«Умные светофоры»: Интеллектуальная система контроля дорожного движения. Как «умнели» светофоры. Водитель одной из городских служб такси Виктор

Об установке на одном из перекрёстков Зеленограда «умного светофора» вызвала предсказуемую реакцию: мол, москвичи опять бесятся с жиру. Однако, вопреки обывательскому мнению, добавление «интеллекта» в светофор и вообще системы управления транспортом - вовсе не «жир», а насущная необходимость. И не только в столице, где пропускная способность дорог превышена уже десятикратно. Даже небольшим населённым пунктам это способно принести пользу. Поэтому давайте разберёмся с идеей детально.

Светофор ведь - изобретение давнее, корни уходят аж в XIX век и история его эволюции интересна сама по себе. Но в контексте нашего разговора важно, что в том виде, в каком мы к нему привыкли, он существует с 20-х годов прошлого века: именно тогда светофоры стали работать автоматически и независимо от ситуации на дороге. В те времена порочность этого принципа («светофор всегда прав!») ещё не была очевидна, потребовались годы, чтобы понять: жёстко заданный режим регулировки часто не помогает, а мешает движению.

Представьте следующий простой случай (см. карту и снимок ниже): двухполосную дорогу с разворотом налево, управляет которым светофор. Согласно классической схеме, основному потоку следует регулярно включать красный свет, чтобы автомобили, накопившиеся в «кармане» разворота, смогли разворот осуществить. Так всегда и делалось - и за сутки светофор срабатывал несколько сотен раз, останавливая главное движение ради желающих развернуться.

Конечно, длительность фаз можно и нужно отрегулировать, подобрав таким образом, чтобы не образовалась «пробка». Да вот только в разное время суток интенсивность движения разная! Ночью основной поток будет останавливаться, несмотря на то, что желающих развернуться нет. А в часы пик может случиться так, что всех желающих развернуться за один раз пропустить не удастся, но даже это создаст затор для движущихся прямо.

Вот тут и приходит на помощь «умный» или, как его чаще называют, адаптивный светофор. Устройство его и принцип работы простые, несмотря на название. Над дорогой или под дорогой крепится датчик (варианты разные : камера, радар, датчик давления, индукционный и пр.), позволяющий узнать, есть ли в ряду на разворот автомобили. Если их нет - светофор попросту не переключается, постоянно давая «зелёный» основному потоку. Если желающие развернуться есть - продолжительность разрешающего сигнала для них регулируется таким образом, чтобы по возможности пропустить всех, но и не слишком затормозить основной поток. Именно так работает «умный» светофор в Зеленограде, о котором рассказали «Вести».

И это, конечно, не предел возможностей. Описанный нами светофор работает сам по себе, реагирует лишь на ситуацию на своём перекрёстке. В идеале все светофоры города, а равно и прочие элементы управления транспортом, должны быть объединены линией связи и работать согласованно, а ещё отправлять информацию в «ситуационный центр», специалисты которого готовы в любую минуту вмешаться в работу электроники, чтобы исправить сложившуюся на дороге нестандартную ситуацию. Такая интеллектуальная транспортная система (ИТС) строится последние шесть лет городом Москва : тысячи камер, детекторов, линий связи, светофоров - и светофор в Зеленограде один из них.


Согласованная работа всех элементов позволяет, например, обеспечить «зелёную волну» для участников движения. И в этом ответ на вопрос, ради чего такие системы вообще существуют: в идеале можно увеличить пропускную способность городских дорог почти на треть! Но дело не только в количестве автомобилей в секунду: становится меньше пробок, сокращается время ожидания на перекрёстках, уменьшается время перемещения из произвольного пункта А в пункт Б, заметно уменьшаются выхлопы.

