Повышение энергоэффективности и энергосбережения синхронных двигателей. Международные стандарты энергоэффективности электродвигателей. Преимущества для покупателя и окружающей среды

По всем миру сегодня шагает экономический кризис. Одной из его причин является кризис энергетический. Поэтому сегодня очень остро встает вопрос энергосбережения. Особенно эта тема актуальна для России и Украины, где затраты электроэнергии на единицу продукции в 5 раз выше, чем в развитых европейских странах. Уменьшение потребления электроэнергии предприятиями топливно-энергетического комплекса Украины и России основная задача науки, электротехнической и электронной промышленности этих стран. Более 60% используемой электроэнергии на предприятиях приходится на электропривод. Если учесть, что КПД его составляет не более 69%, то только используя энергосберегающие двигатели можно экономить более 120 ГВт/ч электроэнергии в год, что составит более 240 млн. рублей со 100 тыс. электродвигателей. Если добавит сюда еще экономию уменьшения установленной мощности, то получим более 10 млрд. рублей.

Если пересчитать эти цифры в экономию топлива то экономия получается 360-430 млн. тонн условного топлива в год. Такая цифра соответствует 30% всей внутренней потребленной энергии в стране. Если же добавить сюда экономию электроэнергии за счет применения частотно-регулируемого привода, то это число вырастает до 40%. В России уже подписан приказ о снижение энергоемкости к 2020 году на 40 %.

С сентября 2008 г в Европе был принят стандарт IEC 60034-30, где все двигатели делятся на 4 класса энергоэффективности:

  • стандартный (ie1);
  • высокий (ie2);
  • высший, PREMIUM (ie3);
  • сверхвысокий, Supper-Premium (ie4).

Сегодня все крупные европейские производители приступили к выпуску энергоэффективных двигателей. Более того, все американские производители заменяют двигатели «высокой» энергоэффективности, на двигатели «высшей», PREMIUM энергоэффективности.

  • Разработкой энергоэффективных серии двигателей общего применения занимаются и в наших странах. Перед производителями стоит три задачи повышения энергоэффективности;
  • Разработка и освоение новых энергоэффективнных моделей низковольтных асинхронных двигателей, соответствующих мировому уровню развития электротехнической и машиностроительной отраслей для применения на внутреннем и международном рынках;
  • Увеличение значений КПД вновь созданных энергоэффективных двигателей согласно стандарту энергоэффективности IEC 60034-30, при том, что увеличение расхода материала, применяемого в двигателях класса ie2 не более 10 процентов;
  • Должна быть достигнута экономия активных материалов, соответствующая сбережению 10 кВт мощности на 1 кг обмоточной меди. В результате использования энергоэффективных моделей электродвигателей, уменьшается количество штамповой оснастки на 10-15 %;

Освоение и внедрение электродвигателей высокой эффективности устраняет проблему необходимости увеличения установленной мощности электрооборудования и снижения выбросов вредных веществ в атмосферу. Кроме того снижение величины шума и вибрации, увеличение надежности всего электропривода является неоспоримым аргументом в пользу применения энергоэффективных асинхронных электродвигателей;

Описание энергоэффективных асинхронных двигателей серии 7А

Асинхронные короткозамкнутые двигатели серии 7А (7AVE) относятся к трехфазным асинхронным электродвигателям, общепромышленной серии с короткозамкнутым ротором. Эти двигатели уже адаптированы для использования в схемах частотно-регулируемого электропривода. Они имеют КПД на 2-4% выше чем у аналогов, произведенных в России (EFFI). Выпускаются со стандартным рядом оси вращения: от 80 до 355 мм, рассчитаны на мощности от 1 до 500 кВт. Промышленность освоила двигатели со стандартной частотой вращения: 1000, 1500, 3000 об/мин и напряжения: 220/380, 380/660. Двигатели выполнены со степенью защиты соответствующей IP54 и изоляцие класса F. Допустимый перегрев соответствует классу B.

