Действие магнитного поля на провод с током. Сила Ампера. Работа перемещения провода с током в постоянном магнитном поле. Движение проводника в магнитном поле

В однородном магнитном поле движется с постоянной скоростью прямой проводник так, что вектор скорости перпендикулярен проводнику. Вектор индукции магнитного поля также перпендикулярен проводнику и составляет с вектором угол α = 30°. Затем этот же проводник начинают двигать с той же скоростью, в том же самом магнитном поле, но так, что угол α увеличивается в 2 раза. Как в результате этого изменятся следующие физические величины: модуль ЭДС индукции, возникающей в проводнике; модуль напряжённости электрического поля внутри проводника?

Для каждой величины определите соответствующий характер изменения:

1) увеличится;

2) уменьшится;

3) не изменится.

Запишите в ответ цифры, расположив их в порядке, соответствующем таблице:

Решение.

ЭДС индукции для проводника движущемся в магнитном поле, перпендикулярном проводнику, рассчитывается по формуле: Следовательно, при увеличении угла между скоростью и направлением магнитного поля увеличится и ЭДС индукции в проводнике.

Модуль напряжённости электрического поля внутри проводника прямо пропорционален ЭДС индукции, следовательно, модуль напряжённости электрического поля также возрастёт.

Ответ: 11.

Ответ: 11

Источник: СтатГрад: Тре­ни­ро­воч­ная ра­бо­та по фи­зи­ке 29.04.2016 Ва­ри­ант ФИ10503

Юлия Горбачёва 14.04.2017 22:26

В системе отсчета проводника (где он неподвижен) возникает постоянное электрическое поле. Если проводник находится в постоянном электрическом поле, то величина напряженности электрического поля внутри него равна нулю.

Можно рассуждать по другому. Если внутри проводника есть напряженность электрического поля, то на носители заряда в проводнике (например, электроны) действует сила. Под действием этой силы носители заряда двигаются и в проводнике существует электрический ток. Таким образом, само утверждение, что внутри проводника существует отличная от нуля напряжённости элек­три­че­ско­го поля эквивалентно утверждению, что в проводнике поддерживается постоянный ток.

Наличие постоянного тока в проводнике, который не образует замкнутого контура - это нелепость, противоречащая закону сохранения заряда.

Антон

На заряды в рассматриваемом проводнике действуют две уравновешивающие друг друга силы: сила со стороны электрического поля, созданного перераспределёнными зарядами (во время переходного процесса в начале движения), и сила Лоренца со стороны магнитного поля. Не будь электрического поля магнитное поле вызвало бы электрический ток. Во время переходного процесса этот электрический ток и приводит к перераспределению зарядов в проводнике.

При от­лич­ной от нуля на­пряжённо­сти элек­три­че­ско­го поля в про­вод­ни­ке возникает ток, если нет сторонних сил, которые этот ток могут увеличить или уменьшить, в том числе и полностью скомпенсировать воздействие электрического поля.

нергетический баланс асинхронного двигателя Асинхронный двигатель потребляет из сети активную и реактивную мощ­ность. Рассмотрим каждую из них. Активная мощность(11.26) Часть этой мощности теряется в виде электрических потерь в активном сопротивлении обмотки

, (11.27) часть – в виде магнитных потерь

в магнитопроводе статора

. (11.28) Оставшаяся часть мощности

(11.29) представляет собой электромагнитную мощность, передаваемую с помощью магнитного поля из статора в ротор. На схеме замещения (рис. 11.6 в) этой мощности соответствует мощность, пропорциональная активному сопротивле­нию. Поэтому. (11.30) Другая часть этой мощности теряется в виде электрических потерь

в актив­ном сопротивленииобмотки ротора

. (11.31) Остальная часть электромагнитной мощности преобразуется в механическую мощностьротора

(11.32) или, с учетом уравнений (11.30) и (11.31). (11.33) Полезная механическая мощностьна валу двигателя меньше механиче­ской мощностина величину механическихи добавочных потерь. (11.34) Из уравнений (11.30)…(11.32) следует, что, (11.35). (11.36) Таким образом, активная мощностьпредставляет собой сред­нюю мощность преобразования в двигателе электрической энер­гии, потребляемой из сети, в механическую, тепловую и другие виды энергии. Процесс преобразований активной энергии в режиме двигателя изображен на рис. 11.8 а в виде энергетической диаграммы. Сумма потерь в двигателевычитается из потребляемой мощности и определяет полезную мощность на валу.

а) б) Рис. 11.8 КПД двигателя. (11.37) Непременным условием работы асинхронного двигателя является потребле­ние реактивной мощности. (11.38) Часть этой мощности расходуется на создание магнитных полей рассеяния. (11.39) Оставшаяся мощность(11.40) расходуется на создание основного магнитного потока, а мощность(11.41) расходуется на создание полей рассеяния в роторе. Диаграмма реактивных мощностей изображена на рис. 11.8 б.