На Западе такие работы ведутся уже полвека и перспективное направление сейчас: связь автодорожной инфраструктуры с самими автомобилями. Этому посвящены технологии V2V и V2I (подробней см. «Кар осетенённый »): «зная», что впереди горит «красный», автомобиль может порекомендовать водителю сбросить скорость или сбросить её сам, чтобы приехать как раз к «зелёному». Но это пока будущее.

Настоящее же удручает. Если на Западе уже десятилетия как существуют готовые продукты для желающих «добавить интеллекта» любому узлу транспортной инфраструктуры, от отдельного перекрёстка до целых городов (SCOOT, SCATS, RHODES и др.), у нас подобное отсутствует, равно как и производители, которые имели бы соответствующий опыт. Это хорошо видно на примере того же Зеленограда: город экспериментирует с «умными» светофорами уже лет пять и за это время сменил нескольких производителей-партнёров (Спецдорпроект , Smart Traffic Techs, Ситроникс), каждый из которых изобретает светофор заново. Увы, если вы желаете купить «умный» светофор в сборе, отлаженный, проверенный практикой, отечественный рынок пока не в состоянии предложить вам такого: отдельно продаются светофоры, отдельно «железо» для управления ими.

И это особенно грустно, если учесть, что именно небольшие населённые пункты, имеющие спрос всего на несколько штук, не имеющие средств на и потребности в больших всегородских проектах, могли бы стать главным покупателем таких систем. Перегруженные центральные улицы, съезды на магистраль - вот лишь два случая из многих, когда «умный» светофор, работающий даже в одиночку, способен принести пользу вне мегаполисов. Но что же делать, если готовых продуктов нет? Собирать собственные, конечно!

Сам светофор можно оставить старый, хоть стоимость новых светодиодных моделей составляет чуть больше 10 тысяч рублей. Главное - «мозг», которым станет так называемый контроллер. В советские времена контроллер светофора был огромным шкафом, но сегодня это портативная коробочка, внутри которой спрятан один или несколько микрокомпьютеров, способных работать в любую погоду. Таков, например, блок адаптивного управления «ТРИО » от «Института территориального развития и транспортной инфраструктуры». Начинка, увы, импортная, но сам продукт заточен под наши реалии. С этого можно начать. Если кто-то из читателей подскажет другие варианты, с удовольствием их здесь размещу.

P.S. Использованы графические материалы «Яндекс», телеканала «Россия».

Если вам понравилась статья - порекомендуйте ее своим друзьям, знакомым или коллегам, имеющим отношение к муниципальной или государственной службе. Нам кажется, что им это будет и полезно, и приятно.
При перепечатке материалов обязательна ссылка на первоисточник.

Н а данный момент транспортная инфраструктура в Воронеже оставляет желать лучшего, а многие дорожные проекты требуют крупных финансовых и временных ресурсов. В лучшем случае, только через несколько лет мы получим улучшенные транспортные развязки и альтернативные пути проезда, но что же делать воронежцам сейчас? Терпеть многочасовые пробки? Выход из этой ситуации оказался довольно прост.

Пробки в Воронеже стали таким же обыденным явлением, как и в Москве. Оригинал фото взят с сайта www.wikimedia.org

Сегодня в Москве функционирует уже 20 светофорных зон, на которых применена адаптивная система управления дорожным движением, проще говоря, «умные светофоры». Это экономичный и эффективный способ, который успел положительно зарекомендовать себя на практике. Как показывают статистические данные, благодаря этой системе пропускная способность увеличилась на 30%, а с учетом относительной дешевизны и простоты установки отпадают всякие сомнения в рациональности применения данного проекта.

Система контроля дорожного движения в действии. Оригинал фото взят с сайта www.wikimedia.org

Как это работает?

