История создания и принцип работы турбореактивного двигателя

Турбовинтовой двигатель (ТВД) - авиационный газотурбинный двигатель, создающий основную силу тяги винтом, а дополнительную - струёй газов, вытекающих из реактивного сопла.

Необходимость в переходе от поршневых установок к турбовинтовым возникла при проектировании и эксплуатации с большой грузоподъёмностью и дальностью полёта. Летательные аппараты обладающие большой, принципиальная схема турбовинтового двигателя грузоподъемностью должны иметь двигатели способные развивать необходимую тягу при минимальном удельном весе. По тому критерию подходят турбореактивные установки. Но они крайне неэффективны на малых скоростях. Решением проблемы стало комбинирование технологий винтомоторных двигателей с реактивной тепловой машиной.

Конструктивно турбовинтовой двигатель схож с турбореактивным, но у ТВД имеется винт, создающий основную часть тяги, и редуктор, связывающий винт с валом тепловой машины. Редуктор используется для уменьшения оборотов винта по сравнению с оборотами газовой турбины. Рабочие обороты турбины колеблются между 18 и 21 тысячами об/мин. При таких оборотах КПД винта падает почти до нуля, тогда как максимальный КПД винт достигается при оборотах от 750 до 1500 об/мин.

Существуют варианты ТВД с двумя винтами, направленными в противоположные стороны. Подобный тип двигателей применяется на летательных аппаратах, требующих большой мощности двигателей.

Тяга в турбовинтовых установках, преимущественно (до 90%), создаётся винтом, и лишь малая доля струёй отработанных газов

Основные преимущества ТВД перед другими газотурбинными двигателями состоят в лучших тяговых характеристиках на взлёте и в большей экономичности на скоростях полёта до 800 км/ч.

Реактивные двигатели


Реактивный двигатель -- двигатель, создающий необходимую для движения силу тяги посредством преобразования внутренней энергии топлива в кинетическую энергию реактивной струи рабочего тела. По закону сохранения импульса, летательный аппарат получает такой же импульс, какой имеет рабочее тело при выходе из двигателя.

Реактивный двигатель сочетает в себе двигатель с движителем, то есть он создаёт тяговое усилие только за счёт Первый отечественный турбореактивный двигатель ТР-1

взаимодействия с рабочим телом, без опоры или контакта с другими телами. По этой причине чаще всего он используется для приведения в движение самолётов, ракет и космических аппаратов.

Все разновидности реактивных двигателей объединяет наличие двух основных элементов конструкции: камеры сгорания и сопла. Камера сгорания - объём, образованный совокупностью деталей двигателя, в котором происходит сжигание горючей смеси. После отработки горючего, Продукты сгорания устремляются в реактивное сопло, в котором тепловая энергия газов переходит в их кинетическую энергию, когда из сопла газы вытекают наружу с большой скоростью, тем самым создавая реактивную тягу.

Дальнейшая классификация будет зависеть от наличия в двигателе компрессора - узла, предназначенного для нагнетания рабочего тела в камеру сгорания. Наиболее значимыми представителями компрессорных двигателей являются: турбореактивные двигатели и двухконтурные турбовинтовые двигатели. Группа бескомпрессорных состоит из прямоточных и пульсирующих реактивных двигателей.


Турбовинтовой двигатель ВК-1500 производится на объединении ОАО «Мотор Сич».
Предназначен для установки в качестве маршевого двигателя на самолеты воздушных линий пассажировместимостью до 30 чел.
Высокий уровень культуры проектирования, производства в сочетании с применением современной системы регулирования дали возможность создать двигатель с высокими эксплуатационными характеристиками, надежностью и большими ресурсами.
Вертолетный вариант двигателя ВК-1500 может устанавливаться на вертолетах среднего класса. ...


Турбовинтовой двигатель ТВД-20 разработан в Омском авиамоторном КБ на базе турбовинтового двигателя ТВД-10.
Первая серийная версия двигателя получила обозначение ТВД-20–01. Эта версия двигателя, выпускаемая с 1992 года, устанавливается на легкий многоцелевой самолет Ан-3.
Усовершенствованная версия двигателя получила обозначение ТВД-20М. Этот двигатель используется на легком самолете Аэропрогресс Т-101В с трехлопастным пропеллером АВ-17. ...

Турбовальный двигатель ТВ3–117 предназначен для установки на вертолеты. Он является одним из лучших двигателей в мире по экономичности в своем классе, что достигнуто благодаря высоким КПД основных узлов (КПД компрессора равен 86%, КПД турбины компрессора — 91%, КПД свободной турбины — 96%). Величины удельного расхода топлива и удельной массы соответствуют лучшим мировым стандартам. Двигатель имеет большие запасы газодинамической устойчивости. В конструкции двигателя применены прогрессивные технические решения: титановый ротор компрессора, сваренный из отдельных дисков электронно-лучевой сваркой; рабочие и направляющие лопатки компрессора из титанового сплава, полученные методом холодной вальцовки; контактные графитовые уплотнения масляных полостей; на новейших модификациях применяется электронно-гидромеханическая система регулирования и управления и др. Двигатель имеет большой ресурс, обладает высокой надежностью, простотой обслуживания, хорошей ремонтопригодностью. ...


