Пульсирующий воздушно реактивный двигатель чертежи. Матвеев Николай Иванович. Импульсный реактивный двигатель

Опытно-конструкторское бюро имени Люльки разработало, изготовило и испытало опытный образец пульсирующего резонаторного детонационного двигателя с двухстадийным сжиганием керосиновоздушной смеси. Как сообщает ИТАР-ТАСС, средняя измеренная тяга двигателя составила около ста килограммов, а длительность непрерывной работы ─ более десяти минут. До конца текущего года ОКБ намерено изготовить и испытать полноразмерный пульсирующий детонационный двигатель.

По словам главного конструктора ОКБ имени Люльки Александра Тарасова, в ходе испытаний моделировались режимы работы, характерные для турбореактивного и прямоточного двигателей. Измеренные величины удельной тяги и удельного расхода топлива оказались на 30-50 процентов лучше, чем у обычных воздушно-реактивных двигателей. В ходе экспериментов производилось многократное включение и выключение нового двигателя, а также регулирование тяги.



На основе проведенных исследований, полученных при испытании данных, а также схемно-конструкторского анализа ОКБ имени Люльки намерено предложить разработку целого семейства пульсирующих детонационных авиационных двигателей. В частности, могут быть созданы двигатели с коротким ресурсом работы для беспилотных летательных аппаратов и ракет и самолетные двигатели с крейсерским сверхзвуковым режимом полета.

В перспективе на основе новых технологий могут быть созданы двигатели для ракетно-космических систем и комбинированных силовых установок самолетов, способных выполнять полеты в атмосфере и за ее пределами.

По оценке конструкторского бюро, новые двигатели позволят увеличить тяговооруженность самолетов в 1,5-2 раза. Кроме того, при использовании таких силовых установок дальность полета или масса авиационных средств поражения могут увеличиться на 30-50 процентов. При этом удельный вес новых двигателей будет в 1,5-2 раза меньше аналогичного показателя обычных реактивных силовых установок.

О том, что в России ведутся работы по созданию пульсирующего детонационного двигателя, сообщалось в марте 2011 года. Об этом заявил тогда Илья Федоров, управляющий директор научно-производственного объединения «Сатурн», в состав которого входит ОКБ имени Люльки. О каком именно типе детонационного двигателя шла речь, Федоров не уточнил.

В настоящее время известны три вида пульсирующих двигателей ─ клапанные, бесклапанные и детонационные. Принцип работы этих силовых установок заключается в периодической подаче в камеру сгорания топлива и окислителя, где происходит воспламенение топливной смеси и истечение продуктов сгорания из сопла с образованием реактивной тяги. Отличие от обычных реактивных двигателей заключается в детонационном горении топливной смеси, при котором фронт горения распространяется быстрее скорости звука.

Пульсирующий воздушно-реактивный двигатель был изобретен еще в конце XIX века шведским инженером Мартином Вибергом. Пульсирующий двигатель считается простым и дешевым в изготовлении, однако из-за особенностей горения топлива ─ малонадежным. Впервые новый тип двигателя был использован серийно во время Второй мировой войны на немецких крылатых ракетах Фау-1. На них устанавливался двигатель Argus As-014 компании Argus-Werken.

В настоящее время несколько крупных оборонных фирм мира занимаются исследованиями в области создания высокоэффективных пульсирующих реактивных двигателей. В частности, работы ведут французская компания SNECMA и американские General Electric и Pratt & Whitney. В 2012 году Научно-исследовательская лаборатория ВМС США объявила о намерении разработать спиновый детонационный двигатель, который должен будет заменить на кораблях обычные газотурбинные силовые установки.

Научно-исследовательская лаборатория (NRL) ВМС США намерена разработать ротационный, или спиновый, детонационный двигатель (Rotating Detonation Engine, RDE), который в перспективе сможет заменить на кораблях обычные газотурбинные силовые установки. Как сообщает NRL, новые двигатели позволят военным снизить потребление топлива, одновременно повысив энергетическую отдачу силовых установок.