На перекрестке устанавливают камеру, светофор и компьютер, который сканирует ситуацию на развязке каждые 3 секунды. Данные о транспортном потоке анализируются детектором транспорта. Эта информация обрабатывается мастер-контроллером, установленным в конкретной зоне движения. Устройство строит прогноз развития ситуации, и на основании этих сведений формируется план координации для управления светофорными объектами. К примеру, если система фиксирует загруженность на одном из направлений движения, то ему продлевают зеленый свет. В случае непредвиденных сбоев, система переключается в автономный режим и продолжает работать по ранее записанным планам координации. Инженеры предусмотрели и подобные казусы, поэтому устройство можно назвать надежным. Также возможно применение специальных метеостанций, которые будут собирать информацию о погодных условиях и состоянии асфальта. Эти данные помогут скорректировать скоростные ограничения и предупредить водителей о неблагоприятных условиях на дороге.

Уличный пульт управления светофорами. Оригинал фото взят с www.flickr.com

Где необходимо применять?

В первую очередь «умные светофоры» необходимо установить на крупные транспортные развязки, такие как Димитрова, Остужева, Плехановская, Московский проспект и Памятник Славы. Эти маршруты стали настоящей головной болью для воронежцев, и со временем обстановка будет только обостряться. Если своевременно не решить проблему транспорта, то ситуация может превратиться в дорожный коллапс. Нужно понимать, что данный проект - не панацея от транспортных проблем, а только один из пунктов основной программы, который нужно применить. Интеллектуальная система распределения транспорта, безусловно, поможет в разрешении данного вопроса, но никак не заменит основных проектов.

Первые пять умных японских светофоров Artemis. Система анализирует трафик и регулирует плотность потока - проще говоря, чем длиннее пробка, тем дольше горит зеленый. По подсчетам, Artemis позволяет на 40 % сократить время движения автомобилей в центр города в утренние часы.

Светофоры стали частью российско-японского пилотного проекта по созданию комфортной городской среды. При этом внедрять на постоянной основе иностранные технологии в Москве не планируют. Цель властей - изучить опыт мировых мегаполисов и придумать собственный способ борьбы с пробками.

Японские специалисты подсчитали, что, если все московские светофоры заменить умными, можно будет сэкономить 10 миллионов рабочих часов - а это 6 миллиардов рублей в год. К тому же сократятся выбросы выхлопных газов.

Пресс-секретарь цодд

Главное преимущество японских светофоров - возможность автономного управления дорожной ситуацией. Система прогнозирует количество транспорта и регулирует потоки на основе информации о трафике, которая поступает в режиме реального времени. Уже сейчас сократилось время ожидания на перекрестках, особенно для общественного транспорта.

В Москве уже давно есть своя система по стабилизации заторов - интеллектуальная транспортная система, которая управляется ситуационным центром ЦОДД, поэтому нельзя сказать, что японская система - это какая то панацея или новинка. Эти пять светофоров - пилотный проект, организованный за счет Японии. Тиражировать проект мы вряд ли будем: у нас есть свои умные светофоры. Их «ум» в том, что они управляются удаленно из ситуационного центра.

Данные о том, что система уже на 40 % сократила время движения автомобилей в центр города в утренние часы, несколько завышены. Наши данные - 19 %.

Сергей Канев

руководитель Федерации автовладельцев России

Умные светофоры - это часть интеллектуальной транспортной системы города, в нее входят также системы отслеживания трафика, видеокамеры. Это все работает в совокупности, вместе с соответствующими мерами наказания. К тому, что организация народного движения в Москве развивается, я отношусь позитивно, и помочь городу это действительно может.

То есть техническая возможность у нас есть, но эффективность системы зависит от того, как правительство Москвы будет ее использовать. Сейчас у нас уже установлена интеллектуальная транспортная система, над которой работали специалисты мирового уровня, в которую вложены десятки миллиардов рублей. При этом она работает только на 30 %. Официальная причина - якобы нет денег на ее обслуживание, хотя тут требуется на порядок меньше средств, уже не миллиарды рублей. Для меня это диверсия.

