное магнитное поле. Данное магнитное поле при взаимодействии с фазным магнитным вращающимся полем статора вызывает вращение определенной частоты вслед за полями между ним и ротором.

Схема работы индукционного трехфазного агрегата

Данный принцип разработал академик из Франции Араго. Иными словами, если подковообразный магнит установить вблизи металлического диска свободно закрепленным на оси и вращать его с поддержанием определенной частоты оборотов, то металлический диск без дополнительного управления начнет движение за магнитом, однако скорость его вращения будет меньше, чем скорость движения магнита.

Данное явление обусловлено правилами электромагнитной индукции. Во время вращения около поверхности металлического диска полюсов магнита в контурах под полюсом образуется электродвижущая сила соответствующей частоты, и возникают токи, создающие магнитное поле металлического диска. Магнитное поле диска начинает взаимодействовать с полем полюсов вращающегося магнита, в результате чего диск «увлекается» своим магнитным полем.

Так и в асинхронном агрегате, в качестве металлического диска выступает короткозамкнутая обмотка ротора, а в качестве магнита – магнитопровод и обмотка статора.

Чтобы облегчить управление и запуск трехфазного электродвигателя при к однофазной сети (переменного, а не постоянного тока), на момент пуска дополнительно устанавливается параллельно с рабочим и пусковой конденсатор. Им компенсируют отсутствие фазы и соответствующей частоты поля.

Запуск трехфазного двигателя

Двигатель в работе. Видео

О том, как работает асинхронный двигатель в режиме генератора, можно посмотреть в этом видео. Здесь представлены дельные советы по оптимизации процесса, в том числе и те, которые относятся к схемам управления фазным вращением.

Таким образом, зная особенности работы индукционной машины, с уверенностью можно сказать, что преобразование в механическую энергию электрической происходит в результате вращения вала электродвигателя (ротора).

Скорость вращения магнитного поля ротора и статора напрямую зависит от частоты питающей сети и количества пар полюсов. В случае, когда тип двигателя ограничивает число пар полюсов, то для управления изменением частоты питающей сети в больший диапазон используют частотный преобразователь.

Выше рассмотрены особенности управления фазным вращением. Также приведены отличия конструкции с короткозамкнутым минимальным ротором, который используется для уменьшения сопротивления. Следует помнить, что устройство некоторых агрегатов подразумевает возможность их применения только в цепях постоянного тока. Преобразователи с фазным вращением работают при питании переменным током.

ИНДУКЦИОННЫЙ ДВИГАТЕЛЬ

ИНДУКЦИОННЫЙ ДВИГАТЕЛЬ

То же, что асинхронный двигатель.

Самойлов К. И. Морской словарь. - М.-Л.: Государственное Военно-морское Издательство НКВМФ Союза ССР , 1941


Смотреть что такое "ИНДУКЦИОННЫЙ ДВИГАТЕЛЬ" в других словарях:

    индукционный двигатель - — [В.А.Семенов. Англо русский словарь по релейной защите] Тематики релейная защита EN induction motor … Справочник технического переводчика

    репульсионно-индукционный двигатель - Репульсионный двигатель, имеющий на роторе дополнительную короткозамкнутую обмотку …

    синхронизированный индукционный двигатель - Неявнополюсный синхронный двигатель, у которого индуктор конструктивно выполнен как вторичный якорь фазного асинхронного двигателя … Политехнический терминологический толковый словарь

    индукционный мотор

    индукционный счетчик электроэнергии

    Бензиновый двигатель W16 Bugatti Veyron Бензиновые двигатели это класс двигателей внутреннего сгорания, в цилиндрах которых предварительно сжатая топливовоздушная смесь поджигается электрической и … Википедия

    Бензиновые двигатели это класс двигателей внутреннего сгорания, в цилиндрах которых предварительно сжатая топливовоздушная смесь поджигается электрической искрой. Управление мощностью в данном типе двигателей производится, как правило,… … Википедия

    асинхронный двигатель - asinchroninis variklis statusas T sritis automatika atitikmenys: angl. asynchronous motor; induction motor vok. Asynchronmotor, m; Induktionsmotor, m rus. асинхронный двигатель, m; индукционный мотор, m pranc. moteur à induction, f; moteur… … Automatikos terminų žodynas

    счетчик-двигатель - variklinis skaitiklis statusas T sritis Standartizacija ir metrologija apibrėžtis Indukcinis elektros energijos kiekio matuoklis. atitikmenys: angl. motor meter vok. Motorzähler, m; Umlaufzähler, m rus. индукционный счетчик электроэнергии, m;… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    ЛИД - лидер абзац ЛИД линейный индукционный двигатель линейный индуктивный двигатель Словарь: С. Фадеев. Словарь сокращений современного русского языка. С. Пб.: Политехника, 1997. 527 с. ЛИД лист исполнения доставки например: ЛИД для вывоза материала… … Словарь сокращений и аббревиатур