В настоящее время ВМС США используют 430 газотурбинных двигателей (ГТД) на 129 кораблях. Ежегодно они потребляют топлива на два миллиарда долларов. По оценке NRL, благодаря RDE военные смогут экономить на топливе до 400 миллионов долларов в год. RDE смогут вырабатывать на десять процентов больше энергии, чем обычные ГТД. Прототип RDE уже создан, однако когда такие двигатели начнут поступать на флот, пока неизвестно.

В основу RDE легли наработки NRL, полученные при создании пульсирующего детонационного двигателя (Pulse Detonation Engine, PDE). Работа таких силовых установок основана на устойчивом детонационном горении топливной смеси.

Спиновые детонационные двигатели отличаются от пульсирующих тем, что детонационное горение топливной смеси в них происходит непрерывно ─ фронт горения перемещается в кольцевой камере сгорания, в которой топливная смесь постоянно обновляется.

1

Рассмотрена проблема разработки импульсных детонационных двигателей. Перечислены основные научные центры, ведущие исследования по двигателям нового поколения. Рассмотрены основные направления и тенденции развития конструкции детонационных двигателей. Представлены основные типы таких двигателей: импульсный, импульсный многотрубный, импульсный с высокочастотным резонатором. Показано отличие в способе создания тяги по сравнению с классическим реактивным двигателем, оснащенным соплом Лаваля. Описано понятие тяговой стенки и тягового модуля. Показано, что импульсные детонационные двигатели совершенствуются в направлении повышения частоты следования импульсов, и это направление имеет свое право на жизнь в области легких и дешевых беспилотных летательных аппаратов, а также при разработке различных эжекторных усилителей тяги. Показаны основные сложности принципиального характера в моделировании детонационного турбулентного течения с использованием вычислительных пакетов, основанных на применении дифференциальных моделей турбулентности и осреднения уравнений Навье–Стокса по времени.

детонационный двигатель

импульсный детонационный двигатель

1. Булат П.В., Засухин О.Н., Продан Н.В. История экспериментальных исследований донного давления // Фундаментальные исследования. – 2011. – № 12 (3). – С. 670–674.

2. Булат П.В., Засухин О.Н., Продан Н.В. Колебания донного давления // Фундаментальные исследования. – 2012. – № 3. – С. 204–207.

3. Булат П.В., Засухин О.Н., Продан Н.В.. Особенности применения моделей турбулентности при расчете течений в сверхзвуковых трактах перспективных воздушно-реактивных двигателей // Двигатель. – 2012. – № 1. – С. 20–23.

4. Булат П.В., Засухин О.Н., Усков В.Н. О классификации режимов течения в канале с внезапным расширением // Теплофизика и Аэромеханика. – 2012. – № 2. – С. 209–222.

5. Булат П.В., Продан Н.В. О низкочастотных расходных колебаниях донного давления // Фундаментальные исследования. – 2013. – № 4 (3). – С. 545–549.

6. Ларионов С.Ю., Нечаев Ю.Н., Мохов А.А. Исследование и анализ «холодных» продувок тягового модуля высокочастотного пульсирующего детонационного двигателя // Вестник МАИ. – Т.14. – № 4 – М.: Изд-во МАИ-Принт, 2007. – С. 36–42.

7. Тарасов А.И., Щипаков В.А. Перспективы использования пульсирующих детонационных технологий в турбореактивных двигателя. ОАО «НПО «Сатурн» НТЦ им. А. Люльки, Москва, Россия. Московский авиационный институт (ГТУ). – Москва, Россия. ISSN 1727-7337. Авиационно-космическая техника и технология, 2011. – № 9 (86).

Проекты по детонационному горению в США включены в программу разработок перспективных двигателей IHPTET. В кооперацию входят практически все исследовательские центры, работающие в области двигателестроения. Только в NASA на эти цели выделяется до 130 млн $ в год. Это доказывает актуальность исследований в данном направлении.

Обзор работ в области детонационных двигателей

Рыночная стратегия ведущих мировых производителей направлена не только на разработку новых реактивных детонационных двигателей, но и на модернизацию существующих путем замены в них традиционной камеры сгорания на детонационную. Кроме того, детонационные двигатели могут стать составным элементом комбинированных установок различных типов, например, использоваться в качестве форсажной камеры ТРДД, в качестве подъемных эжекторных двигателей в СВВП (пример на рис. 1 - проект транспортного СВВП фирмы «Боинг»).