Андрей Карлов

главный эксперт Всероссийского общества автомобилистов

Систему управления транспортными потоками разрабатывали еще с 80–90-х годов в СССР. Но в то время не было таких мощных компьютеров, которые позволяли бы вычислять действующую обстановку, а сейчас - есть.

Японская разработка также основана на принципе адаптивного регулирования и должна улучшить пропускную способность. Это, конечно, эффективный способ повлиять на пробки в тех случаях, когда невозможно применять бессветофорное движение или расширять улицы. Но при этом важно, чтобы все работало в комплексе. Сейчас транспортная проблема уменьшается только по локальному принципу.

Такие же системы разрабатывались и у нас, но ориентация на опыт Японии во многом оправдана, потому что у них движение сложнее и напряженнее. Собственно, они подготовили опыт, а мы уже перенимаем их наработки и алгоритмы.

Самый продвинутый на данный момент светофор страны находится в промзоне на окраине Зеленограда, у поворота к городскому кладбищу. На первый взгляд выбор места для размещения инновационного объекта может показаться странным, но на самом деле столичный Центр организации дорожного движения уже не первый год использует территорию Зеленоградского округа в качестве полигона для обкатки многих нововведений, лучшие из которых потом распространяются по всей Москве. В чем фишка этого светофора, что такое вызывные фазы и как работат подземные детекторы транспорта — в репортаже с места событий.


Вызывные фазы — это фазы, которые включаются только при необходимости, то есть при наличии на конкретном направлении транспорта, ну или пешеходов. Первые светофоры с вызывными фазами появились в Зеленограде еще в начале года, но тогда этот принцип работы был реализован по другой технологии, с помощью видеодетекторов — камер, распознающих транспортные средства. Теперь же для этой задачи стали применять подземные петлевые детекторы. Строго говоря, первые такие «умные петли» появились в большой Москве — на пересечении шоссе Энтузиастов и Третьего транспортного кольца. Но, по словам заместителя руководителя столичного Центра организации дорожного движения Дмитрия Горшкова (на фото), там они были установлены только на трамвайных путях (точнее — под ними). Регулируемый перекресток Сосновой аллеи и проезда 4921, ведущего к городскому кладбищу в Восточной коммунальной зоне Зеленограда, стал первым местом в Москве и во всей России, где петлевые детекторы появились на всех направлениях движения транспорта.

Теперь все второстепенные фазы на этом светофоре включаются только при наличии на них транспорта. Если машин на них нет, светофор горит зеленым для основного потока, идущего по Сосновой аллее. Для пешеходов тоже создана отдельная вызывная фаза, но о ней ниже.

Технология петлевых детекторов пришла к нам из Европы. Например, по словам Дмитрия Горшкова, она повсеместно применяется в Германии. Смысл прост: петлевые детекторы, представляющие собой рамки из одного-двух витков изолированного и защищенного от механических воздействий провода, закладываются под дорожное покрытие, при прохождении транспортного средства через рамку ее индуктивность меняется и машина регистрируется. На основе этой информации светофор принимает решение о дальнейшем режиме работы.
Отечественным специалистам удалось найти инженерное решение, при котором индукционные петли закладываются под проезжую часть на глубине 13-15 см, а не на 5-8 см, как в Европе, — чтобы при замене асфальта детекторы оставались на месте.

Установка петлевых детекторов также происходит без замены асфальта. Специальной машиной в дорожном покрытии вырезаются полоски толщиной буквально 1-2 см, в которые закладываются петли. Затем эти отверстия заделываются, не оставляя сколь-нибудь заметных неровностей на проезжей части.

Вот как выглядят следы от укладки петли на асфальте.

Петлевые детекторы «перекрывают» всю ширину полос движения для транспорта, поэтому незамеченным через них не может проехать ни мотоцикл, ни велосипед. На «основном ходе» перекрестка на Сосновой аллее петлевые детекторы пока заложены примерно в 20 метрах от светофора, на второстепенных направлениях — почти вплотную к стоп-линии. Впоследствии их планируют начать закладывать и за 40-50 метров — это позволит светофору просчитывать свои переключения немного заранее.