Преимущества применения асинхронных двигателей серии 7А

К преимуществам применения асинхронных двигателей серии 7А относится их высокая экономичность. Экономия электроэнергии при установленной мощности P уст.= 10 000 кВт на экономии энергии можно экономить до 700 тыс.дол/год. Другим преимуществом таких двигателей является их высокая надежность и срок службы, кроме того, у них ниже уровень шума примерно в 2-3 раза по отношению к двигателям предыдущих серий. Они позволяют производить большее число включений-выключений и более ремонтопригодные. Двигатели могут работать при колебаниях сети до 10 % по напряжению.

Особенности конструкции

В электродвигателях серии 7А используется обмотка нового вида, которую можно намотать на обмоточном оборудовании старого поколения. При изготовлении двигателей этой серии применяются новые пропиточные лаки, обеспечивающие более высокую цементацию и высокую теплопроводность. Значительно повышена эффективность использования магнитных материалов. В течение 2009 г. освоены габариты 160 и 180, а в течение 2010-2011 гг. были освоены габариты 280, 132, 200, 225, 250, 112, 315, 355 мм.

Повысить мощность и существенно снизить энергопотребление сгоревших и новых асинхронных двигателей позволяет уникальная технология модернизации с применением совмещенных обмоток типа «Славянка». Сегодня ее успешно внедряют на нескольких крупных промышленных предприятиях. Такая модернизация позволяет повысить на 10-20% пусковые и минимальные моменты, понизить на 10-20% пусковой ток или повысить мощность электродвигателя на 10-15%, стабилизировать КПД близким к номинальному в широком диапазоне нагрузок, понизить ток холостого хода, снизить в 2,7-3 раза потерь в стали, уровень электромагнитных шумов и вибраций, повысить надёжность и увеличить межремонтный срок эксплуатации в 1,5 — 2 раза.

В России на долю асинхронных двигателей, по разным оценкам, приходится от 47 до 53% потребления всей вырабатываемой электроэнергии, в промышленности - в среднем 60%, в системах холодного водоснабжения - до 80%. Они осуществляют практически все технологические процессы, связанные с движением и охватывают все сферы жизнедеятельности человека. В каждой квартире можно найти асинхронных двигателей больше, чем жильцов. Ранее, поскольку задачи экономии энергоресурсов не было, при проектировании оборудования стремились «подстраховаться», и использовали двигатели с мощностью, превышающей расчетную. Экономия электроэнергии в проектировании отходила на второй план, и такое понятие как энергоэффективность не было столь актуальным. Энергоэффективные двигатели российская промышленность не проектировала и не выпускала. Переход к рыночной экономике резко изменил ситуацию. Сегодня сэкономить единицу энергетических ресурсов, например, 1 т топлива в условном исчислении, вдвое дешевле, чем её добыть.

Энергоэффективные двигатели (ЭД) — это асинхронные ЭД с короткозамкнутым ротором, в которых за счет увеличения массы активных материалов, их качества, а также за счет специальных приемов проектирования удалось поднять на 1-2% (мощные двигатели) или на 4-5% (небольшие двигатели) номинальный КПД при некотором увеличении цены двигателя.

С появлением двигателей с совмещенными обмотками «Славянка» по запатентованной схеме стало возможно существенно улучшить параметры двигателей без увеличения цены. За счет улучшенной механической характеристики и более высоких энергетических показателей, стало возможным экономить до 15% потребления энергии при той же полезной работе и создавать регулируемый привод с уникальными характеристиками, не имеющий аналогов в мире.

В отличие от стандартных, ЭД с совмещенными обмотками обладают высокой кратностью моментов, имеют КПД и коэффициент мощности близкий к номинальному в широком диапазоне нагрузок. Это позволяет повысить среднюю нагрузку на двигатель до 0,8 и повысить эксплуатационные характеристики обслуживаемого приводом оборудования.

По сравнению с известными методами повышения энергоэффективности асинхронного привода новизна технологии, применяемой петербуржцами, заключается в изменении основополагающего принципа конструкции классических обмоток двигателя. Научная новизна - в том, что сформулированы совершенно новые принципы конструирования обмоток двигателей, выбора оптимальных соотношений чисел пазов роторов и стартора. На их основе разработаны промышленные конструкции и схемы однослойных и двухслойных совмещенных обмоток, как для ручной, так и для автоматической укладки обмоток на стандартном оборудовании. На технические решения получен ряд патентов РФ.