В США разработки детонационных двигателей ведут многие научные центры и университеты: ASI, NPS, NRL, APRI, MURI, Stanford, USAF RL, NASA Glenn, DARPA-GE C&RD, Combustion Dynamics Ltd, Defense Research Establishments, Suffield and Valcartier, Uniyersite de Poitiers, University of Texas at Arlington, Uniyersite de Poitiers, McGill University, Pennsylvania State University, Princeton University.

Ведущие позиции по разработке детонационных двигателей занимает специализированный центр Seattle Aerosciences Center (SAC), выкупленный в 2001 г. компанией Pratt and Whitney у фирмы Adroit Systems. Большая часть работ центра финансируется ВВС и NASA из бюджета межведомственной программы Integrated High Payoff Rocket Propulsion Technology Program (IHPRPTP), направленной на создание новых технологий для реактивных двигателей различных типов.

Рис. 1. Патент US 6,793,174 В2 фирмы «Боинг», 2004 г.

В общей сложности, начиная с 1992 г., специалистами центра SAC осуществлено свыше 500 стендовых испытаний экспериментальных образцов. Работы по пульсирующим детонационным двигателям (PDE) с потреблением атмосферного кислорода Центр SAC ведет по заказу ВМС США. Учитывая сложность программы, специалисты ВМС привлекли к ее реализации практически все организации, занимающиеся детонационными двигателями. Кроме компании Pratt and Whitney, в работах принимают участие Исследовательский центр United Technologies Research Center (UTRC) и фирма Boeing Phantom Works.

В настоящее время в нашей стране над этой актуальной проблемой в теоретическом плане работают следующие университеты и институты Российской академии наук (РАН): Институт химической физики РАН (ИХФ), Институт машиноведения РАН, Институт высоких температур РАН (ИВТАН), Новосибирский институт гидродинамики им. Лаврентьева (ИГиЛ), Институт теоретической и прикладной механики им. Христиановича (ИТМП), Физико-технический институт им. Иоффе, Московский государственный университет (МГУ), Московский государственный авиационный институт (МАИ), Новосибирский государственный университет, Чебоксарский государственный университет, Саратовский государственный университет и др.

Направления работ по импульсным детонационным двигателям

Направление № 1 - Классический импульсный детонационный двигатель (ИДД). Камера сгорания типичного реактивного двигателя состоит из форсунок для смешения топлива с окислителем, устройства поджигания топливной смеси и собственно жаровой трубы, в которой идут окислительно-восстановительные реакции (горение). Жаровая труба заканчивается соплом. Как правило, это сопло Лаваля, имеющее сужающуюся часть, минимальное критическое сечение, в котором скорость продуктов сгорания равна местной скорости звука, расширяющуюся часть, в которой статическое давление продуктов сгорания снижается до давления в окружающей среде, насколько это возможно. Очень грубо можно оценить тягу двигателя как площадь критического сечения сопла, умноженную на разность давления в камере сгорания и окружающей среде. Поэтому тяга тем выше, чем выше давление в камере сгорания.

Тяга импульсного детонационного двигателя определяется другими факторами - передачей импульса детонационной волной тяговой стенке. Сопло в этом случае вообще не нужно. Импульсные детонационные двигатели имеют свою нишу - дешевые и одноразовые летательные аппараты. В этой нише они успешно развиваются в направлении повышения частоты следования импульсов.

Классический облик ИДД - цилиндрическая камера сгорания, которая имеет плоскую или специально спрофилированную стенку, именуемую «тяговой стенкой» (рис. 2). Простота устройства ИДД - неоспоримое его достоинство. Как показывает анализ имеющихся публикаций , несмотря на многообразие предлагаемых схем ИДД, всем им свойственно использование в качестве резонансных устройств детонационных труб значительной длины и применение клапанов, обеспечивающих периодическую подачу рабочего тела.