Для распознавания пешеходов эта технология, конечно, не подходит, поэтому для пеших участников дорожного движения идея вызывной фазы реализована по-другому — с помощью кнопки.

Пока многие пешеходы ее еще не замечают — в Зеленограде в последние годы кнопки практически не применялись — но это вопрос привычки. Для того, чтобы сделать кнопку заметнее, информацию о необходимости нажать на нее для перехода дороги, продублировали в граффити, нанесенных прямо на асфальт под ногами у пешеходов, — по идее, так ее должны увидеть даже те, кто перемещается по улицам, уткнувшись в телефон. :)

Максимальное время ожидания зеленого сигнала для пешеходов составляет 90 секунд, но столько ждать придется только при полной загрузке перекрестка со всех направлений. В большинстве случаев, судя по моим примерно получасовым наблюдениям, зеленый свет для пешеходов включается через 10-30 секунд после нажатия кнопки.

При этом, если к переходу последовательно подойдут сразу несколько человек, застопорить движение на перекрестке у них не получится — каждое следующее включение зеленого света для пешеходов будет производиться только после пропуска очередной порции транспорта.

Реализация принципа вызывных фаз неизбежно приводит к оптимизации движения. В случае с перекрестком в Восточной коммунальной зоне это уже подтверждается статистическими выкладками. Например, раньше в ночное время светофор каждые полторы минуты включал зеленый свет для пешеходов — соответственно, с 11 вечера до 7 утра это происходило 320 раз. Но ночью пешеходов здесь практически нет, и машинам приходилось зря останавливаться на пустой дороге. С момента установки кнопки для пешеходов зеленый свет для них стал включаться в среднем всего один раз за ночь, рассказал Дмитрий Горшков.

Чем индукционные петли лучше видеодетекторов, которые уже не первый год массово применяются в Москве и Зеленограде? Ведь петли надо закладывать под асфальт, а камеры достаточно просто повесить на столб. Дело в том, что видеодетекторы гораздо больше подвержены воздействиям окружающей среды: сильные осадки, блик от яркого солнца — все это может стать помехой для их работы. Индукционные петли в отличие от камер надежны, как автомат Калашникова — такое сравнение сделал Константин Антонович, технический директор компании «СпецДорПроект», реализовавшей проект внедрения нового типа детекторов в Зеленограде. К тому же, они дешевле — и сами по себе, и в обслуживании. Ну и ко всему прочему, на некоторых улицах Москвы, где в ходе реконструкции были убраны под землю все провода, использование навесных камер теперь невозможно по эстетическим соображениям.

Видеодетекторы по-прежнему можно увидеть на перекрестке Сосновой аллеи и проезда 4921, но на работу светофора они никакого влияния не оказывают, а используются только для дублирования системы и сравнения их работы с работой подземных датчиков. Последние уже показали с самой хорошей стороны, но до конца года их применение будет иметь статус эксперимента — надо убедиться, что петли будут корректно работать в зимних условиях. До конца строительного сезона ЦОДД планирует оборудовать петлевыми детекторами еще несколько светофоров в Зеленограде. По словам Константина Антоновича, предполагается, что это будут объекты на самых загруженных перекрестках города — например, Панфиловского проспекта и проспекта Генерала Алексеева или у Крюковской эстакады в «старом городе». Пока, помимо перекрестка в Восточной коммунальной зоне, индукционные петли применяются еще только на светофоре у пожарной части на Солнечной аллее, где дают сигнал к включению единственной второстепенной фазы, фиксируя появление машин в разворотном кармане и включая для них стрелку.