28. Пуск и регулирование скорости асинхронного двигателя. Способы пуска асинхронных двигателей

Общая характеристики вопроса. Прямой пуск. При рассмотрений возможных способен пуска и ход асинхронных двигателей необходимо учитывать следующие основные положения: 1) двигатель должен развивать при пуске достаточно большой пусковой момент, который должен быть больше статического момента сопротивления на валу, чтобы ротор двигателя мог прийти во вращение и достичь номинальной скорости вращения; 2) пусковой ток должен быть ограничен таким значением, чтобы не происходило повреждения двигателя и нарушения нормального режима работы сети; 3) схема пуска должна быть по возможности простой, а число и стоимость пусковых устройств -- малыми.

При пуске асинхронного двигателя на холостом ходу в активном сопротивлении его вторичной цепи выделяется тепловая энергия, равная кинетической энергии приводимых во вращение маховых масс, а при пуске под нагрузкой количество выделяемой энергии соответственно увеличивается. Выделение энергии в первичной цепи обычно несколько больше, чем во вторичной. При частых пусках, а также при весьма тяжелых условиях пуска, когда маховые массы приводимых в движение механизмов велики, возникает опасность перегрева обмоток двигателя. Подробно динамика движения электропривода и энергетические соотношения при пуске рассматриваются в курсах электропривода. Число пусков асинхронного двигателя в час, допустимое по условиям его нагрева, тем больше, чем меньше номинальная мощность двигателя и чем меньше соединенные с его валом маховые массы. Двигатели мощностью 3--10 кВт в обычных условиях допускают до 5--10 включений в час.

Асинхронные двигатели с короткозамкнутым ротором проще по устройству и обслуживанию, а также дешевле и надежнее в работе, чем двигатели с фазным ротором.

Поэтому всюду, где это возможно, применяются двигатели с короткозамкнутым ротором и подавляющее большинство находящихся в эксплуатации асинхронных двигателей являются двигателями с короткозамкнутым ротором.

Наиболее простым способом пуска двигателя с короткозамкнутым ротором является включение обмотки его статора непосредственно в сеть, на номинальное напряжение обмотки статора

При этом пусковой ток двигателя Iп = (4 - 7) Iн.

Современные асинхронные двигатели с короткозамкнутым ротором проектируются с таким расчетом, чтобы они по значению возникающих при пуске электродинамических усилий, действующих на обмотки, и по условиям нагрева обмоток допускали прямой пуск. Поэтому прямой пуск всегда возможен, когда сеть достаточно мощна и пусковые токи двигателей не вызывают недопустимо больших падений напряжения в сети (не более 10--15%). Современные энергетические системы, сети и сетевые трансформаторные подстанции обычно имеют токмо мощности, что в подавляющем большинстве случаев возможен прямой пуск асинхронных двигателей.

Нормальным способом пуска двигателей с короткозамкнутым ротором поэтому является прямой пуск.

Нередко таким образом осуществляется пуск двигателей мощностью в тысячи киловатт.

Если по условиям падения напряжения в сети прямой пуск двигателя с короткозамкнутым ротором невозможен, применяются различные способы пуска двигателя при пониженном напряжении (рис. 28-1, б, в и г). Однако при этом пропорционально квадрату напряжения на зажимах обмотки статора или квадрату пускового тока двигателя Понижается также пусковой момент, что является недостатком пуска при пониженном напряжении.

Поэтому эти способы пуска применимы, когда возможен пуск, двигателя на холостом ходу или под неполной нагрузкой.

Необходимость пуска при пониженном напряжении встречается чаще всего у мощных высоковольтных двигателей. Реакторный пуск осуществляется согласно схеме рис. 28-1, б. Сначала включается выключатель В1, и двигатель получает питание через трехфазный реактор (реактивную или индуктивную катушку) Р, сопротивление которого хр ограничивает значение пускового тока. По достижении нормальной скорости вращения включается выключатель В2, который шунтирует реактор, в результате чего на двигатель подается нормальное напряжение сети.

Пусковые реакторы строятся обычно с ферромагнитным сердечником (см. § 18-4) и рассчитываются по нагреву только на кратковременную работу, что позволяет снизить их массу и стоимость.

Для весьма мощных двигателей применяются также реакторы без ферромагнитного сердечника, с обмотками, укрепленными на бетонном каркасе.

Выключатель В1 выбирается на такую отключающую мощность, которая позволяет отключить двигатель при глухом коротком замыкании за выключателем, а выключатель * В2 может иметь низкую отключающую мощность. Если составляющие сопротивления короткого замыкания двигателя равны rк и хк, то начальный пусковой ток при прямом пуске

а при реакторном пуске, при пренебрежении активным сопротивлением реактора,

Следовательно, при реакторном пуске "начальный" пусковой ток уменьшается в

раз. Во столько же раз уменьшается также напряжение на зажимах двигателя в начальный момент пуска. Начальный пусковой момент при реакторном пуске Мп.р уменьшается по сравнению с моментом при прямом пуске Мп.п в

В приведенных соотношениях не учитывается изменение величины хк при изменении пускового тока. При необходимости его нетрудно учесть. Автотрансформаторный пуск осуществляется по схеме рис. 28-1, в в следующем порядке. Сначала включаются выключатели В1 и В2, и на двигатель через автотрансформатор АТ подается пониженное напряжение. После достижения двигателем определенной, скорости выключатель В2 отключается, и двигатель получает питание через часть обмотки автотрансформатора АТ который в этом случае работает как реактор. Наконец включается выключатель ВЗ, в результате чего двигатель получает полное напряжение.