Следует отметить, что ИДД, созданным на базе традиционных детонационных труб, несмотря на высокую термодинамическую эффективность в единичной пульсации, присущи недостатки, характерные для классических пульсирующих воздушно-реактивных двигателей, а именно:

Низкая частота (до 10 Гц) пульсаций, что и определяет относительно невысокий уровень средней тяговой эффективности;

Высокие тепловые и вибрационные нагрузки.

Рис. 2. Принципиальная схема импульсно-детонационного двигателя (ИДД)

Направление № 2 - Многотрубный ИДД. Основной тенденцией при разработках ИДД является переход к многотрубной схеме (рис. 3). В таких двигателях частота работы отдельной трубы остается низкой, но за счет чередования импульсов в разных трубах разработчики надеются получить приемлемые удельные характеристики. Такая схема представляется вполне работоспособной, если решить проблему вибраций и асимметрии тяги, а также проблему донного давления , в частности, возможных низкочастотных колебаний в донной области между трубами.

Рис. 3. Импульсно-детонационный двигатель (ИДД) традиционной схемы с пакетом детонационных труб в качестве резонаторов

Направление № 3 - ИДД с высокочастотным резонатором. Существует и альтернативное направление - широко разрекламированная в последнее время схема с тяговыми модулями (рис. 4), имеющими специально спрофилированный высокочастотный резонатор. Работы в данном направлении ведутся в НТЦ им. А. Люльки и в МАИ . Схема отличается отсутствием каких-либо механических клапанов и запальных устройств прерывистого действия.

Тяговый модуль ИДД предлагаемой схемы состоит из реактора и резонатора. Реактор служит для подготовки топливно-воздушной смеси к детонационному сгоранию, разлагая молекулы горючей смеси на химически активные составляющие. Принципиальная схема одного цикла работы такого двигателя наглядно представлена на рис. 5.

Взаимодействуя с донной поверхностью резонатора как с препятствием, детонационная волна в процессе соударения передает ей импульс от сил избыточного давления.

ИДД с высокочастотными резонаторами имеют право на успех. В частности, они могут претендовать на модернизацию форсажных камер и доработку простых ТРД, предназначенных опять же для дешевых БПЛА. В качестве примера можно привести попытки МАИ и ЦИАМ модернизировать таким образом ТРД МД-120 за счет замены камеры сгорания реактором активации топливной смеси и установкой за турбиной тяговых модулей с высокочастотными резонаторами. Пока работоспособную конструкцию создать не удалось, т.к. при профилировании резонаторов авторами используется линейная теория волн сжатия, т.е. расчеты ведутся в акустическом приближении. Динамика же детонационных волн и волн сжатия описывается совсем другим математическим аппаратом. Использование стандартных численных пакетов для расчета высокочастотных резонаторов имеет ограничение принципиального характера . Все современные модели турбулентности основаны на осреднении уравнений Навье-Стокса (базовые уравнения газовой динамики) по времени. Кроме того, вводится предположение Буссинеска, что тензор напряжения турбулентного трения пропорционален градиенту скорости. Оба предположения не выполняются в турбулентных потоках с ударными волнами, если характерные частоты сопоставимы с частотой турбулентной пульсации. К сожалению, мы имеем дело именно с таким случаем, поэтому тут необходимо либо построение модели более высокого уровня, либо прямое численное моделирование на основе полных уравнений Навье-Стокса без использования моделей турбулентности (задача, неподъемная на современном этапе).

Рис. 4. Схема ИДД с высокочастотным резонатором

Рис. 5. Схема ИДД с высокочастотным резонатором: СЗС - сверхзвуковая струя; УВ - ударная волна; Ф - фокус резонатора; ДВ - детонационная волна; ВР - волна разрежения; ОУВ - отраженная ударная волна

ИДД совершенствуются в направлении повышения частоты следования импульсов. Это направление имеет свое право на жизнь в области легких и дешевых беспилотных летательных аппаратов, а также при разработке различных эжекторных усилителей тяги.

Рецензенты:

Усков В.Н., д.т.н., профессор кафедры гидроаэромеханики Санкт-Петербургского государственного университета, математико-механический факультет, г. Санкт-Петербург;

Емельянов В.Н., д.т.н., профессор, заведующий кафедрой плазмогазодинамики и теплотехники, БГТУ «ВОЕНМЕХ» им. Д.Ф. Устинова, г. Санкт-Петербург.

