Турбовинтовой двигатель самолета: устройство и принцип работы. Двигатель турбовинтовой: устройство, схема, принцип работы. Производство турбовинтовых двигателей в России


Турбовинтовой двигатель ВК-1500 производится на объединении ОАО «Мотор Сич».
Предназначен для установки в качестве маршевого двигателя на самолеты воздушных линий пассажировместимостью до 30 чел.
Высокий уровень культуры проектирования, производства в сочетании с применением современной системы регулирования дали возможность создать двигатель с высокими эксплуатационными характеристиками, надежностью и большими ресурсами.
Вертолетный вариант двигателя ВК-1500 может устанавливаться на вертолетах среднего класса. ...


Турбовинтовой двигатель ТВД-20 разработан в Омском авиамоторном КБ на базе турбовинтового двигателя ТВД-10.
Первая серийная версия двигателя получила обозначение ТВД-20–01. Эта версия двигателя, выпускаемая с 1992 года, устанавливается на легкий многоцелевой самолет Ан-3.
Усовершенствованная версия двигателя получила обозначение ТВД-20М. Этот двигатель используется на легком самолете Аэропрогресс Т-101В с трехлопастным пропеллером АВ-17. ...

Турбовальный двигатель ТВ3–117 предназначен для установки на вертолеты. Он является одним из лучших двигателей в мире по экономичности в своем классе, что достигнуто благодаря высоким КПД основных узлов (КПД компрессора равен 86%, КПД турбины компрессора — 91%, КПД свободной турбины — 96%). Величины удельного расхода топлива и удельной массы соответствуют лучшим мировым стандартам. Двигатель имеет большие запасы газодинамической устойчивости. В конструкции двигателя применены прогрессивные технические решения: титановый ротор компрессора, сваренный из отдельных дисков электронно-лучевой сваркой; рабочие и направляющие лопатки компрессора из титанового сплава, полученные методом холодной вальцовки; контактные графитовые уплотнения масляных полостей; на новейших модификациях применяется электронно-гидромеханическая система регулирования и управления и др. Двигатель имеет большой ресурс, обладает высокой надежностью, простотой обслуживания, хорошей ремонтопригодностью. ...


В 1960 году был объявлен конкурс на создание газотурбинного двигателя мощностью 1250 л.с. для перспективного вертолёта Ми-8. Победителем конкурса проектов стало ОКБ-117 им. В.Я.Климова под руководством С.П.Изотова, которому и была поручена разработка двигателя и главного редуктора ВР-8. ТВ2–117 стал первым отечественным специализированным вертолётным двигателем. Первые образцы двигателей изготовлены летом 1962 года. Серийное производство организовано в 1965 году.
Двигатель имеет девятиступенчатый осевой компрессор, камеру сгорания кольцевого типа и двухступенчатую турбину. ...


Разработка турбовинтового двигателя ТВ-12 для бомбардировщика Ту-95 началась в ОКБ-276 под руководством Н.Д.Кузнецова в 1951 году. В декабре 1953 года Министерство авиационной промышленности утвердило общую компоновку двигателя. Летом 1954 года начались доводочные испытания ТВ-12 на летающей лаборатории Ту-4ЛЛ. В декабре новый двигатель был установлен на втором прототипе Ту-95 («95–2»). В 1955 году началось серийное производство двигателя на Куйбышевском моторостроительном заводе №24 под обозначением НК-12.
НК-12 состоит из редуктора, осевого компрессора, камеры сгорания, реактивной турбины и нерегулируемого реактивного сопла. Редуктор двигателя — дифференциальный, с передаточным отношением от ротора к воздушному винту 0,088. Редуктор передаёт мощность турбины на соосный воздушный винт (передний винт потребляет 54,4% мощности, задний — 45,6%). ...


Винтовентиляторный двигатель Д-27 разработан в Запорожском МКБ им. И.Г.Ивченко в середине 80-х годов. В разработке двигателя активное участие принимали специалисты ЦИАМ и ЦАГИ. Винтовентиляторы СВ-27 с широкохордовыми саблевидными лопастями разработатывались в НПО «Авиасила» (г. Ступино). Автоматическая система управления двигателем СУ-77 разрабатывалась в Уфимском НПО «Молния». Первые стендовые испытания проведены в 1988 году. В 1990 году двигатель испытывался на летающей лаборатории Ил-76. В 1993 году 4 двигателя Д-27 были установлены на первом прототипе транспортного самолёта Ан-70. Серийное производство предполагается на запорожском заводе «Мотор-Сiч» и Уфимском моторостроительном заводе.
Запуск двигателя автоматический с раскруткой ротора высокого давления воздушным турбостартером от ВСУ, аэродромного источника сжатого воздуха или от работающего двигателя. ...


Турбовинтовентиляторный трехвальный двигатель Д-236 разрабатывался как демонстратор технологий на Запорожском ЗМКБ "Прогресс".
Основой для двигателя послужил турбовентиляторный двигатель Д-36. Разработка двигателя была начата в 1979 году. На двигатель установлен пропеллер СВ-36. Первоначальные испытания двигателя проходили на самолете Ил-76. С 1987 года к испытаниям подключилось ОКБ им. Яковлева. Д-236 был установлен на специализированную версию самолета Як-42Е-ЛЛ вместо одного из двигателей Д-36. Первый полет самолета с такой двигательной установкой состоялся в марте 1991 года. ...