Выключатель В1 должен быть выбран на отключающую мощность при коротком замыкании, а выключатели В2 и ВЗ могут иметь меньшие отключающие мощности. Пусковые автотрансформаторы рассчитываются на кратковременную работу и обычно имеют ответвления, соответствующие значениям вторичного напряжения, равным 73, 64 и 55% от первичного при прямой схеме включения и 45, 36 и 27% при обратной схеме включения (рис. 28-2). В каждом конкретном случае выбирается подходящая ступень напряжения.

Если пусковой автотрансформатор понижает пусковое напряжение двигателя к kат раз, то пусковой ток в двигателе или на стороне НН автотрансформатора Iп.д уменьшается также в kат раз, а пусковой ток на стороне ВН автотрансформатора или в сети Iп.с уменьшается в раз. Пусковой момент Мп, пропорциональный квадрату напряжения на зажимах двигателя, уменьшается также в раз.

Таким образом, при автотрансформаторном пуске Мп и Iп.с уменьшаются в одинаковое число раз. В то же время при реакторном пуске пусковой ток двигателей Iп.д является также пусковым током в сети Iп.с и пусковой момент Мп уменьшается быстрее пускового тока (в квадратичном отношении). Поэтому при одинаковых значениях Iп.c при автотрансформаторном пуске пусковой момент будет больше. Однако это преимущество автотрансформаторного пуска достигается ценой значительного усложнения и удорожания пусковой аппаратуры.

Поэтому автотрансформаторный пуск применяется реже реакторного, при более тяжелых условиях, когда реакторный пуск не обеспечивает необходимого пускового момента.

Пуск переключением «звезда -- треугольник» (рис. 28-1, г) может применяться в случаях, когда выведены все шесть концов обмотки статора и двигатель нормально работает с соединением обмотки статора в треугольник, например, когда двигатель на 380/220 В и с соединением обмоток Y/Д работает от сети 220 В. В этом случае при пуске обмотка статора включается в звезду (нижнее положение переключателя П на рис. 28-1, г), а при достижении нормальной скорости вращения переключается в треугольник (верхнее положение переключателя П на рис. 28-1, г). При таком способе пуска по сравнению с прямым пуском при соединении обмотки в треугольник напряжение фаз обмоток уменьшается в раза, пусковой момент уменьшается в =3 раза, пусковой ток в фазах обмотки уменьшается в раза, а в сети -- в =3 раза. Таким образом, рассматриваемый способ пуска равноценен автотрансформаторному пуску при.

Недостатком этого способа - пуска по сравнению с реакторным и автотрансформаторным являетсй то, что при пусковых переключениях цепь двигателя разрывается, что связана с возникновением коммутационных перенапряжений. Этот способ ранее широко применялся при пуске низковольтных двигателей, однако с увеличением мощности сетей потерял свое прежнее значение и в настоящее время используется сравнительно редко.

Пуск двигателя с фазным ротором с помощью пускового реостата. Двигатели с фазным ротором применяются значительно реже двигателей с короткозамкнутым ротором. Они используются в следующих случаях: 1) когда двигатели с короткозамкнутым ротором неприемлемы по условиям регулирования их скорости вращения (см. § 28-2); 2) когда статический момент сопротивления на валу при пуске МСТ велик и поэтому асинхронный двигатель с коротко-замкнутым ротором с пуском при пониженном напряжении неприемлем, а прямой пуск такого двигателя недопустим по условиям воздействия больших пусковых токов на сеть; 3) когда приводимые в движение массы настолько велики, что выделяемая во вторичной цепи двигателя тепловая энергия вызывает недопустимый нагрев обмотки ротора в виде беличьей клетки.

Пуск двигателей с фазным ротором производится с помощью пускового реостата в цепи ротора (рис 28-3). Применяются проволочные, с литыми чугунными элементами, а также жидкостные реостаты. По условиям нагрева реостаты рассчитываются на кратковременную работу. Сопротивления металлических реостатов для охлаждения обычно помещают в бак с трансформаторным маслом. Металлические реостаты являются ступенчатыми, и переключение с одной ступени на другую осуществляется либо вручную с помощью рукоятки контроллера, существенным элементом которого является вал с укрепленными на нем контактами, либо же автоматически (в автоматизированных установках) с помощью контакторов или контроллера с электрическим приводом. Жидкостный реостат представляет собой сосуд с электролитом (например, водный раствор соды или поваренной соли), в который опущены электроды. Сопротивление реостата регулируется путем изменения глубины погружения электродов. Рассмотрим пуск двигателя с фазным ротором с помощью ступенчатого металлического реостата (рис. 28-3), управляемого контакторами К.