Работа поступила в редакцию 14.10.2013.

Библиографическая ссылка

Булат П.В., Продан Н.В. ОБЗОР ПРОЕКТОВ ДЕТОНАЦИОННЫХ ДВИГАТЕЛЕЙ. ИМПУЛЬСНЫЕ ДВИГАТЕЛИ // Фундаментальные исследования. – 2013. – № 10-8. – С. 1667-1671;
URL: http://fundamental-research.ru/ru/article/view?id=32641 (дата обращения: 05.03.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Причиной написания статьи стало огромное внимание к маленькому двигателю, который появился совсем недавно в ассортименте Паркфлаера. Но мало, кто задумывался, что у этого двигателя более чем 150-и летняя история:

Многие полагают, что пульсирующий воздушно-реактивный двигатель (ПуВРД) пявился в Германии в период Второй мировой войны, и применялся на самолетах-снарядах V-1 (Фау-1), но это не совсем так. Конечно, немецкая крылатая ракета стала единственным серийным летательным аппаратом с ПуВРД, но сам двигатель был изобретен на 80 (!) лет раньше и совсем не в Германии.
Патенты на пульсирующий воздушно-реактивный двигатель были получены (независимо друг от друга) в 60-х годах XIX века Шарлем де Луврье (Франция) и Николаем Афанасьевичем Телешовым (Россия).

Пульсирующий воздушно-реактивный двигатель (англ. Pulse jet), как следует из его названия, работает в режиме пульсации, его тяга развивается не непрерывно, как у ПВРД (прямоточный воздушно реактивный двигатель) или ТРД (турбореактивный двигатель), а в виде серии импульсов.

Воздух, проходя через конфузорную часть, увеличивает свою скорость, вследствие чего давление на этом участке падает. Под действием пониженного давления из трубки 8 начинает подсасываться топливо, которое затем подхватывается струей воздуха, рассеивается ею на более мелкие частички. Образовавшаяся смесь, проходя диффузорную часть головки, несколько поджимается за счет уменьшения скорости движения и в окончательно перемешанном виде через входные отверстия клапанной решетки поступает в камеру сгорания.
Первоначально топливно-воздушная смесь, заполнившая объем камеры сгорания, воспламеняется с помощью свечи, в крайнем случае, с помощью открытого пламени, подводимого к обрезу выхлопной трубы. Когда двигатель выйдет на рабочий режим, вновь поступающая в камеру сгорания топливно-воздушиая смесь воспламеняется не от постороннего источника, а от горячих газов. Таким образом, свеча необходима лишь на этапе запуска двигателя, в качестве катализатора.
Образовавшиеся в процессе сгорания топливно-воздушной смеси газы резко повышают, и пластинчатые клапаны решетки закрываются, а газы устремляются в открытую часть камеры сгорания в сторону выхлопной трубы. Таким образом, в трубе двигателя, в процессе его работы происходит колебание газового столба: в период повышенного давления в камере сгорания газы движутся в сторону выхода, в период пониженного давления — в сторону камеры сгорания. И чем интенсивнее колебания газового столба в рабочей трубе, тем большую тягу развивает двигатель за один цикл.

ПуВРД имеет следующие основные элементы : входной участок а — в , заканчивающийся клапанной решеткой, состоящей из диска 6 и клапанов 7 ; камеру сгорания 2 , участок в — г ; реактивное сопло 3 , участок г — д , выхлопную трубу 4 , участок д — е .
Входной канал головки имеет конфузорный а — б и диффузорный б — в участки. В начале диффузорного участка устанавливается топливная трубка 8 с регулировочной иглой 5 .

И снова вернемся к истории. Немецкие конструкторы, ещё накануне Второй мировой войны проводившие широкий поиск альтернатив поршневым двигателям, не обошли вниманием и это изобретение, долгое время остававшееся невостребованным. Наиболее известным летательным аппаратом как я уже говорил, явился немецкий самолёт-снаряд Фау-1.