Двигатель АИ-24 конструкции А.Г. Ивченко одновальный турбовинтовой. В настоящее время на предприятиях гражданской авиации в основном эксплуатируются двигатели АИ-24 II серии.
Двигатель АИ-24 состоит из следующих узлов: дифференциального планетарного редуктора; лобового картера; 10-ступенчатого осевого компрессора; кольцевой камеры сгорания; 3-ступенчатой осевой реактивной турбины; нерегулируемого реактивного сопла.
Для обеспечения работы двигателя имеются системы: смазки и суфлирования; топливорегулирования; запуска; управления воздушным винтом; противопожарная; противообледенительная.
На самолетах Ан-24 и Ан-24Б, эксплуатируемых в условиях высоких температур наружного воздуха, силовая установка оборудуется системой впрыска воды в компрессор двигателя. ...


Двигатель турбовинтовой высотный АИ-20Д серии 5, 5Э является дальнейшим развитием широко известного базового двигателя АИ-20, используется на самолетах, выполняющих перевозки на линиях средней и дальней протяженности.
Оборудован системами: Автоматизированного запуска
Противообледенения
Противопожарной
Следящего упора для защиты по отрицательной тяге и автоматического флюгирования воздушного винта
Успешно эксплуатируются во многих странах мира (Индия, Бангладеш, Эфиопия, Перу, Никарагуа и др.) в условиях высоких температур наружного воздуха и высокогорных аэродромов. ...

Турбовинтовой авиационный двигатель НК-12 (ТВ-2, ТВ-12).

Разработчик: ОКБ-276, Н.Д.Кузнецов
Страна: СССР
Построен: 1954 г.
Начало гос. испытаний: 1955 г.
Принят на вооружение: 1955 г.

В 1946 году в посёлке Управленческий, расположенном на берегу Волги в 30 км от Куйбышева, был организован опытный завод № 2. На его базе было сформировано два конструкторских бюро: ОКБ-1 (главный конструктор А.Шайбе) и ОКБ-2 (главный конструктор К.Престель), численность работающих в 1947 году составляла около 2500 человек, из них 662 — немецкие специалисты. При организации завода предполагалось, что в СССР немцы продолжат работы, начатые ими в Германии — создание форсированных образцов серийных немецких ТРД «Jumo-004» и «BMW-003» и новых мощных реактивных двигателей «Jumo-012» и «BMW-018». Однако в конце 1946 года появилась новая задача: разработка турбовинтовых двигателей.

После серии опытно-конструкторских работ по турбовинтовым двигателям «022» и «028», мотокомпрессорному реактивному двигателю «032» и турбореактивному «003с» в 1948 году было принято решение объединить два ОКБ и сосредоточить усилия на разработке одного двигателя — «022». В середине 1948 года проектирование двигателя завершилось, три экземпляра передали в производство. В 1949 году, в самый разгар работ по «022», на завод № 2 пришел новый руководитель — Николай Дмитриевич Кузнецов. Он уже имел опыт работы по немецким реактивным двигателям — в 1946 году вместе с Климовым и Бранднером на заводе в Уфе осваивал производство «Jumo-004».

В 1951 году двигатель «022» получил наименование ТВ-2 (турбовинтовой двигатель-2). Вместо обычного четырёхлопастного пропеллера были применены соосные винты противоположного вращения.

Специалистам выдали новое задание: построить ТВД большой мощности — 12000 л.с. Такие двигатели требовались для нового стратегического бомбардировщика Ту-95 .
Самым простым методом обеспечить требуемые характеристики новой силовой установки было соединение вместе двух форсированных ТВ-2 с передачей мощности на один общий редуктор. Однако, сначала стендовые испытания, а затем и катастрофа Ту-95 с двигателями 2ТВ-2Ф показали, что для надежной работы необходимо создавать новый двигатель.

На новом двигателе число ступеней турбины увеличили до пяти. Благодаря созданию нового жаропрочного сплава нимоник появилась возможность повысить давление в компрессоре и увеличить температуру газа перед турбиной. Для повышения КПД двигателя выполнили большое количество исследований по уменьшению потерь в лопаточных машинах, применили уплотняющие вставки, позволяющие минимизировать радиальные зазоры в турбине, создали пустотелые охлаждаемые лопатки оригинальной конструкции. Был изготовлен новый редуктор, решены вопросы регулирования ТВД с соосными винтами противоположного вращения.

В результате всех этих мероприятий удалось добиться требуемой мощности, высокой надежности и хорошей топливной эффективности двигателя. По удельному расходу топлива он оказался намного экономичнее своего предшественника ТВ-2.

В начале 1953 года закончилась сборка двигателя. Он получил обозначение ТВ-12. Стендовые испытания ТВ-12 прошли успешно. Двигатель продемонстрировал требуемую мощность и высокий ресурс. Создание ТВ-12 (НК-12) было финальной работой, в которой участвовали немецкие специалисты. В конце 1953 года последние немцы покинули завод. Окончательными испытаниями и последующим усовершенствованием двигателя занимался советский коллектив под руководством Н.Д.Кузнецова.

Для его лётных испытаний в 1953 году специально были оборудованы три самолета Ту-4ЛЛ (Летающая Лаборатория). Двигатель ТВ-12 был установлен на месте правого внутреннего поршневого мотора АШ-73 . При этом ТВ-12 превосходил АШ-73 по мощности более чем в 5 раз, а его винты по диаметру были больше примерно в 1,5 раза. Испытания проводили ведущий летчик-испытатель М.А.Нюхтиков и ведущий инженер Д.И.Кантор. После Госиспытаний в конце 1954-го — феврале 1955 года был совершен первый полет самолета «95-2», второго прототипа Ту-95 с двигателями ТВ-12. Серийный двигатель стал называться НК-12 — по первым буквам имени и фамилии руководителя опытного завода.

Одновальный турбовинтовой двигатель НК-12МВ состоит из следующих основных узлов:
-14-ступенчатого осевого компрессора;
-кольцевой камеры сгорания;
-реактивной 5-ступенчатой турбины;
-нерегулируемого реактивного сопла и дифференциального редуктора (передаточное отношение 0,0882).