Перед пуском щетки должны быть опущены на контактные кольца ротора, а все ступени реостата включены. Далее в процессе пуска

поочередно включаются контакторы КЗ, К2, К1. Характеристики вращающего момента двигателя М = f (s) и вторичного тока I2 = = f (s): при работе на разных ступенях реостата изображены на рис. 28-4, а и б. Предположим, что сопротивления ступеней пускового реостата и интервалы времени переключения ступеней подобраны так, что момент двигателя М при пуске меняется в пределах от некоторого Ммакс до некоторого Ммин и при включении в сеть Мп = Ммакс > Мст (кривая 3 на рис. 28-4, а). В начале пуска двигатель работает по характеристике 3, ротор приходит во вращение, скольжение s начинает уменьшаться, и при s = s3, когда М -- Ммин,

производится переключение реостата на вторую ступень. При этом двигатель будет работать по характеристике 2, и при дальнейшем разбеге двигателя скольжение уменьшится от s = s3 до s = s2, а момент -- от значения М = Ммакс до М = Ммин. Затем производится переключение на первую ступень и т. д. После выключения последней ступени реостата двигатель переходит на работу по естественной характеристике 0 и достигает установившейся скорости. При наличии у двигателя короткозамыкающего механизма после окончания пуска щетки с помощью этого механизма поднимаются с контактных колец и кольца замыкаются накоротко, а реостат возвращается и пусковое положение. Тем самым пусковая аппаратура приводится в готовность к следующему пуску. Необходимо отметить, что дистанционное управление короткозамыкающим механизмом контактных колец сложно осуществить; это затрудняет автоматическое управление двигателем. Поэтому в последнее время фазные асинхронные двигатели строятся без таких механизмов. При этом щетки постоянно налегают на контактные кольца, что несколько увеличивает потери двигателя и износ щеток. Число " ступеней пускового реостата с целью упрощения схемы пуска и удешевления аппаратуры в автоматизированных установках выбирается небольшим (обычно 2--3 ступени).

Пусковые характеристики асинхронного двигателя при реостатном пуске наиболее благоприятны, так как высокие значения моментов достигаются при невысоких значениях пусковых токов.

Самозапуск асинхронных двигателей. В электрических сетях в результате, коротких замыканий случаются кратковременные, длительностью до нескольких секунд, большие понижения напряжения или перерывы питания. Включенные в сеть асинхронные двигатели при этом начинают затормаживаться и чаще всего полностью останавливаются. При восстановлении напряжения начинается одновременный самозапуск не отключившихся от сети двигателей. Такой самозапуск двигателей способствует быстрейшему восстановлению нормальной работы производственных механизмов и поэтому целесообразен, а в ряде случаев даже чрезвычайно желателен. Однако одновременный самозапуск большого числа асинхронных двигателей загружает сеть весьма большими токами, что вызывает в ней большие падения напряжения и задерживает процесс восстановления нормального напряжения. Время самозапуска двигателей при этом увеличивается, а в ряде случаев значение пускового момента недостаточно для пуска двигателя. Кроме того самозапуск некоторых двигателей в подобных условиях недопустим или невозможен (например, двигатели с фазным ротором с пуском с помощью реостата и двигатели с короткозамкнутым ротором с пуском с помощью реакторов и автотрансформаторов, не снабженные специальной автоматической аппаратурой для автоматического самозапуска). Поэтому целесообразно возможность самозапуска использовать только для двигателей наиболее ответственных производственных механизмов, а все остальные двигатели снабдить релейной защитой для их отключения от сети при глубоких падениях напряжения.

Самозапуск асинхронных двигателей широко применяется для двигателей механизмов электрических станций.

При помещении провода с током в магнитное поле действующая на носители тока магнитная сила передается проводу. Получим выражение для магнитной силы, действующей на элементарный отрезок провода длиной dl в магнитном поле с индукцией В .

Обозначим заряд одного носителя q 1 , концентрацию носителей n , скорость упорядоченного движения носителей u , скорость хаотического движения v . Магнитная сила, действующая на один носитель

ее среднее значение равно

Здесь , так как все направления скорости хаотического движения равновероятны.

Пусть площадь сечения провода S , тогда объем отрезка провода равен Sdl и общее число носителей nSdl . Суммарная магнитная сила, действующая на элементарный отрезок провода, равна

Здесь плотность тока.

Величина плотности тока j связана с силой тока I и площадью сечения S : j =I/S . Введем вектор элемента длины проводника d l , сонаправленный с вектором плотности тока j , тогда j Sdl =Id l и для магнитной силы, действующей на элемент тока, получаем

. (4.2.2)

Это соотношение было получено экспериментально Ампером и называется законом Ампера . Исторически оно было получено раньше, чем выражение для магнитной части силы Лоренца. В действительности, Лоренц получил выражение для магнитной силы, основываясь на законе Ампера.