Сущность разработки в том, что в зависимости от схемы подключения трёхфазной нагрузки к трёхфазной сети (звезда или треугольник) можно получить две системы токов, образующий между векторами угол в 30 электрических градусов. Соответственно, к трёхфазной сети можно подключить электродвигатель, имеющий не трёхфазную обмотку, а шестифазную. При этом часть обмотки должна быть включена в звезду, а часть в треугольник и результирующие вектора полюсов одноименных фаз звезды и треугольника должны образовывать между собой угол в 30 электрических градусов. Совмещение двух схем в одной обмотке позволяет улучшить форму поля в рабочем зазоре двигателя и как следствие существенно улучшить основные характеристики двигателя.

По сравнению с известными, частотно-регулируемый привод может быть выполнен на базе новых двигателей с совмещенными обмотками с повышенной частотой питающего напряжения. Это достигается за счёт меньших потерь в стали магнитопровода двигателя. В результате себестоимость такого привода получается существенно ниже, чем при использовании стандартных двигателей, в частности, значительно снижаются шумность и вибрации.

Применение данной технологии при ремонтах асинхронных двигателей позволяет за счет экономии электроэнергии окупить затраты в течение 6-8 месяцев. За последний год только Научно-производственное объединение «Санкт-Петербургская электротехническая компания» модернизировала несколько десятков сгоревших и новых асинхронных двигателей путем перемотки обмоток статора на ряде крупных предприятий Санкт-Петербурга в сфере хлебопекарной, табачной промышленностях, заводах стройматериалов и многих других. И это направление успешно развивается. Сегодня Научно-производственное объединение «Санкт-Петербургская электротехническая компания» ищет потенциальных партнеров в регионах, способных организовать совместно с петербуржцами бизнес по модернизации асинхронных электродвигателей в своей области.

Подготовила Мария Алисова.

Справка

Николай Яловега — основоположник технологии — профессор, доктор технических Наук. Оформлен патент в США в 1996 году. На сегодняшний день срок действия истек.

Дмитрий Дуюнов — разработчик методики расчета схем укладки совмещенных обмоток двигателя. Оформлен ряд патентов.

Рубрика: Экономия электрической энергии При потреблении .
Классификация технологии: Организационный .
Статус рассмотрения проекта Координационным Советом: Не рассматривался .
Объекты внедрения: Промышленность , Прочее , Насосные станции , Котельные, РТС, КТС, ТЭЦ , Тепловые сети, в т.ч. системы ГВС .
Эффект от внедрения:
- для объекта : экономия электроэнергии, повышение надежности и долговечности работы оборудования, снижение эксплуатационных затрат;
- для муниципального образования : высвобождение дополнительной мощности.

На предприятиях должны планомерно проводиться работы по модернизации и замене морально устаревшего оборудования, в частности, по замене неэкономичных электродвигателей на электродвигатели новых серий, отвечающих современным требованиям энергоэффективности.

Для принятия решения о замене оборудования необходимо провести обследование технического состояния электродвигателей механизмов, проанализировать режимы работы, реальные загрузки и условия эксплуатации электродвигателей, а также разработать рекомендации по совершенствованию методов их эксплуатации и повышению эксплуатационной надежности.

Необходимо также оценить возможность и целесообразность применения регулируемых электроприводов для конкретных механизмов.

Желательно принять участие в приемке на заводе-изготовителе новых электродвигателей (согласно разработанному проекту), а также провести экспериментальное исследование их характеристик на месте установки.

Задача выбора электродвигателя (постоянного тока, асинхронного, синхронного) при работе с длительной постоянной нагрузкой относительно проста - рекомендуется применять синхронные двигатели. Это объясняется тем, что современный синхронный двигатель пускается в ход также быстро, как и асинхронный, а его габариты меньше и работа экономичнее, чем асинхронного двигателя той же мощности (у синхронного двигателя больше максимальный момент Mmax на валу и выше коэффициент мощности cosφ ).

При этом у асинхронных двигателей последнего поколения с помощью специальных устройств управления можно достаточно эффективно регулировать скорость вращения, осуществлять реверс с необходимым моментом для работы электропривода.