Вот такая интересная технология. Я, безусловно, приветствую все телодвижения по оптимизации дорожного движения и повышению адаптивности светофорного регулирования, но когда впервые услышал про подземные датчики, признаюсь, навскидку отнесся к этому скептически: что это еще за метод распила — снимать асфальт вместо того, чтобы просто повесить датчик на столб? Но снятия асфальта, как выяснилось, не требуется, и если уж эта технология действительно проста в применении, дешевле и надежнее, то почему бы и нет? Похоже, скоро следы от укладки петель на асфальте станут привычным явлением на наших улицах.

В посте использованы фото моего коллеги по Инфопорталу Зеленограда Василия Повольнова. Фото процесса закладки петлевых детекторов предоставлены Константином Антоновичем.

" мы бегло прошлись по «железу», которое устанавливается на транспортных магистралях: по типам детекторов транспортного потока, светодиодным табло и дорожным контроллерам.

Сегодня мы продолжим говорить об управлении трафиком, но уже в городе. Рассмотрим из чего состоит цикл светофорного регулирования, чем именно «рулят» управляющие системы и с чего это все, собственно, началось.

Я долго не решался начать писать этот пост, так как тема управления трафиком на городских улицах настолько объемная и разносторонняя, что рассуждая о ней постоянно рискуешь оказаться в роли «ламера» в смежных областях. Но я все же рискну и попробую.

Красный, желтый, зеленый…

Для того, чтобы понимать чем именно «подруливают» управляющие алгоритмы, необходимо знать пять базовых определений светофорного регулирования.

Открываем учебник «Технические средства организации дорожного движения» г-на Кременца и читаем определения (американские аналоги терминов указаны в скобках):

  • Такт регулирования (Interval). Период действия определенной комбинации светофорных сигналов
  • Фаза регулирования (Signal Phase). Совокупность основного и следующего за ним промежуточного такта
  • Цикл регулирования (Signal Cycle). Периодически повторяющаяся совокупность всех фаз
Вот картинка, которая хорошо иллюстрирует понятие цикла, фазы и интервала:

Теперь открываем американскую книжку "Traffic Control Systems Handbook ". Американцы добавляют еще два определения, имеющих ключевое значение для автоматизации процесса регулирования:

Секция регулирования (Split). Процент цикла регулирования, выделенный каждой из фаз регулирования.

Грубо говоря, варьируя процент времени на фазу, можно управлять длительностью зеленого сигнала на наиболее нагруженном направлении. На отдельно стоящем перекрестке это дает уменьшение задержек.

Смещение (Offset). Разница (в секундах или процентах от цикла регулирования) между часами на конкретном перекрестке и мастер-часами (на сети перекрестков).

Так как термин звучит немного заумно, вот картинка, которая его очень хорошо иллюстрирует.


Видно, что фазы на соседнем перекрестке смещены относительно предыдущего. Времени смещения как раз хватает, чтобы группа автомобилей успела подъехать к нему и проскочить на зеленый. Расчет выполняется обычно для какой-то средней принятой в данном регионе скорости. Поэтому «гонщики» и «тормоза» как правило на таких магистралях обламываются.
можно прочитать обо всем упомянутом подробно. Оттуда же и последняя картинка.

Как «умнели» светофоры

Основные типы «умных» светофоров интересно рассмотреть в исторической перспективе, так как появлялись они не сразу и развивались от простого к сложному.

Автомобильные светофоры пришли к нам от железнодорожников. Первый электрический светофор с ручным управлением в США был установлен в Кливленде в 1914 году. А уже через три года, в 1917 году в Солт Лейк Сити была сконструирована система, управляющая светофорами сразу на шести перекрестках. Роль дорожного контроллера выполнял регулировщик. В 1922 году в Хьюстоне сделали то же самое, но уже на двенадцати перекрестках. Управление велось в ручном режиме из специальной башни.

Концепция автоматического светофора была предложена в 1928 году. Его мог установить и настроить любой электрик и все принялись закупать и устанавливать такие светофоры. Но сразу же возникли проблемы в больших городах, где существуют утренние и вечерние часы пик, в которые хорошо бы поменять планы координации светофоров, чтобы не создавались пробки. В полный рост встали проблемы нехватки персонала для этого ответственного дела. Пытливый американский разум задумался над дальнейшим совершенствованием дорожной автоматики.