Для прямого отрезка провода с током I , помещенного в однородное магнитное поле B , сила Ампера равна

Здесь вектор l направлен по току (в сторону переноса положительного заряда), а его модуль равен длине провода. Направление амперовой силы определяется так же, как направление магнитной силы для положительного заряда (см. рис. 4.2.3).

Элементарная работа dА , совершаемая силой Ампера dF А при перемещении на dr в магнитном поле элемента проводника dl , равна

Здесь мы, подставив выражение для амперовой силы (4.2.2), вынесли скалярную величину – силу тока I и воспользовались известным свойством смешанного произведения векторов: оно не изменяется при циклической перестановке сомножителей. Векторное произведение перемещения и элемента проводника есть вектор площадки, прочерченной проводником при его перемещении (см. рис. 4.2.4):

. (4.2.5)

Скалярное произведение вектора площадки и вектора магнитной индукции – это магнитный поток через площадку dS

, (4.2.6)

поэтому для работы получаем

. (4.2.7)

Если проводник, сила тока I в котором поддерживается постоянной, совершает конечное перемещение из положения 1 в положение 2, то работа амперовых сил при таком перемещении

, (4.2.8)

где Ф м – магнитный поток через поверхность, прочерченную проводником при рассматриваемом перемещении .

Если в постоянном магнитном поле перемещается замкнутый контур, то поток, прочерченный всеми элементами контура, равен изменению потока пронизывающего контур (так называемого потокосцепления Y). Докажем это.

На рисунке 4.2.5 изображены два последовательных состояния контура С 1 и С 2 . Поверхности S 1 и S 2 , которые ограничивает контур в положениях С 1 и С 2 и поверхность S п, прочерченная контуром, составляют замкнутую поверхность. По теореме Остроградского-Гаусса для магнитной индукции суммарный поток через эту замкнутую поверхность равен нулю. Выберем нормали n 1 и n 2 к поверхностям S 1 и S 2 при вычислении потокосцеплений Y 1 и Y 2 в каждом из положений так, чтобы они были согласованы с направлением тока в контуре по правилу правого винта (из конца вектора нормали ток в контуре виден идущим против часовой стрелки). При этом поток наружу из замкнутой поверхности складывается из потока через S 1 в направлении n 1 (равен Y 1), потока через S 2 в направлении противоположном n 2 (равен - Y 2) и потока через прочерченную поверхность S п (Ф м). Таким образом, получаем

откуда . Следовательно, соотношение (4.2.8) для замкнутого контура можно записать так

При выводе этой формулы мы рассмотрели простое перемещение контура, но она оказывается справедливой и при более сложных изменениях состояния контура, например, при вращении и при деформации. В приведенном виде она выполняется для движении не только одиночного контура, но и катушки, состоящей из нескольких витков, в частности, для катушки из N одинаковых витков. В последнем случае потокосцепление равно Y = N F м, где F м – магнитный поток через один виток.

36) Магнитный диполь. Магнитный момент тела и его намагниченность.

В каждом атоме электроны движутся вокруг центрального ядра, т.е. возникает элементарный электрический ток.

Векторная величина, равная произведению тока i и элементарной площади S, ограниченной элементарным контуром с током, и направленная перпендикулярно к этой площадке согласно правилу Буравчика, называется магнитным моментом элементарного электрического тока.


Геометрическая сумма магнитных моментов всех элементарных электрических токов в теле, дает магнитный момент тела М,

т.е. М=m 1 +m 2 +m 3 +…

величина, измеряемая отношением магнитного момента тела к его объему (V), называется намагниченностью тела Y.

37) Алгоритм расчета неразветвленной магнитной цепи. Магнитодвижущая сила (МДС).

Электромагниты широко применя­ются в таких электрических аппаратах, как контакторы, пускатели, реле, автоматы, электромагнитные муфты и т. д.

Основные соотношения для магнитной цепи элек­тромагнита рассмотрим на примере клапанной си­стемы (рис. 4.4). Подвижная часть магнитной цепи, соз­дающая рабочее усилие, называется якорем 1 . Участки магнитопровода 3 и 4 называют стержнями или сер­дечниками.

В клапанной системе якорь может иметь как поступа­тельное, так и вращательное движение.

При прохождении тока по намагничивающей катушке 2 создается МДС, под действием которой возбуждается магнитный поток Ф. Этот поток замыкается как через за­зор , так и между другими частями магнитной цепи, име­ющими различные магнитные потенциалы.

Воздушный зазор , меняющийся при перемещении якоря, называется рабочим. Соответственно магнитный поток, проходящий через рабочий зазор, называется рабочим магнитным потоком и обозначается . Все остальные потоки в магнитной цепи, не прохо­дящие через рабочий зазор, назы­ваются потоками рассеяния .Электромагнитное усилие, раз­виваемое якорем, определяется маг­нитным потоком в рабочем зазоре .