Главный конструктор Фау-1 Роберт Люссер выбрал для него ПуВРД главным образом, из-за простоты конструкции и, как следствие, малых трудозатрат на изготовление, что было оправдано при массовом производстве одноразовых снарядов, серийно выпущенных за неполный год (с июня 1944 по март 1945) в количестве свыше 10 000 единиц.

Кроме беспилотных крылатых ракет, в Германии, так же разрабатывалась пилотируемая версия самолета-снаряда- Фау-4 (V-4). По задумке инженеров, пилот должен был навести на цель свой одноразовый пепелац, покинуть кабину и спастись, используя парашют.

Правда, о том, способен ли человек покинуть кабину пилота на скорости 800км/час, да еще имея у себя за головой воздухозаборник двигателя- скромно умалчивалось.

Изучением и созданием ПуВРД занимались не только в фашисткой Германии. В 1944 году для ознакомления, в СССР Англия поставила покореженые куски Фау-1. Мы, в свою очередь "слепили из того, что было", создав при этом, практически новый двигатель ПуВРД Д-3, ииии.....
.....и водрузили его на Пе-2:

Но не с целью создания первого отечественного реактивного бомбардировщика, а для испытаний самого двигателя, который потом применялся для производства советских крылатых ракет 10-Х:


Но на этом не ограничивается применение пульсирующих двигателей в советской авиации. В 1946 году была реализована идея оборудовать истрибитель ПуВРД-шками:

Да. Всё просто. На истрибитель Ла-9, под крыло установили два пульсирующих движка. Конечно на практике все оказалось несколько сложнее: на самолете изменили систему питания топливом, сняли бронеспинку, и две пушки НС-23, усилив конструкцию планера. Прирост скорости составил 70 км/ч. Летчик-испытатель И.М.Дзюба отмечал сильные вибрации и шум при включении ПуВРД. Подвеска ПуВРД ухудшала маневренные и взлетно-посадочные характеристики самолета. Запуск двигателей был ненадежным, резко снижалась продолжительность полета, усложнялась эксплуатация. Проведенные работы принесли пользу лишь при отработке прямоточных двигателей, предназначавшихся для установки на крылатые ракеты.
Конечно, в боях эти самолеты участия не принимали, но они достаточно активно использовались на воздушных парадах, где неизменно своим грохотом производили сильное впечатление на публику. По свидетельству очевидцев в разных парадах участвовало от трех до девяти машин с ПуВРД.
Кульминацией испытаний ПуВРД стал пролет девяти Ла-9РД летом 1947 г. на воздушном параде в Тушино. Пилотировали самолеты летчики-испытатели ГК НИИ ВВС В.И.Алексеенко. А.Г.Кубышкин. Л.М.Кувшинов, А.П.Манучаров. В.Г.Масич. Г.А.Седов, П.М.Стефановский, А.Г.Терентьев и В.П.Трофимов.

Надо сказать о том, что американцы, тоже, не отставали в этом направлении. Они прекрасно понимали, что реактивная авиация, даже находясь на стадии младеньчества, уже превосходит свои поршневые аналоги. Но поршевых самолетов- очень много. Куда их девать?!.... И в 1946 году под крылья одного из самых совершенных истребителей своего времени, Мустанг P-51D, подвесили два двигателя Ford PJ-31-1.

Однако, результат оказался, прямо скажем,- не очень. С включенными ПуВРД скорость самолета заметно увеличивалась, но топливо они поглащали- о-го-го, так что долго летать с хорошей скоростью не получалось, и в выключенном состоянии реактивные моторы превращали истребитель небеный тихоход. Промучившись целый год американцы, все-таки, пришли к выводу, что получить задешево истребитель, способный хотя бы как-то конкурировать с новомодными реактивными не получится.

В итоге про ПуВРД забыли.....
Но не на долго! Этот тип двигателей хорошо проявил себя в качестве авиамодельного! А почему бы нет?! Дешевый в производстве и обслуживании, имеет простое устройство и минимум настроек, не требует дорогостоящего горючего, да и вообще- его и покупать не обязательно- можно и самостоятельно построить, имея минимум ресурсов.