Степень повышения давления в компрессоре меняется от 9 до 13 в зависимости от высоты, а также от положения механизации компрессора. Номинальная скорость вращения вала двигателя - 8300 об/мин, каждого из двух винтов - 735 об/мин. НК-12 является самым мощным и экономичным турбовинтовым двигателем в мире (удельный расход топлива в крейсерском полете - 0,161 кг/л.с.ч.), его также отличает чрезвычайно высокая надёжность.

Двигатель подвешивается к демпферам гондолы двигателя самолёта на четырёхстержневой раме-подвеске.

Силовая, несущая часть двигателя состоит из:
-картера вала заднего винта;
-картера редуктора;
-картера турбины, соединённого с картером редуктора четырьмя силовыми раскосами;
-статора турбины;
-задней опоры.
Эти узлы вместе с картером компрессора образуют остов двигателя, внутри которого размещаются ходовая часть редуктора с валами воздушных винтов, ротор компрессора, ротор турбины, камера сгорания, приводы агрегатов и другие узлы и детали.

Ротор имеет правое направление вращения, смотря по направлению полёта. Компрессор осевого типа, 14-ступенчатый с регулируемым входным направляющим аппаратом (ВНА) и с 5-ю клапанами перепуска воздуха дроссельного типа с гидравлическим управлением. ВНА управляется в зависимости от высоты и скорости полёта, клапаны перепуска воздуха управляются в зависимости от оборотов — при запуске и работе на режиме земного малого газа открыты, при повышении оборотов до 7900 об/мин поочерёдно закрываются. Камера сгорания кольцевая с 12 головками, турбина реактивная 5-ступенчатая. КПД компрессора — 0,88, турбины — 0,94, что является рекордом до настоящего времени. Для уменьшения радиальных зазоров были применены легкосрабатываемые покрытия на элементах проточной части статора. Для лопаток турбины были использованы литейные жаропрочные сплавы, которые при высокой температуре имеют пределы длительной прочности выше, чем деформируемые сплавы.

На НК-12 впервые были применена система регулирования подачи топлива в едином блоке (командно-топливный агрегат), регулирование радиальных зазоров в турбине. Из практики зарубежного авиадвигателестроения известно, что попытка создания ТВД мощностью более 10000 л.с. вызвала большие трудности в конструировании достаточно надежного редуктора с высоким КПД и малой массой и окончилась неудачей. В ОКБ Н.Д.Кузнецова эта задача была решена в содружестве с М.Л.Новиковым — профессором Военно-воздушной академии им. Н.Е.Жуковского благодаря применению зубчатых передач оригинальной конструкции.

Кроме того, на НК-12 впервые были применены:
— регулировка компрессора клапанами перепуска воздуха;
— система регулирования подачи топлива в едином блоке (командно-топливный агрегат);
— автоматическое флюгирование винтов как система защиты двигателя;
— регулирование радиальных зазоров в турбине.

С двигателем используются тянущие автоматические соосные винты изменяемого шага, с центробежным фиксатором шага, гидроцентробежным механизмом поворота лопастей с установкой лопастей во флюгерное положение и на упор промежуточного угла — АВ-60К либо АВ-60Н на Ту-95 , Ту-114 и Ту-142 , АВ-90 на Ан-22 . АВ-60К состоит из двух четырёхлопастных флюгируемых винтов противоположного вращения с изменяемым в полёте шагом и электрической системой противообледенения. Направление вращения винтов, если смотреть по направлению полета, переднего винта — правое, заднего винта — левое. Вес воздушного винта: переднего 518 кг, заднего 637 кг, общий 1155 кг, диаметр 5,6 м. Автоматическое флюгирование винтов используется как система защиты двигателя и самолёта. Винты разработаны в ОКБ-150 (позднее, Ступинское КБ машиностроения, сейчас — НПП «Аэросила»). Руководитель ОКБ-150, К.И.Жданов, получил в 1957 году за их разработку Ленинскую премию.

Модификации:

ТВ-2 — Доведен до производства, использовался очень ограниченно.
-2ТВ-2Ф — сдвоенный вариант ТВ-2. Испытания окончились неудачей.
-ТВ-12, он же НК-12 — первый серийный вариант. Предполагалось установить на транспортно-десантный самолет, но проект был закрыт.
-НК-12М — ТВД повышенной мощности. Первое испытание НК-12М состоялось в сентябре 1955 года, Госиспытания 19 июня 1956 года.
-НК-12МА — устанавливался на самолёт Ан-22. Воздушный винт АВ-90 диаметром 6,2 м.
-НК-12МВ — устанавливался на Ту-95К , Ту-114, Ту-126 , ТУ-142. Воздушный винт диаметром 5,6 м и массой 1155 кг.
-НК-12МК — устанавливался на экранолёт «Орлёнок».
-НК-12МП — двигатель для ракетоносца Ту-95МС . Увеличен ресурс, снижен расход топлива, применены новые приводы для более мощных генераторов. Устанавливался также на Ту-142М.
НК-16 (ТВ-16): мощность увеличена до 16000 л.с.
НК-12СТ, НК-14СТ: приводы газоперекачивающих агрегатов.
НК-14Э: привод генератора в блочно-модульных электростанциях.

Технические характеристики двигателя НК-12МВ:

Топливо (ГТД): керосин
Турбина, тип: реактивная
Турбина, количество ступеней: 5
Редуктор, передаточное число: 0,0882
Компрессор, кол-во ступеней: 14
Камера сгорания, тип: кольцевая с 12 головками
Обороты двигателя, взлетный режим, об/мин / %: 8300 ± 50
Обороты двигателя, номинальный режим, об/мин / %: 8300 ± 50
Обороты двигателя, малый газ, об/мин / %: 6600 + 200.