При выборе вида двигателя привода, который должен работать в условиях регулируемой частоты вращения реверса, больших изменений нагрузки, частых пусков, необходимо сопоставить условия работы электропривода с особенностями механических характеристик различных видов электродвигателей.

Наиболее надежным, экономичным и простым в эксплуатации при частых пусках и непостоянной нагрузке является асинхронный двигатель с короткозамкнутым ротором. Если невозможно применить коротко-замкнутый асинхронный двигатель, например, при больших мощностях, устанавливается асинхронный двигатель с фазным ротором.

Из-за наличия коллекторно-щеточного узла двигатель постоянного тока сложнее по конструкции и выше по стоимости, чем двигатель переменного тока, требует более тщательного ухода в эксплуатации и изнашивается быстрее. Однако, иногда, предпочтение отдается двигателю постоянного тока, который позволяет простыми средствами изменить частоту вращения электропривода в широком диапазоне.

Тип двигателя (его конструкцию) выбирают в зависимости от условий окружающей среды. При наличии взрывоопасной атмосферы необходимо обеспечить ее защиту от возможных искрообразований в двигателе. Непосредственно сами двигатели должны быть защищены от попадания в них пыли, влаги, химических веществ из окружающей среды.

Очень часто возникает необходимость в регулировании скорости вращения ротора двигателя.

Существует два надежных метода (но существенно несовершенных) для регулирования частоты вращения двигателя.

  • переключение числа пар полюсов обмотки статора;
  • включение резисторов в цепи якорных обмоток ротора.

Первый метод обеспечивает лишь дискретное (ступенчатое) регулирование и практически применяется, в основном, для маломощных приводов, а второй рационален лишь при узких пределах регулирования при постоянстве момента на валу двигателя.

Благодаря появлению в последнее время мощных полупроводниковых приборов положение в этой области существенно изменилось. Современные электронные преобразователи позволяют изменять частоту переменного тока в широком диапазоне, что дает возможность плавно регулировать скорость вращающегося магнитного поля, а, следовательно, эффективно регулировать частоту вращения синхронного и асинхронного двигателей.

Электродвигатель с оптимально выбранной мощностью для привода должен обеспечивать:

  • надежность в работе;
  • экономичность в эксплуатации;
  • возможность работоспособного состояния в различных условиях.

Установка электродвигателя меньшей мощности, чем это необходимо по условиям работы привода, снижает производительность электропривода и делает его работу ненадежной. При этом сам электродвигатель в подобных условиях может быть поврежден.

Установка двигателя завышенной мощности вызывает излишние потери энергии при работе электрической машины, обуславливает дополнительные капитальные вложения, увеличение массы и габаритов двигателя.

Двигатель должен нормально работать при возможных временных перегрузках и развивать пусковой момент на валу тот, который требуется для нормального функционирования исполнительного механизма. Во время работы двигатель не должен нагреваться до предельно допустимой температуры , в крайнем случае, на очень непродолжительное время. Поэтому в большинстве случаев мощность двигателя выбирается на основании условий нагревания до предельно допустимой температуры (так называемый выбор мощности по нагреву).

Затем осуществляется проверка соответствия перегрузочной способности двигателя условиям пуска машины и временным перегрузкам. Иногда, при большой кратковременной перегрузке, приходится выбирать двигатель, исходя из требуемой максимальной мощности. В подобных условиях максимальная мощность двигателя длительное время, как правило, не используется.

Для привода с продолжительным режимом работы при постоянной или незначительно меняющейся нагрузке мощность двигателя должна быть равна мощности нагрузки, а проверки на перегрев и перегрузку во время работы электропривода не нужны (это объясняется изначально определенными условиями работы электродвигателя). Однако необходимо проверить, достаточен ли пусковой момент на валу двигателя для пусковых условий данной электрической машины.

Статьи на данную тему:

Для того чтобы добавить описание энергосберегающей технологии в Каталог, заполните опросник и вышлите его на c пометкой «в Каталог» .