При расчете магнитной цепи оп­ределяется МДС катушки, необхо­димая для создания заданного ра­бочего потока (прямая задача), ли­бо рабочий поток по известной МДС катушки (обратная задача). Эти за­дачи могут быть решены с помощью законов

Кирхгофа для магнитной цепи. Согласно первому закону Кирх­гофа, алгебраическая сумма потоков в любом узле магнитной цепи равна нулю

Второй закон Кирхгофа следует из известного закона полного тока

,

где Н - напряженность магнитного поля; - элементар­ный участок контура интегрирования; - алгебраи­ческая сумма МДС, действующихв контуре.

Так как , то формулу (4.2) можно записать так:

, или , (4.3)

где - сечение данного участка магнитной цепи; - абсолютная магнитная проницаемость участка , равная ; здесь - магнитная постоянная, - относительная магнитная проницаемость.

Магнитная проницаемость характеризует магнитную проводимость материала цепи.

Для воздуха магнитная проницаемость берется равной магнитной постоянной .

Выражение аналогично выражению для актив­ного сопротивления элемента электрической цепи (где - удельная электрическая проводимость материа­ла проводника). Тогда формулу (4.3) можно представить в виде , (4.4)

где - магнитное сопротивление участка длиной .

Падение магнитного потенциала по замкнутому конту­ру равно сумме МДС, действующих в этом контуре. Это и есть второй закон Кирхгофа для магнитной цепи.

Когда поток в отдельных участках магнитной цепи не меняется, интеграл в (4.4) можно заменить конечной сум­мой

. (4.5)

Таким образом, сумма падений магнитного напряжения по замкнутому контуру равна сумме МДС, действующих в этом контуре.

Направление МДС, совпадающее с направлением об­хода контура, принимается за положительное, противопо­ложное ему - за отрицательное. За направление обхода обычно принимается направление магнитного потока. Из формулы (4.5) вытекает закон Ома для магнитной цепи, при этом вместо тока подставляется магнитный поток, вместо элек­трического сопротивления - магнитное и вместо ЭДС под­ставляется МДС.

По аналогии с электрическим, магнитное сопротивление участка конечной дли-ны I можно представить как ,

где - магнитное сопротивление единицы длины магнит­ной цепи при сечении, также равном единице, м/Гн.

Для расчета по формуле (4.5) необходимо знать . Если зада­на не кривая , а кривая намагничивания материала , для расчета удобно использовать формулу (4.2). Если на отдельных участках индукция постоянна, то интеграл в (4.2) можно заменить конечной суммой

(4.6)

По известной индукции в каждом участке с помощью кривой находят напряженность , после чего с по­мощью равенства (4.6) можно

отыскать МДС катушки.

При расчете магнитной цепи часто более удобна вели­чина, обратная магнитному сопротивлению, – магнит­ная проводимость, Гн.

.

Уравнение (4.5)

при этом принимает вид .

Для простейшей неразветвленной цепи с проводимо­стью

Магнитное сопротивление и проводимость ферромаг­нитных материалов являются сложной нелинейной функ­цией индукции. Нелинейная зависимость магнитного сопротивления от индукции сильно затрудняет решение как прямой, так и обратной задачи.

Магнитная проводимость воздушных зазоров. В ра­бочем зазоре поток проходит через воздух, магнитная проницаемость которого не зависит от индукции и являет­ся постоянной, равной .

Для прямоугольных и круглых полюсов при малом за­зоре поле приближенно можно считать равномерным, и проводимость легко определить по формуле

Расчет проводимости с учетом выпучивания связан с большими трудностями, ввиду сложности картины магнитного поля. Для расчета используются три основных метода:

1) Расчет по эмпирическим формулам. Так, например, для проводимости между торцами цилиндрических полюсов диа­метром достаточно точный результат дает формула

.

Последних два слагаемых учитывают поток выпучивания. Для прямоугольных полюсов с поперечными размерами а и достаточ­но точна формула

.

2) Когда аналитический расчет проводимости затруднен вследствие сложной картины поля, реальное поле разбивается на простые геометрические фигуры, для которых существуют расчетные формулы определения проводимостей. Результирующая проводимость определяется по сумме проводимостей отдельных фигур.

3) Если проводимость не может быть рассчитана первыми двумя методами, необходимо графически построить картину магнитного поля. Поле разбивается на элементарные трубки, в пределах которых поток одинаков, и определяется проводимость трубки. Полная проводимость определяется суммарной проводимостью всех трубок.