Двигатель НК-12 в экспозиции музея.

На сегодняшний день, авиация практически на 100% состоит из машин, которые используют газотурбинный тип силовой установки. Иначе говоря – газотурбинные двигатели. Однако, несмотря на всю возрастающую популярность авиаперелетов сейчас, мало кто знает каким образом работает тот жужжащий и свистящий контейнер, который висит под крылом того или иного авиалайнера.

Принцип работы газотурбинного двигателя.

Газотурбинный двигатель, как и поршневой двигатель на любом автомобиле, относится к двигателям внутреннего сгорания. Они оба преобразуют химическую энергию топлива в тепловую, путем сжигания, а после - в полезную, механическую. Однако то, как это происходит, несколько отличается. В обоих двигателях происходит 4 основных процесса – это: забор, сжатие, расширение, выхлоп. Т.е. в любом случае в двигатель сначала входит воздух (с атмосферы) и топливо (из баков), далее воздух сжимается и в него впрыскивается топливо, после чего смесь воспламеняется, из-за чего значительно расширяется, и в итоге выбрасывается в атмосферу. Из всех этих действий выдает энергию лишь расширение, все остальные необходимы для обеспечения этого действия.

А теперь в чем разница. В газотурбинных двигателях все эти процессы происходят постоянно и одновременно, но в разных частях двигателя, а в поршневом – в одном месте, но в разный момент времени и по очереди. К тому же, чем более сжат воздух, тем большую энергию можно получить при сгорании, а на сегодняшний день степень сжатия газотурбинных двигателей уже достигла 35-40:1, т.е. в процессе прохода через двигатель воздух уменьшается в объеме, а соответственно увеличивает свое давление в 35-40 раз. Для сравнения в поршневых двигателях этот показатель не превышает 8-9:1, в самых современных и совершенных образцах. Соответственно имея равный вес и размеры газотурбинный двигатель гораздо более мощный, да и коэффициент полезного действия у него выше. Именно этим и обусловлено такое широкое применения газотурбинных двигателей в авиации в наши дни.

А теперь подробней о конструкции. Четыре вышеперечисленных процесса происходят в двигателе, который изображен на упрощенной схеме под номерами:

  • забор воздуха – 1 (воздухозаборник)
  • сжатие – 2 (компрессор)
  • смешивание и воспламенение – 3 (камера сгорания)
  • выхлоп – 5 (выхлопное сопло)
  • Загадочная секция под номером 4 называется турбиной. Это неотъемлемая часть любого газотурбинного двигателя, ее предназначение – получение энергии от газов, которые выходят после камеры сгорания на огромных скоростях, и находится она на одном валу с компрессором (2), который и приводит в действие.

Таким образом получается замкнутый цикл. Воздух входит в двигатель, сжимается, смешивается с горючим, воспламеняется, направляется на лопатки турбины, которые снимают до 80% мощности газов для вращения компрессора, все что осталось и обуславливает итоговую мощность двигателя, которая может быть использована разными способами.

В зависимости от способа дальнейшего использования этой энергии газотурбинные двигатели подразделяются на:

  • турбореактивные
  • турбовинтовые
  • турбовентиляторные
  • турбовальные

Двигатель, изображенный на схеме выше, является турбореактивным . Можно сказать «чистым» газотурбинным, ведь газы после прохождения турбины, которая вращает компрессор, выходят из двигателя через выхлопное сопло на огромной скорости и таким образом толкают самолет вперед. Такие двигатели сейчас используются в основном на высокоскоростных боевых самолетах.

Турбовинтовые двигатели отличаются от турбореактивных тем, что имеют дополнительную секцию турбины, которая еще называется турбиной низкого давления, состоящую из одного или нескольких рядов лопаток, которые отбирают оставшуюся после турбины компрессора энергию у газов и таким образом вращает воздушный винт, который может находится как спереди так и сзади двигателя. После второй секции турбины, отработанные газы выходят фактически уже самотеком, не имея практически никакой энергии, поэтому для их вывода используются просто выхлопные трубы. Подобные двигатели используются на низкоскоростных, маловысотных самолетах.

Турбовентиляторные двигатели имеют схожую схему с турбовинтовыми, только вторая секция турбины отбирает не всю энергию у выходящих газов, поэтому такие двигатели также имеют выхлопное сопло. Но основное отличие состоит в том, что турбина низкого давления приводит в действия вентилятор, который закрыт в кожух. Потому такой двигатель еще называется двуконтурным, ведь воздух проходит через внутренний контур (сам двигатель) и внешний, который необходим лишь для направления воздушной струи, которая толкает двигатель вперед. Потому они и имеют довольно «пухлую» форму. Именно такие двигатели применяются на большинстве современных авиалайнеров, поскольку являются наиболее экономичными на скоростях, приближающихся к скорости звука и эффективными при полетах на высотах выше 7000-8000м и вплоть до 12000-13000м.

Турбовальные двигатели практически идентичны по конструкции с турбовинтовыми, за исключением того, что вал, который соединен с турбиной низкого давления, выходит из двигателя и может приводить в действие абсолютно что угодно. Такие двигатели используются в вертолетах, где два-три двигателя приводят в действие единственный несущий винт и компенсирующий хвостовой пропеллер. Подобные силовые установки сейчас имеют даже танки – Т-80 и американский «Абрамс».