В энергосберегающих двигателях за счет увеличения массы активных материалов (железа и меди) повышены номинальные значения КПД и cosj. Энергосберегающие двигатели используются, например, в США, и дают эффект при постоянной нагрузке. Целесообразность применения энергосберегающих двигателей должна оцениваться с учетом дополнительных затрат, поскольку небольшое (до 5%) повышение номинальных КПД и cosj достигается за счет увеличения массы железа на 30-35%, меди на 20-25%, алюминия на 10-15%, т.е. удорожания двигателя на 30-40%.

Ориентировочные зависимости КПД (h) и соs j от номинальной мощности для обычных и энергосберегающих двигателей фирмы Гоулд (США) приведены на рисунке.

Повышение КПД энергосберегающих электродвигателей достигается следующими изменениями в конструкции:

· удлиняются сердечники, собираемые из отдельных пластин электротехнической стали с малыми потерями. Такие сердечники уменьшают магнитную индукцию, т.е. потери в стали.

· уменьшаются потери в меди за счет максимального использования пазов и использования проводников повышенного сечения в статоре и роторе.

· добавочные потери сводятся к минимуму за счет тщательного выбора числа и геометрии зубцов и пазов.

· выделяется при работе меньше тепла, что позволяет уменьшить мощность и размеры охлаждающего вентилятора, что приводит к уменьшению вентиляторных потерь и, следовательно, уменьшению общих потерь мощности.

Электродвигатели с повышенным КПД обеспечивают уменьшение расходов на электроэнергию за счет сокращения потерь в электродвигателе.

Проведенные испытания трех «энергосберегающих» электродвигателей показали, что при полной нагрузке полученная экономия составила: 3,3% для электродвигателя 3 кВт, 6% для электродвигателя 7,5 кВт и 4,5% для электродвигателя 22 кВт.

Экономия при полной нагрузке приблизительно составляет 0,45 кВт, что при стоимости энергии 0,06 доллара/кВт. ч составляет 0,027 доллара/ч. Это эквивалентно 6% эксплуатационных затрат электродвигателя.

Цена обычного электродвигателя 7,5 кВт, приводимая в прайс-листах, составляет 171 доллар США, тогда как стоимость электродвигателя с повышенным КПД - 296 долларов США (надбавка к цене - 125 долларов США). Из приведенной таблицы следует, что период окупаемости для электродвигателя с повышенным КПД, рассчитанный на основе маргинальных издержек, составляет приблизительно 5000 часов, что эквивалентно 6,8 месяцев работы электродвигателя при номинальной нагрузке. При меньших нагрузках период окупаемости будет несколько больше.

Эффективность использования энергосберегающих двигателей будет тем выше, чем больше загрузка двигателя и чем ближе режим работы его к постоянной нагрузке.

Применение и замена двигателей на энергосберегающие должна оцениваться с учетом всех дополнительных затрат и сроков их эксплуатации.

Вопрос создания энергосберегающих электродвигателей возник одновременно с изобретением самих электрических машин. На Международной электротехнической выставке 1891 г. во Франкфурте-на-Майне, Чарльз Браун (впоследствии основавший компанию ABB) показал синхронный трехфазный генератор, собственного производства, КПД которого превышал 95%. Асинхронный трехфазный двигатель, представленный Михаилом Доливо-Добровольским, показал КПД 95%. С тех пор показатели КПД трехфазного асинхронного двигателя удалось улучшить всего на один-два процента.

Наиболее остро интерес к энергосберегающим двигателям возник в конце 1970-х годов во время мире нефтяного энергетического кризиса. Оказалось, что сэкономить одну тонну условного топлива во много раз дешевле, чем добыть.Во время кризиса во много раз выросли капиталовложения в сферу энергосбережения. Во многих странах стали выделять специальные гранды на энергосберегающие программы.

После проведения анализа проблемы энергосбережения оказалось, что более половину электроэнергии, вырабатываемой в мире, расходуют электродвигатели. Потому над их совершенствованием работают все ведущие электротехнические компании в мире.

Что же такое энергосберегающие двигатели?

Это электродвигатели, КПД которых на 1–10% выше, чем у стандартных двигателей. В крупных энергосберегающих двигателях, разница в значениях КПД составляет 1–2%, а в двигателях малой и средней мощности эта разница составляет уже 7–10%.