Это самый маленький ПуВРД в мире. Создан в 1952 г.
Ну согласитесь, кто не мечтал о реактвном самолете с хомячком пилотом и ракетами?!))))
Теперь ваша мечта стала реальостью! Да и не обязательно покупать двигаль- его можно построить:


P.S. данная статья основана на материалах, опубликованных в сети Интернет...
The end.

В России испытали пульсирующий детонационный двигатель

Опытно-конструкторское бюро имени Люльки разработало, изготовило и испытало опытный образец пульсирующего резонаторного детонационного двигателя с двухстадийным сжиганием керосиновоздушной смеси. Как сообщает ИТАР-ТАСС , средняя измеренная тяга двигателя составила около ста килограммов, а длительность непрерывной работы ─ более десяти минут. До конца текущего года ОКБ намерено изготовить и испытать полноразмерный пульсирующий детонационный двигатель.

По словам главного конструктора ОКБ имени Люльки Александра Тарасова, в ходе испытаний моделировались режимы работы, характерные для турбореактивного и прямоточного двигателей. Измеренные величины удельной тяги и удельного расхода топлива оказались на 30-50 процентов лучше, чем у обычных воздушно-реактивных двигателей. В ходе экспериментов производилось многократное включение и выключение нового двигателя, а также регулирование тяги.

На основе проведенных исследований, полученных при испытании данных, а также схемно-конструкторского анализа ОКБ имени Люльки намерено предложить разработку целого семейства пульсирующих детонационных авиационных двигателей. В частности, могут быть созданы двигатели с коротким ресурсом работы для беспилотных летательных аппаратов и ракет и самолетные двигатели с крейсерским сверхзвуковым режимом полета.

В перспективе на основе новых технологий могут быть созданы двигатели для ракетно-космических систем и комбинированных силовых установок самолетов, способных выполнять полеты в атмосфере и за ее пределами.

По оценке конструкторского бюро, новые двигатели позволят увеличить тяговооруженность самолетов в 1,5-2 раза. Кроме того, при использовании таких силовых установок дальность полета или масса авиационных средств поражения могут увеличиться на 30-50 процентов. При этом удельный вес новых двигателей будет в 1,5-2 раза меньше аналогичного показателя обычных реактивных силовых установок.

О том, что в России ведутся работы по созданию пульсирующего детонационного двигателя, сообщалось в марте 2011 года. Об этом заявил тогда Илья Федоров, управляющий директор научно-производственного объединения «Сатурн», в состав которого входит ОКБ имени Люльки. О каком именно типа детонационного двигателя шла речь, Федоров не уточнил.

В настоящее время известны три вида пульсирующих двигателей ─ клапанные, бесклапанные и детонационные. Принцип работы этих силовых установок заключается в периодической подаче в камеру сгорания топлива и окислителя, где происходит воспламенение топливной смеси и истечение продуктов сгорания из сопла с образованием реактивной тяги. Отличие от обычных реактивных двигателей заключается в детонационном горении топливной смеси, при котором фронт горения распространяется быстрее скорости звука.

Пульсирующий воздушно-реактивный двигатель был изобретен еще в конце XIX века шведским инженером Мартином Вибергом. Пульсирующий двигатель считается простым и дешевым в изготовлении, однако из-за особенностей горения топлива ─ малонадежным. Впервые новый тип двигателя был использован серийно во время Второй мировой войны на немецких крылатых ракетах Фау-1. На них устанавливался двигатель Argus As-014 компании Argus-Werken.

В настоящее время несколько крупных оборонных фирм мира занимаются исследованиями в области создания высокоэффективных пульсирующих реактивных двигателей. В частности, работы ведут французская компания SNECMA и американские General Electric и Pratt & Whitney. В 2012 году Научно-исследовательская лаборатория ВМС США объявила о намерении разработать спиновый детонационный двигатель, который должен будет заменить на кораблях обычные газотурбинные силовые установки.

Спиновые детонационные двигатели отличаются от пульсирующих тем, что детонационное горение топливной смеси в них происходит непрерывно ─ фронт горения перемещается в кольцевой камере сгорания, в которой топливная смесь постоянно обновляется.

Схема ПуВРД представлена на рис.3.16.