В период с 1928 по 1930-й годы изобретатели предложили различные конструкции детекторов давления, определяющих наличие автомобилей на перекрестке. Это позволило сделать первые модели светофоров, реагирующих на транспорт (traffic-actuated). Такие светофоры давали эффект на магистралях, где красный по главному ходу включался только если со стороны второстепенной дороги подъезжала машина. Такие системы стоят в США до сих пор и неплохо справляются со своей задачей на изолированных перекрестках. Похожим образом работают и пешеходные вызывные кнопки, при нажатии на которую в следующий цикл регулирования встраивается пешеходная фаза.

В 1952 году в Денвере установили первый аналоговый контроллер, который позволил объединить несколько разрозненных перекрестков в единую управляемую сеть и переключать заранее рассчитанные планы координации в зависимости от времени суток и дней недели. В последующее десятилетие несколько сотен подобных систем было проинсталлировано по всему миру.

Подобные системы активно использовали параметр смещения, включая зеленый не сразу на всех перекрестках, а со смещением, зависящим от расстояния между перекрестками и параметров транспорта («зеленая волна»). Специально обученный инженер рассчитывал и рисовал на бумажке схемы координации, которые потом закладывались в контроллеры. Система оказалась настолько простой и надежной, что активно используется до сих пор в городах, не обремененных излишним трафиком.

В 1960 году в Торонто для управления светофорами установили первый «настоящий» компьютер – шикарный агрегат IBM 650 с барабанной памятью на 2000 машинных слов. Это был колоссальный прорыв в технологиях управления дорожным движением! Через три года под централизованным управлением находились более 20 перекрестков, а к 1973 году компьютер управлял уже 885 перекрестками!

Видя столь явный успех, IBM продолжила работать над использованием своих компьютеров в управлении светофорами. В 1964 году стартовал проект в центре Сан Хосе с компьютером IBM 1710, а в 1965 для города Вичита Фоллс (Техас) был установлен IBM 1800 (продвинутая версия модели 1130 с увеличенным количество портов ввода/вывода), который успешно управлял 85 перекрестками. Компьютер в Сан-Хосе также был заменен впоследствии на IBM 1800. Система оказалась настолько удачной, что данную конфигурацию стали использовать во многих американских городах от Остина и Портленда до Нью Йорка.

Вот он, легендарный аппарат IBM 1800 ()

Работа над стандартизацией систем управления светофорами стартовала в 1967 году. В рамках пилотного проекта построили управляющую систему для Вашингтона, которая включала 113 перекрестков, оснащенных 512 детекторами транспорта на основе индуктивной петли. Компьютер получил возможность не только вслепую переключать планы координации, но и получать информацию о транспортных очередях на перекрестках (тогда еще допплеровские радары для измерения скорости потока не использовали).

Короче говоря, критическая масса подключенных к компьютерам светофоров была достигнута, и переход от количества к качеству был лишь делом времени. Начались масштабные исследования в области разработки управляющих алгоритмов.

Идея иметь планы координации на все случаи жизни в теории была неплоха, но на все случаи жизни, как оказалось, планов не напасешься. Разработка каждого плана в 70-х производилась на бумаге и была довольно трудоемким и творческим процессом. И если для длинной улицы со светофорами, наподобие Ленинского проспекта в Москве, рассчитать алгоритмы было довольно легко, то на сети улиц это была уже совсем нетривиальная задача. Там более, что городов много, и не все из них могут себе позволить держать в штате грамотного транспортно инженера.