38) Явление переменного тока. Получение синусоидальной ЭДС

За один оборот рамка развернется на угол , а время оборота – период (Т ), тогда угловая частота определяется:

Для того чтобы установить природу силы в проводнике, который движется в магнитном поле, проведём эксперимент. Предположим, что в вертикальном однородном магнитном поле с индукцией () расположен горизонтальный проводник длиной (l ), который движется с постоянной скоростью () перпендикулярно вектору магнитной индукции магнитного поля. Если подсоединить к концам этого проводника чувствительный вольтметр, то увидим, что он покажет наличие разности потенциалов на концах этого проводника. Выясним, откуда берётся это напряжение. В данном случае нет контура и нет изменяющегося магнитного поля, поэтому мы не может сказать, что движение электронов в проводнике возникло в результате появления вихревого электрического поля. Когда проводник движется, как единое целое (рис. 1), у зарядов проводника и у положительных ионов, которые находятся в узлах кристаллической решётки, и у свободных электронов возникает скорость направленного движения.

На эти заряды будет действовать сила Лоренца со стороны магнитного поля. Согласно правилу «левой руки»: четыре пальца, расположенные по направлению движения, ладонь разворачиваем так, чтобы вектор магнитной индукции входил в тыльную сторону, тогда большой палец укажет действие силы Лоренца на положительные заряды.

Сила Лоренца, действующая на заряды, равна произведению модуля заряда, который она переносит, умноженной на модуль магнитной индукции, на скорость и синус угла между вектором магнитной индукции и вектором скорости.

Эта сила будет совершать работу по переносу электронов на малые расстояния вдоль проводника.

Тогда полная работа силы Лоренца вдоль проводника будет определяться силой Лоренца, умноженной на длину проводника.

Отношение работы сторонней силы по перемещению заряда к величине перенесённого заряда по определению ЭДС.

(4)

Итак, природа возникновения ЭДС индукции – это работа силы Лоренца . Однако, формулу 10.4. можно получить формально, исходя из определения ЭДС электромагнитной индукции, когда проводник перемещается в магнитном поле, пересекая линии магнитной индукции, перекрывая некоторую площадку, которую можно определить как произведение длины проводника на перемещение, которое можно выразить через скорость и время движения. ЭДС индукции по модулю равно отношению изменения магнитного потока ко времени.

Модуль магнитной индукции постоянный, но изменяется площадь, которая покрывает проводник.

После подстановки, выражения в формулу 10.5. и сокращения получим:

Сила Лоренца, действующая вдоль проводника, за счёт чего происходит перераспределение зарядов – это лишь одна составляющая сил. Также имеется вторая составляющая, которая возникает именно в результате движения зарядов. Если электроны начинают перемещаться по проводнику, а проводник находится в магнитном поле, то тогда начинает действовать сила Лоренца, и направлена она будет против движения скорости проводника. Таким образом, суммирующая сила Лоренца будет равна нулю.

Полученное выражение для ЭДС индукции, возникающей при движении проводника в магнитном поле, можно получить и формально, исходя из определения. ЭДС индукции равно скорости изменения магнитного потока за единицу времени, взятого со знаком минус.

Когда неподвижный проводник находится в изменяющемся магнитном поле и когда сам проводник движется в постоянном магнитном поле, возникает явление электромагнитной индукции . И в том, и в другом случае возникает ЭДС индукции. Однако природа этой силы различна.

  1. Касьянов В.А., Физика 11 кл.: Учебн. для общеобразоват. учреждений. – 4-е изд., стереотип. – М.: Дрофа, 2004. – 416 с.: ил., 8 л. цв. вкл.
  2. Тихомирова С.А., Яровский Б.М., Физика 11. – М.: Мнемозина.
  3. Генденштейн Л.Э., Дик Ю.И., Физика 11. – М.: Мнемозина.
  1. Fizportal.ru ().
  2. Eduspb.com ().
  3. Классная физика ().

Домашнее задание

  1. Касьянов В.А., Физика 11 кл.: Учебн. для общеобразоват. учреждений. – 4-е изд., стереотип. – М.: Дрофа, 2004. – 416 с.: ил., 8 л. цв. вкл., ст. 115, з. 1, 3, 4, ст. 133, з. 4.
  2. Вертикальный металлический стержень длиной 50 см движется горизонтально со скоростью 3 м/с в однородном магнитном поле с индукцией 0,15 Тл. Линии индукции магнитного поля направлены горизонтально под прямым углом к направлению вектора скорости стержня. Чему равна ЭДС индукции в стержне?
  3. С какой минимальной скоростью необходимо двигать в однородном магнитном поле с магнитной индукцией 50 мТл стержень длиной 2 м, чтобы в стержне возникла ЭДС индукции 0,6 В?
  4. * Квадрат, изготовленный из провода длиной 2 м, движется в однородном магнитном поле с индукцией 0,3 Тл (рис. 2). Какова ЭДС индукции в каждой со сторон квадрата? Общая ЭДС индукции в контуре? υ = 5 м/с, α = 30°.


Направление магнитных силовых линий можно определить по правилу буравчика. Если поступательное движение буравчика (рис. 27) совместить с направлением тока в проводнике, то вращение его рукоятки укажет направление силовых линий магнитного поля вокруг проводника. Чем больше ток, проходящий по проводнику, тем сильнее возникающее вокруг него магнитное поле. При изменении направления тока магнитное поле также изменяет свое направление.