Газотурбинные двигатели имеют классификацию также по другим при знакам:

  • по типу входного устройства (регулируемое, нерегулируемое)
  • по типу компрессора (осевой, центробежный, осецентробежный)
  • по типу воздушно-газового тракта (прямоточный, петлевой)
  • по типу турбин (число ступеней, число роторов и др.)
  • по типу реактивного сопла (регулируемое, нерегулируемое) и др.

Турбореактивный двигатель с осевым компрессором получил широкое применение. При работающем двигателе идет непрерывный процесс. Воздух проходит через диффузор, притормаживается и попадает в компрессор. Затем он поступает в камеру сгорания. В камеру через форсунки подается также топливо, смесь сжигается, продукты сгорания перемещаются через турбину. Продукты сгорания в лопатках турбины расширяются и приводят ее во вращение. Далее газы из турбины с уменьшенным давлением поступают в реактивное сопло и с огромной скоростью вырываются наружу, создавая тягу. Максимальная температура имеет место и на воде камеры сгорания.

Компрессор и турбина расположены на одном валу. Для охлаждения продуктов сгорания подается холодный воздух. В современных реактивных двигателях рабочая температура может превышать температуру плавления сплавов рабочих лопаток примерно на 1000 °С. Система охлаждения деталей турбины и выбор жаропрочных и жаростойких деталей двигателя - одни из главных проблем при конструировании реактивных двигателей всех типов, в том числе и турбореактивных.

Особенностью турбореактивных двигателей с центробежным компрессором является конструкция компрессоров. Принцип работы подобных двигателей аналогичен двигателям с осевым компрессором.

Газотурбинный двигатель. Видео.

Полезные статьи по теме.

0

Воздушно-реактивные двигатели по способу предварительного сжатия воздуха перед поступлением в камеру сгорания разделяются на компрессорные и бескомпрессорные. В бескомпрессорных воздушно-реактивных двигателях используется скоростной напор воздушного потока. В компрессорных двигателях воздух сжимается компрессором. Компрессорным воздушно-реактивным двигателем является турбореактивный двигатель (ТРД). В группу, получившую название смешанных или комбинированных двигателей, входят турбовинтовые двигатели (ТВД) и двухконтурные турбореактивные двигатели (ДТРД). Однако конструкция и принцип работы этих двигателей во многом схожи с турбореактивными двигателями. Часто все типы указанных двигателей объединяют под общим названием газотурбинных двигателей (ГТД). В качестве топлива в газотурбинных двигателях используется керосин.

Турбореактивные двигатели

Конструктивные схемы. Турбореактивный двигатель (рис. 100) состоит из входного устройства, компрессора, камеры сгорания, газовой турбины и выходного устройства.

Входное устройство предназначено для подвода воздуха к компрессору двигателя. В зависимости от расположения двигателя на самолете оно может входить в конструкцию самолета или в конструкцию двигателя. Входное устройство способствует повышению давления воздуха перед компрессором.

Дальнейшее повышение давления воздуха происходит в компрессоре. В турбореактивных двигателях применяются компрессоры центробежные (рис. 101) и осевые (см. рис. 100).

В осевом компрессоре при вращении ротора рабочие лопатки, воздействуя на воздух, закручивают его и заставляют двигаться вдоль оси в сторону выхода из компрессора.

В центробежном компрессоре при вращении рабочего колеса воздух увлекается лопатками и под действием центробежных сил движется к периферии. Наиболее широкое применение в современной авиации нашли двигатели с осевым компрессором.





Осевой компрессор включает в себя ротор (вращающаяся часть) и статор (неподвижная часть), к которому крепится входное устройство. Иногда во входных устройствах устанавливаются защитные сетки, предотвращающие попадание в компрессор посторонних предметов, которые могут привести к повреждению лопаток.

Ротор компрессора состоит из нескольких рядов профилированных рабочих лопаток, расположенных по окружности и последовательно чередующихся вдоль оси вращения. Роторы подразделяют на барабанные (рис. 102, а), дисковые (рис. 102, б) и барабаннодисковые (рис. 102, в).

Статор компрессора состоит из кольцевого набора профилированных лопаток, закрепленных в корпусе. Ряд неподвижных лопаток, называемых спрямляющим аппаратом, в совокупности с рядом рабочих лопаток называется ступенью компрессора.

В современных авиационных турбореактивных двигателях применяются многоступенчатые компрессоры, увеличивающие эффективность процесса сжатия воздуха. Ступени компрессора согласуются между собой таким образом, чтобы воздух на выходе из одной ступени плавно обтекал лопатки следующей ступени.

Нужное направление воздуха в следующую ступень обеспечивает спрямляющий аппарат. Для этой же цели служит и направляющий аппарат, устанавливаемый перед компрессором. В некоторых конструкциях двигателей направляющий аппарат может отсутствовать.

Одним из основных элементов турбореактивного двигателя является камера сгорания, расположенная за компрессором. В конструктивном отношении камеры сгорания выполняются трубчатыми (рис. 103), кольцевыми (рис. 104), трубчато-кольцевыми (рис. 105).




Трубчатая (индивидуальная) камера сгорания состоит из жаровой трубы и наружного кожуха, соединенных между собой стаканами подвески. В передней части камеры сгорания устанавливаются топливные форсунки и завихритель, служащий для стабилизации пламени. На жаровой трубе имеются отверстия для подвода воздуха, предотвращающего перегрев жаровой трубы. Поджигание топливо-воздушной смеси в жаровых трубах осуществляется специальными запальными устройствами, устанавливаемыми на отдельных камерах. Между собой жаровые трубы соединяются патрубками, которые обеспечивают поджигание смеси во всех камерах.



Кольцевая камера сгорания выполняется в форме кольцевой полости, образованной наружным и внутренним кожухами камеры. В передней части кольцевого канала устанавливается кольцевая жаровая труба, а в носовой части жаровой трубы - завихрители и форсунки.