КПД электродвигателей Siemens

Увеличение КПД в в энергосберегающих двигателях достигается за счет:

  • увеличения доли активных материалов – меди и стали;
  • использование более тонкой и высококачественной электротехнической стали;
  • применение вместо алюминия меди в роторных обмотках;
  • уменьшения воздушного зазора в статоре с помощью прецизионного технологического оборудования;
  • оптимизации формы зубцовой зоны магнитопровода и конструкции обмоток;
  • использование подшипников более высокого класса;
  • особой конструкции вентилятора;

По статистическим данным, цена всего двигателя составляет менее 2% суммарных затрат на жизненный цикл. Так, если двигатель работает 4000 часов ежегодно в течение 10 лет, то на электроэнергию приходится примерно 97% всех затрат на весь жизненный цикл. Еще около одного процента приходится на монтаж и техобслуживание. Поэтому увеличение КПД двигателя средней мощности на 2% позволит окупить увеличение стоимости энергосберегающего двигателя уже через 3 года, в зависимости от режима работы. Практический опыт и расчеты показывают, что увеличение стоимости энергосберегающего двигателя окупается за счет сэкономленной электроэнергии при эксплуатации в режиме S1 за год-полтора (при годовой наработке 7000 часов).

В общем случае переход к применению энергосберегающего двигателя позволяет:

  • увеличить КПД двигателя на 1–10%;
  • повысить надежность его работы;
  • снизить время простоев;
  • уменьшить затраты на техобслуживание;
  • увеличить устойчивость двигателя к тепловым перегрузкам;
  • повысить перегрузочную способность;
  • поднять устойчивость двигателя к ухудшению эксплуатационных условий;
  • сниженному и завышенному напряжению, искажению формы кривой напряжения, перекосу фаз и т. д.;
  • повысить коэффициент мощности;
  • уменьшить уровень шума;
  • поднять скорость двигателя за счет уменьшения скольжения;

Отрицательным свойством электродвигателей с повышенным КПД по сравнению с обычными являются:

  • на 10 – 30% выше стоимость;
  • несколько больше масса;
  • более высокая величина пускового тока.

В некоторых случаях использование энергоэффективного двигателя является нецелесообразным:

  • при эксплуатации двигателя эксплуатируется короткое время (менее 1–2 тыс.часов/год), внедрение энергоэффективного двигателя может не внести существенного вклада в энергосбережение;
  • при работе двигателя в режимах с частым запуском, так как сэкономленная электроэнергия будет израсходована на более высокое значение пускового тока;
  • при работе двигателя работает с недогрузом, за счет уменьшения КПД при работе на нагрузку ниже номинальной.

Объемы энергосбережения в результате внедрения энергоэффективного двигателя могут оказаться незначительными по сравнению с потенциалом привода с переменной скоростью.Каждый дополнительный процент КПД требует увеличения массы активных материалов на 3–6%. При этом момент инерции ротора возрастает на 20–50%. Поэтому высокоэффективные двигатели уступают обычным по динамическим показателям, если при их разработке специально не учитывается это требование.

При выборе в пользу энергоэффективного двигателя, необходимо тщательно подходить к вопросу цены. По прогнозам аналитиков медь будет дорожать значительно быстрее стали. Поэтому там, где есть возможность, применять так называемые стальные двигатели (с меньшей площадью пазов), то лучше применять их. Такие двигатели имеют меньшую стоимость за счет экономии меди. По тем же причинам необходимо относиться к энергосберегающим двигателям с постоянными магнитами. Если вам в будущем придется искать замену такого двигателя. может оказаться, что его цена будет слишком высока, а замена его на энергосберегающий двигатель общепромышленного исполнения будет затруднительна из за несоответствия габаритов. По оценкам экспертов постоянные магниты из редкоземельных материалов будут дорожать больше и быстрее, чем медь, что приведет к значительному подорожанию таких двигателей. Хотя такие двигатели при высшем классе энергоэффективности достаточно компактны, их внедрение в промышленность ограничено тем, что постоянные магниты сейчас востребованы в других отраслях, нежели общепром, и, по оценкам специалистов будут использоваться при выпуске специальной техники, на которую денег не жалеют.