По мере удаления от проводника магнитные силовые линии располагаются реже.

Способы усиления магнитных полей. Для получения сильных магнитных полей при небольших токах обычно увеличивают число проводников с током и выполняют их в виде ряда витков; такое устройство называют катушкой.

При проводнике, согнутом в виде витка (рис. 28,а), магнитные поля, образованные всеми участками этого проводника, будут внутри витка иметь одинаковое направление. Поэтому интенсивность магнитного поля внутри витка будет больше, чем вокруг прямолинейного проводника. При объединении витков в катушку магнитные поля, созданные отдельными витками, складываются (рис. 28,б) и их силовые линии соединяются в общий магнитный поток. При этом концентрация силовых линий внутри катушки возрастает, т. е. магнитное поле внутри нее усиливается. Чем больше ток, проходящий через катушку, и чем больше в ней витков, тем сильнее создаваемое катушкой магнитное поле.

Катушка, обтекаемая током, представляет собой искусственный электрический магнит. Для усиления магнитного поля внутрь катушки вставляют стальной сердечник; такое устройство называется электромагнитом.



18. Магнитные свойства различных веществ.

Все вещества в зависимости от магнитных свойств делят на три группы: ферромагнитные, парамагнитные и диамагнитные.

К ферромагнитным материалам относят железо, кобальт, никель и их сплавы. Они обладают высокой магнитной проницаемостью µ ихорошо притягиваются к магнитам и электромагнитам.

К парамагнитным материалам относят алюминий, олово, хром, марганец, платину, вольфрам, растворы солей железа и др. Парамагнитные материалы притягиваются к магнитам и электромагнитам во много раз слабее, чем ферромагнитные материалы.

Диамагнитные материалы к магнитам не притягиваются, а, наоборот, отталкиваются. К ним относят медь, серебро, золото, свинец, цинк, смолу, воду, большую часть газов, воздух и пр.

Магнитные свойства ферромагнитных материалов. Ферромагнитные материалы благодаря их способности намагничиваться широко применяют при изготовлении электрических машин, аппаратов в других электротехнических установок.

Кривая намагничивания . Процесс намагничивания ферромагнитного материала можно изобразить в виде кривой намагничивания (рис. 31), которая представляет собой зависимость индукции В от напряженности Н магнитного поля (от намагничивающего тока I ).

Кривую намагничивания можно разбить на три участка: О-а , на котором магнитная индукция возрастает почти пропорционально намагничивающему току; а-б , на котором рост магнитной индукции замедляется, и участок магнитного насыщения за точкой б , где зависимость В от Н становится опять прямолинейной, но характеризуется медленным нарастанием магнитной индукции при увеличении напряженности поля.

Перемагничивание ферромагнитных материалов, петля гистерезиса . Большое практическое значение, особенно в электрических машинах и установках переменного тока, имеет процесс перемагничивания ферромагнитных материалов. На рис. 32 показан график изменения индукции при намагничивании и размагничивании ферромагнитного материала (при изменении намагничивающего тока I . Как видно из этого графика, при одних и тех же значениях напряженности магнитного поля магнитная индукция, полученная при размагничивании ферромагнитного тела (участок а-б-в ), будет больше индукции, полученной при намагничивании (участки О-а и д-а ). Когда намагничивающий ток будет доведен до нуля, индукция в ферромагнитном материале не уменьшится до нуля, а сохранит некоторое значение В r , соответствующее отрезку О-б . Это значение называется остаточной индукцией.

Явление отставания, или запаздывания, изменений магнитной индукции от соответствующих изменений напряженности магнитного поля называется магнитным гистерезисом, а сохранение в ферромагнитном материале магнитного поля после прекращения протекания намагничивающего тока - остаточным магнетизмом.

При изменении направления намагничивающего тока можно полностью размагнитить ферромагнитное тело и довести магнитную индукцию в нем до нуля. Обратная напряженность Н с , при которой индукция в ферромагнитном материале уменьшается до нуля, называется коэрцитивной силой. Кривую О-а , получающуюся при условии, что ферромагнитное вещество было предварительно размагничено, называют первоначальной кривой намагничивания. Кривую изменения индукции называют петлей гистерезиса.

Влияние ферромагнитных материалов на распределение магнитного поля . Если поместить в магнитное поле какое-либо тело из ферромагнитного материала, то магнитные силовые линии будут входить и выходить из него под прямым углом. В самом теле и около него будет иметь место сгущение силовых линий, т. е. индукция магнитного поля внутри тела и вблизи него возрастает. Если выполнить ферромагнитное тело в виде кольца, то во внутреннюю его полость магнитные силовые линии практически проникать не будут (рис. 33) и кольцо будет служить магнитным экраном, защищающим внутреннюю полость от влияния магнитного поля. На этом свойстве ферромагнитных материалов основано действие различных экранов, защищающих электроизмерительные приборы, электрические кабели и другие электротехнические устройства от вредного воздействия внешних магнитных полей.