Трубчато-кольцевая камера сгорания состоит из наружного и внутреннего кожухов, образующих кольцевое пространство, внутри которого размещаются индивидуальные жаровые трубы.

Для привода компрессора ТРД служит газовая турбина. В современных двигателях газовые турбины выполняются осевыми. Газовые турбины могут быть одноступенчатыми и многоступенчатыми (до шести ступеней). К основным узлам турбины относятся сопловые (направляющие) аппараты и рабочие колеса, состоящие из дисков и расположенных на их ободах рабочих лопаток. Рабочие колеса крепятся к валу турбины и образуют вместе с ним ротор (рис. 106). Сопловые аппараты располагаются перед рабочими лопатками каждого диска. Совокупность неподвижного соплового аппарата и диска с рабочими лопатками называется ступенью турбины. Рабочие лопатки крепятся к диску турбины при помощи елочного замка (рис. 107).

Выпускное устройство (рис. 108) состоит из выпускной трубы, внутреннего конуса, стойки и реактивного сопла. В некоторых случаях из условий компоновки двигателя на самолете между выпускной трубой и реактивным соплом устанавливается удлинительная труба. Реактивные сопла могут быть с регулируемым и нерегулируемым выходным сечением.

Принцип работы. В отличие от поршневого двигателя рабочий процесс в газотурбинных двигателях не разделен на отдельные такты, а протекает непрерывно.

Принцип работы турбореактивного двигателя заключается в следующем. В полете воздушный поток, набегающий на двигатель, проходит через входное устройство в компрессор. Во входном устройстве происходит предварительное сжатие воздуха и частичное преобразование кинетической энергии движущегося воздушного потока в потенциальную энергию давления. Более значительному сжатию воздух подвергается в компрессоре. В турбореактивных двигателях с осевым компрессором при быстром вращении ротора лопатки компрессора, подобно лопастям вентилятора, прогоняют воздух в сторону камеры сгорания. В установленных за рабочими колесами каждой ступени компрессора спрямляющих аппаратах вследствие диффузорной формы межлопаточных каналов происходит преобразование приобретенной в колесе кинетической энергии потока в потенциальную энергию давления.

В двигателях с центробежным компрессором сжатие воздуха происходит за счет воздействия центробежной силы. Воздух, входя в компрессор, подхватывается лопатками быстро вращающейся крыльчатки и под действием центробежной силы отбрасывается от центра к окружности колеса компрессора. Чем быстрее вращается крыльчатка, тем большее давление создается компрессором.

Благодаря компрессору ТРД могут создавать тягу при работе на месте. Эффективность процесса сжатия воздуха в компрессоре


характеризуется величиной степени повышения давления π к, которая представляет собой отношение давления воздуха на выходе из компрессора р 2 к давлению атмосферного воздуха р H


Воздух, сжатый во входном устройстве и компрессоре, далее поступает в камеру сгорания, разделяясь на два потока. Одна часть воздуха (первичный воздух), составляющая 25-35% от общего расхода воздуха, направляется непосредственно в жаровую трубу, где происходит основной процесс сгорания. Другая часть воздуха (вторичный воздух) обтекает наружные полости камеры сгорания, охлаждая последнюю, и на выходе из камеры смешивается с продуктами сгорания, уменьшая температуру газовоздушного потока до величины, определяемой жаропрочностью лопаток турбины. Незначительная часть вторичного воздуха через боковые отверстия жаровой трубы проникает в зону горения.

Таким образом, в камере сгорания происходит образование топливо-воздушной смеси путем распыливания топлива через форсунки и смешения его с первичным воздухом, горение смеси и смешение продуктов сгорания со вторичным воздухом. При запуске двигателя зажигание смеси осуществляется специальным запальным устройством, а при дальнейшей работе двигателя топливо-воздушная смесь поджигается уже имеющимся факелом пламени.

Образовавшийся в камере сгорания газовый поток, обладающий высокой температурой и давлением, устремляется на турбину через суживающийся сопловой аппарат. В каналах соплового аппарата скорость газа резко возрастает до 450-500 м/сек и происходит частичное преобразование тепловой (потенциальной) энергии в кинетическую. Газы из соплового аппарата попадают на лопатки турбины, где кинетическая энергия газа преобразуется в механическую работу вращения турбины. Лопатки турбины, вращаясь вместе с дисками, вращают вал двигателя и тем самым обеспечивается работа компрессора.

В рабочих лопатках турбины может происходить либо только процесс преобразования кинетической энергии газа в механическую работу вращения турбины, либо еще и дальнейшее расширение газа с увеличением его скорости. В первом случае газовая турбина называется активной, во втором - реактивной. Во втором случае лопатки турбины, помимо активного воздействия набегающей газовой струи, испытывают и реактивное воздействие за счет ускорения газового потока.

Окончательное расширение газа происходит в выходном устройстве двигателя (реактивном сопле). Здесь давление газового потока уменьшается, а скорость возрастает до 550-650 м/сек (в земных условиях).

Таким образом, потенциальная энергия продуктов сгорания в двигателе преобразуется в кинетическую энергию в процессе расширения (в турбине и выходном сопле). Часть кинетической энергии при этом идет на вращение турбины, которая в свою очередь вращает компрессор, другая часть - на ускорение газового потока (на создание реактивной тяги).