И вот в 70-х британское исследовательское бюро TRRL (The Transport and Road Research Laboratory) разработало и внедрило на улицах Глазго систему SCOOT (Split, Cycle and Offset Optimization Technique), которая позволяла «играться» параметрами цикла светофорного регулирования в определенных границах в зависимости от информации транспортных детекторов, измеряющих наличие и длину очередей на светофорах. SCOOT совмещала преимущества фиксированных планов координации для сети и адаптивного управления, когда «умный» светофор сам «подруливает» циклом и длительностями зеленых сигналов. SCOOT в 80-х имел ряд успешных внедрений в Европе и Северной Америке. Более того, сейчас этот алгоритм (уже в третьем поколении) лицензирован более чем 100 компаниям для использования в составе своих систем.

SCOOT в третьем поколении показывает чудеса изощренного управления: он умеет обрабатывать нестандартные ситуации, растаскивать заторы, сглаживать последствия вмешательства в транспортный поток регулировщиков и временных перекрытий движения, которые так любят устраивать в сами знаете какой стране.

Одновременно со SCOOT как грибы после дождя в 70-е и 80-е годы стали появляться аналогичные системы управления. Австралийская система SCATS (Sydney Coordinated Adaptive Traffic System) стала основным конкурентом британцев и также широко внедрялась во всем мире. Как и SCOOT, SCATS относится к системам, «чувствительным» к трафику (traffic responsive).

Также развивались и полностью адаптивные алгоритмы управления (traffic adaptive), который представляли в мире OPAC (Optimized Policies for Adaptive Control) и RHODES, разрабатываемый Аризонским универом.

Сейчас разница в эффективности управления между адаптивными и «чувствительными» системами практически стерлась. Подобно гонке интернет браузеров, эти «тупоконечники» и «остроконечники» постоянно проводят исследования, чтобы доказать эффективность именно своего алгоритма, но отчеты независимых экспертов говорят о том, что в общем разницы-то особой нет.

Зато сейчас с развитием и удешевлением компьютерной техники появились возможности повышения живучести систем управления. Часть управляющей логики стали зашивать непосредственно в дорожные контроллеры, которые даже в случае обрыва связи с центром не терялись и начинали объединяться в управляющие кластеры с соседними контроллерами. В условиях территориально распределенных систем управления обрыв каналов связи обычное дело, и такой бонус стал совсем не лишним.

А что же в России?

Собирался было закруглиться на сегодня и вспомнил вдруг о том, что ни словом не упомянул российский (советский) опыт. Итак, мне бы очень хотелось, чтобы мы были уникальны и впереди планеты всей, но это не так. Большинство отечественных работ по управлению трафиком на автодорогах основаны на переводе американской книжки 1972 года. В отличие от оборонки, эта область не отличалась уникальностью.

Работы по централизованному компьютерному управлению светофорами начались у нас в стране в начале 80-х (то есть на 20 лет позже американцев). По заданию правительства Москвы и министерства транспорта РФ в Дефаулт-сити была создана система Старт, умевшая осуществлять координированное управление светофорами. В управляющем центре трудился сервер на «солярке» с базой данных Informix. Технически система была верхом доступного нашим специалистам совершенства. Более 400 светофорных объектов по всему городу управлялись из единого центра! Но ни о каком адаптивном управлении речи не шло. Фактически, это был аналог систем, которые внедрялись по всему миру в 70-е годы до появления адаптивных алгоритмов. Потом грянули всем известные события, никак не способствовавшие развитию отечественных транспортных систем. И сегодня мы имеем в разных городах форменный зоопарк из фрагментов западных систем управления. Но будем надеяться, что со временем ситуация в этой области нормализуется и появятся более интересные комплексные реализации. Ничего ведь сложного в этом нет. Правда ведь, коллеги?

На этом предлагаю завершить обзор управляющих алгоритмов и перейти к транспортному моделированию, которое, в общем-то и наполняет всю эту технику смыслом. Мне бы хотелось рассказать в следующей публикации об использовании транспортных моделей, их разновидностях и интеграции в контур систем управления дорожным движением.