Рис.3.16.Схема пульсирующего воздушно-реактивного двигателя:

    диффузор,2- клапанное устройство; 3- форсунки; 4 – камера сгорания;5 – сопло; 6- выхлопная труба.

Топливо впрыскивается через форсунки 3, образуя топливную смесь с воздухом, сжатым в диффузоре 1.

Воспламенение топливной смеси производится в камере сгорания 4, от электрической свечи. Горение топливной смеси, впрыскиваемой в определенных количествах, длится сотые доли секунды. Как только давления в камере сгорания становится больше давления воздуха перед клапанным устройством, происходит закрытие пластинчатых клапанов. При достаточно большом объеме сопла 5 и выхлопной трубы 6, установленной специально для увеличения объема, создается подпор газов, находящихся в камере сгорания. За время сгорания топлива изменение количества газов в объеме за камерой сгорания пренебрежимо мало, поэтому считают, что горение идет при постоянном объеме.

После сгорания порции топлива давление в камере сгорания понижается так, что клапаны 2 открываются и впускают новую порцию воздуха из диффузора.

На рис.3.17. представлен идеальный термодинамический цикл пульсирующего ВРД.

П
роцессы цикла:

1-2 – сжатие воздуха в диффузоре;

2-3 – изохорный подвод теплоты в камере сгорания;

3-4 – адиабатное расширение газов в сопле;

4-1 – изобарное охлаждение продуктов сгорания в атмосфере при с отводом теплоты .

Рис.3.17. Цикл ПуВРД.

Как следует из рис.3.17 , цикл ПуВРД не отличается от цикла ГТУ с изохорным подводом теплоты. Тогда по аналогии с (3.8.) можно сразу записать формулу для термического КПД ПуВРД

(3.20.)

Степень добавочного повышения давления в камере сгорания;

– степень повышения давления в диффузоре.

Таким образом, у пульсирующего ВРД термический КПД больше, чем у ПВРД за счет большей среднеинтегральной температуры теплоподвода.

Усложнение конструкции ПуВРД повлекло за собой увеличение его массы по сравнению с ПВРД.

3.5.3. Компрессорные турбореактивные двигатели (трд)

Эти двигатели получили наибольшее распространение в авиации. В ТРД происходит двухступенчатое сжатие воздуха (в диффузоре и в компрессоре) и двухступенчатое расширение продуктов сгорания топливной смеси (в газовой турбине и в сопле).

Принципиальная схема ТРД представлена на рис 3.18.

Рис.3.18. Принципиальная схема ТРД и характер изменения параметров рабочего тела в газо-воздушном тракте:

1-диффузор;2-осевой компрессор;3- камера сгорания; 4- газовая турбина; 5- сопло.

Давления набегающего потока воздуха сначала повышается в диффузоре 1, а затем в компрессоре 2. Привод компрессора осуществляется от газовой турбины 4. Топливо подается в камеру сгорания 3, где вместе с воздухом образует топливную смесь и сгорает при постоянном давлении. Продукты сгорания сначала расширяются на лопатках газовой турбины 4, а затем в сопле. Истечение газов из сопла с большей скоростью создает силу тяги, движущую самолет.

Идеальный термодинамический цикл ТРД аналогичен циклу ПВРД, но дополняется процессами в компрессоре и турбине (рис.3.19).

Рис.3.19. Идеальный цикл ТРД в P - V диаграмме

Процессы цикла:

1-2 – адиабатное сжатие воздуха в диффузоре;

2-3 - адиабатное сжатие воздуха в компрессоре;

3-4 – изобарный подвод теплоты от сгорания топливной смеси в камере сгорания;

4-5 – адиабатное расширение продуктов сгорания на лопатках турбины;

5-6 – адиабатное расширение продуктов сгорания в сопле;

6-1 – охлаждение продуктов сгорания в атмосфере при постоянном давлении с отдачей теплоты .

Термический КПД определяется по формуле (3.19):

(3.21.)

– результирующая степень повышения давления воздуха в диффузоре и компрессоре.

Благодаря более высокой, чем у ПВРД степени сжатия ТРД имеет более высокий термический КПД. Без каких-либо стартовых ускорителей ТРД развивает необходимую силу тяги уже на старте.