Турбовинтовые двигатели

Устройство и принцип действия. Для современных самолетов,

обладающих большой грузоподъемностью я дальностью полета, нужны двигатели, которые могли бы развить необходимые тяги при минимальном удельном весе. Этим требованиям удовлетворяют турбореактивные двигатели. Однако они неэкономичны по сравнению с винтомоторными установками на небольших скоростях полета. В связи с этим некоторые типы самолетов, предназначенные для полетов с относительно невысокими скоростями и с большой дальностыо, требуют постановки двигателей, которые сочетали бы в себе преимущества ТРД с преимуществами винтомоторной установки на малых скоростях полета. К таким двигателям относятся турбовинтовые двигатели (ТВД).

Турбовинтовым двигателем называется газотурбинный авиационный двигатель, в котором турбина развивает мощность, большую потребной для вращения компрессора, и этот избыток мощности используется для вращения воздушного винта. Принципиальная схема ТВД показана на рис. 109.

Как видно из схемы, турбовинтовой двигатель состоит из тех же узлов и агрегатов, что и турбореактивный. Однако в отличие от ТРД на турбовинтовом двигателе дополнительно смонтированы воздушный винт и редуктор. Для получения максимальной мощности двигателя турбина должна развивать большие обороты (до 20000 об/мин). Если с этой же скоростью будет вращаться воздушный винт, то коэффициент полезного действия последнего будет крайне низким, так как наибольшего значения к. п. д. винта на расчетных режимах полета достигает при 750-1 500 об/мин.


Для уменьшения оборотов воздушного винта по сравнению с оборотами газовой турбины в турбовинтовом двигателе устанавливается редуктор. На двигателях большой мощности иногда используют два винта, вращающихся в противоположные стороны, причем работу обоих воздушных винтов обеспечивает один редуктор.

В некоторых турбовинтовых двигателях компрессор приводится во вращение одной турбиной, а воздушный винт - другой. Это создает благоприятные условия для регулирования двигателя.

Тяга у ТВД создается главным образом воздушным винтом (до 90%) и лишь незначительно за счет реакции газовой струи.

В турбовинтовых двигателях применяются многоступенчатые турбины (число ступеней от 2 до 6), что диктуется необходимостью срабатывать на турбине ТВД большие теплоперепады, чем на турбине ТРД. Кроме того, применение многоступенчатой турбины позволяет снизить ее обороты и, следовательно, габариты и вес редуктора.

Назначение основных элементов ТВД ничем не отличается от назначения тех же элементов ТРД. Рабочий процесс ТВД также аналогичен рабочему процессу ТРД. Так же, как и в ТРД, воздушный поток, предварительно сжатый во входном устройстве, подвергается основному сжатию в компрессоре и далее поступает в камеру сгорания, в которую одновременно через форсунки впрыскивается топливо. Образовавшиеся в результате сгорания топливовоздушной смеси газы обладают высокой потенциальной энергией. Они устремляются в газовую турбину, где, почти полностью расширяясь, производят работу, которая затем передается компрессору, воздушному винту и приводам агрегатов. За турбиной давление газа практически равно атмосферному.

В современных турбовинтовых двигателях сила тяги, получаемая только за счет реакции вытекающей из двигателя газовой струи, составляет 10-20% суммарной силы тяги.

Двухконтурные турбореактивные двигатели

Стремление повысить тяговый коэффициент полезного действия ТРД на больших дозвуковых скоростях полета привело к созданию двухконтурных турбореактивных двигателей (ДТРД).

В отличие от ТРД обычной схемы в ДТРД газовая турбина приводит во вращение (помимо компрессора и ряда вспомогательных агрегатов) низконапорный компрессор, называемый иначе вентилятором второго контура. Привод вентилятора второго контура ДТРД может осуществляться и от отдельной турбины, располагаемой за турбиной компрессора. Простейшая схема ДТРД представлена на рис. 110.


Первый (внутренний) контур ДТРД представляет собой схему обычного ТРД. Вторым (внешним) контуром является кольцевой канал с расположенным в нем вентилятором. Поэтому двухконтурные турбореактивные двигатели называют иногда турбовентиляторными.

Работа ДТРД происходит следующим образом. Набегающий на двигатель воздушный поток поступает в воздухозаборник и далее одна часть воздуха проходит через компрессор высокого давления первого контура, другая - через лопатки вентилятора (компрессора низкого давления) второго контура. Так как схема первого контура представляет собой обычную схему ТРД, то и рабочий процесс в этом контуре аналогичен рабочему процессу в ТРД. Действие вентилятора второго контура подобно действию многолопастного воздушного винта, вращающегося в кольцевом канале.

ДТРД могут найти применение и на сверхзвуковых летательных аппаратах, но в этом случае для увеличения их тяги необходимо предусматривать сжигание топлива во втором контуре. Для быстрого увеличения (форсирования) тяги ДТРД иногда осуществляется сжигание дополнительного топлива либо в воздушном потоке второго контура, либо за турбиной первого контура.

При сжигании дополнительного топлива во втором контуре необходимо увеличивать площадь его реактивного сопла для сохранения неизменными режимов работы обоих контуров. При несоблюдении этого условия расход воздуха через вентилятор второго контура уменьшится вследствие повышения температуры газа между вентилятором и реактивным соплом второго контура. Это повлечет за собой снижение потребной мощности для вращения вентилятора. Тогда, чтобы сохранить прежние числа оборотов двигателя, придется в первом контуре снизить температуру газа перед турбиной, а это приведет к уменьшению тяги в первом контуре. Повышение суммарной тяги будет недостаточным, а в некоторых случаях суммарная тяга форсированного двигателя может оказаться меньше суммарной тяги обычного ДТРД. Кроме того, форсирование тяги связано с большими удельными расходами топлива. Все эти обстоятельства ограничивают применение данного способа увеличения тяги. Однако форсирование тяги ДТРД может найти широкое применение при сверхзвуковых скоростях полета.

Используемая литература: "Основы авиации" авторы: Г.А. Никитин, Е.А. Баканов

Скачать реферат: У вас нет доступа к скачиванию файлов с нашего сервера.

Впервые самолет с турбореактивным двигателем (ТРД ) поднялся в воздух в 1939 году. С тех пор устройство двигателей самолетов совершенствовалось, появились различные виды, но принцип работы у всех них примерно одинаковый. Чтобы понять, почему воздушное судно, имеющий столь большую массу, так легко поднимается в воздух, следует узнать, как работает двигатель самолета. ТРД приводит в движение воздушное судно за счет реактивной тяги. В свою очередь, реактивная тяга является силой отдачи струи газа, которая вылетает из сопла. То есть получается, что турбореактивная установка толкает самолет и всех находящихся в салоне людей с помощью газовой струи. Реактивная струя, вылетая из сопла, отталкивается от воздуха и таким образом, приводит в движение воздушное судно.

Устройство турбовентиляторного двигателя

Конструкция

Устройство двигателя самолета достаточно сложное. Рабочая температура в таких установках достигает 1000 и более градусов. Соответственно, все детали, из которых двигатель состоит, изготавливаются из устойчивых к воздействию высоких температур и возгоранию материалов. Из-за сложности устройства существует целая область науки о ТРД.

ТРД состоит из нескольких основных элементов:

  • вентилятор;
  • компрессор;
  • камера сгорания;
  • турбина;
  • сопло.

Перед турбиной установлен вентилятор. С его помощью воздух затягивается в установку извне. В таких установках используются вентиляторы с большим количеством лопастей определенной формы. Размер и форма лопастей обеспечивают максимально эффективную и быструю подачу воздуха в турбину. Изготавливаются они из титана. Помимо основной функции (затягивания воздуха), вентилятор решает еще одну важную задачу: с его помощью осуществляется прокачка воздуха между элементами ТРД и его оболочкой. За счет такой прокачки обеспечивается охлаждение системы и предотвращается разрушение камеры сгорания.

Возле вентилятора расположен компрессор высокой мощности. С его помощью воздух поступает в камеру сгорания под высоким давлением. В камере происходит смешивание воздуха с топливом. Образующаяся смесь поджигается. После возгорания происходит нагрев смеси и всех расположенных рядом элементов установки. Камера сгорания чаще всего изготавливается из керамики. Это объясняется тем, что температура внутри камеры достигает 2000 градусов и более. А керамика характеризуется устойчивостью к воздействию высоких температур. После возгорания смесь поступает в турбину.

Вид самолетного двигателя снаружи

Турбина представляет собой устройство, состоящее из большого количества лопаток. На лопатки оказывает давление поток смеси, приводя тем самым турбину в движение. Турбина вследствие такого вращения заставляет вращаться вал, на котором установлен вентилятор. Получается замкнутая система, которая для функционирования двигателя требует только подачи воздуха и наличия топлива.

Далее смесь поступает в сопло. Это завершающий этап 1 цикла работы двигателя. Здесь формируется реактивная струя. Таков принцип работы двигателя самолета. Вентилятор нагнетает холодный воздух в сопло, предотвращая его разрушение от чрезмерно горячей смеси. Поток холодного воздуха не дает манжете сопла расплавиться.

В двигателях воздушных судов могут быть установлены различные сопла. Наиболее совершенными считаются подвижные. Подвижное сопло способно расширяться и сжиматься, а также регулировать угол, задавая правильное направление реактивной струе. Самолеты с такими двигателями характеризуются отличной маневренностью.

Виды двигателей

Двигатели для самолетов бывают различных типов:

  • классические;
  • турбовинтовые;
  • турбовентиляторные;
  • прямоточные.

Классические установки работают по принципу, описанному выше. Такие двигатели устанавливают на воздушных судах различной модификации. Турбовинтовые функционируют несколько иначе. В них газовая турбина не имеет механической связи с трансмиссией. Эти установки приводят самолет в движение с помощью реактивной тяги лишь частично. Основную часть энергии горячей смеси данный вид установки использует для привода воздушного винта через редуктор. В такой установке вместо одной присутствует 2 турбины. Одна из них приводит компрессор, а вторая – винт. В отличие от классических турбореактивных, винтовые установки более экономичны. Но они не позволяют самолетам развивать высокие скорости. Их устанавливают на малоскоростных воздушных судах. ТРД позволяют развивать гораздо большую скорость во время полета.

Турбовентиляторные двигатели представляют собой комбинированные установки, сочетающие элементы турбореактивных и турбовинтовых двигателей. Они отличаются от классических большим размером лопастей вентилятора. И вентилятор, и винт функционируют на дозвуковых скоростях. Скорость перемещения воздуха понижается за счет наличия специального обтекателя, в который помещен вентилятор. Такие двигатели более экономично расходуют топливо, чем классические. Кроме того, они характеризуются более высоким КПД. Чаще всего их устанавливают на лайнерах и самолетах большой вместительности.

Размер двигателя самолета относительно человеческого роста

Прямоточные воздушно-реактивные установки не предполагают использование подвижных элементов. Воздух втягивается естественным путем благодаря обтекателю, установленному на входном отверстии. После поступления воздуха двигатель работает аналогично классическому.

Некоторые самолеты летают на турбовинтовых двигателях, устройство которых гораздо проще, чем устройство ТРД. Поэтому у многих возникает вопрос: зачем использовать более сложные установки, если можно ограничиться винтовой? Ответ прост: ТРД превосходят винтовые двигатели по мощности. Они мощнее в десятки раз. Соответственно, ТРД выдает гораздо большую тягу. Благодаря этому обеспечивается возможность поднимать в воздух большие самолеты и осуществлять перелеты на высокой скорости.

Вконтакте