В 1960 году был объявлен конкурс на создание газотурбинного двигателя мощностью 1250 л.с. для перспективного вертолёта Ми-8. Победителем конкурса проектов стало ОКБ-117 им. В.Я.Климова под руководством С.П.Изотова, которому и была поручена разработка двигателя и главного редуктора ВР-8. ТВ2–117 стал первым отечественным специализированным вертолётным двигателем. Первые образцы двигателей изготовлены летом 1962 года. Серийное производство организовано в 1965 году.
Двигатель имеет девятиступенчатый осевой компрессор, камеру сгорания кольцевого типа и двухступенчатую турбину. ...


Разработка турбовинтового двигателя ТВ-12 для бомбардировщика Ту-95 началась в ОКБ-276 под руководством Н.Д.Кузнецова в 1951 году. В декабре 1953 года Министерство авиационной промышленности утвердило общую компоновку двигателя. Летом 1954 года начались доводочные испытания ТВ-12 на летающей лаборатории Ту-4ЛЛ. В декабре новый двигатель был установлен на втором прототипе Ту-95 («95–2»). В 1955 году началось серийное производство двигателя на Куйбышевском моторостроительном заводе №24 под обозначением НК-12.
НК-12 состоит из редуктора, осевого компрессора, камеры сгорания, реактивной турбины и нерегулируемого реактивного сопла. Редуктор двигателя — дифференциальный, с передаточным отношением от ротора к воздушному винту 0,088. Редуктор передаёт мощность турбины на соосный воздушный винт (передний винт потребляет 54,4% мощности, задний — 45,6%). ...


Винтовентиляторный двигатель Д-27 разработан в Запорожском МКБ им. И.Г.Ивченко в середине 80-х годов. В разработке двигателя активное участие принимали специалисты ЦИАМ и ЦАГИ. Винтовентиляторы СВ-27 с широкохордовыми саблевидными лопастями разработатывались в НПО «Авиасила» (г. Ступино). Автоматическая система управления двигателем СУ-77 разрабатывалась в Уфимском НПО «Молния». Первые стендовые испытания проведены в 1988 году. В 1990 году двигатель испытывался на летающей лаборатории Ил-76. В 1993 году 4 двигателя Д-27 были установлены на первом прототипе транспортного самолёта Ан-70. Серийное производство предполагается на запорожском заводе «Мотор-Сiч» и Уфимском моторостроительном заводе.
Запуск двигателя автоматический с раскруткой ротора высокого давления воздушным турбостартером от ВСУ, аэродромного источника сжатого воздуха или от работающего двигателя. ...


Турбовинтовентиляторный трехвальный двигатель Д-236 разрабатывался как демонстратор технологий на Запорожском ЗМКБ "Прогресс".
Основой для двигателя послужил турбовентиляторный двигатель Д-36. Разработка двигателя была начата в 1979 году. На двигатель установлен пропеллер СВ-36. Первоначальные испытания двигателя проходили на самолете Ил-76. С 1987 года к испытаниям подключилось ОКБ им. Яковлева. Д-236 был установлен на специализированную версию самолета Як-42Е-ЛЛ вместо одного из двигателей Д-36. Первый полет самолета с такой двигательной установкой состоялся в марте 1991 года. ...


Двигатель АИ-24 конструкции А.Г. Ивченко одновальный турбовинтовой. В настоящее время на предприятиях гражданской авиации в основном эксплуатируются двигатели АИ-24 II серии.
Двигатель АИ-24 состоит из следующих узлов: дифференциального планетарного редуктора; лобового картера; 10-ступенчатого осевого компрессора; кольцевой камеры сгорания; 3-ступенчатой осевой реактивной турбины; нерегулируемого реактивного сопла.
Для обеспечения работы двигателя имеются системы: смазки и суфлирования; топливорегулирования; запуска; управления воздушным винтом; противопожарная; противообледенительная.
На самолетах Ан-24 и Ан-24Б, эксплуатируемых в условиях высоких температур наружного воздуха, силовая установка оборудуется системой впрыска воды в компрессор двигателя. ...


Двигатель турбовинтовой высотный АИ-20Д серии 5, 5Э является дальнейшим развитием широко известного базового двигателя АИ-20, используется на самолетах, выполняющих перевозки на линиях средней и дальней протяженности.
Оборудован системами: Автоматизированного запуска
Противообледенения
Противопожарной
Следящего упора для защиты по отрицательной тяге и автоматического флюгирования воздушного винта
Успешно эксплуатируются во многих странах мира (Индия, Бангладеш, Эфиопия, Перу, Никарагуа и др.) в условиях высоких температур наружного воздуха и высокогорных аэродромов. ...

Наконец-то двигателестроители обратили внимание не только на создание моторов для самолётов большой авиации, но и готовы помочь в оснащении двигателями воздушных судов региональной и малой авиации. Причём на самолёты местных воздушных линий планируется установка турбовинтовых двигателей отечественного производства, изготовленных на предприятиях России и из отечественных материалов.

Особенности производства нового турбовинтового двигателя

В рамках программы импортозамещения Уральский завод гражданской авиации (УЗГА) разработал проект и готовит производство турбовинтового двигателя ВК-800С для самолёта чешского производства L-410UVP-E20, который изготавливают на этом же предприятии. Ранее эта машина была оснащена силовыми установками М601 и Н80, изготовленными в Чехии.

Инженер-конструктор, созданного в Санкт-Петербурге обособленного подразделения по импортозамещению, подтвердил, что в научно-производственном центре «Лопатки.Компрессоры. Турбины.» (НПЦ «ЛКТ») в мае уже будут собраны три опытных мотора ВК-800С, летом начнутся их стендовые испытания, а осенью их тестируют в воздухе.

НПЦ «ЛКТ» выбрано неслучайно для сборки этих силовых установок, поскольку изготовление лопаток турбин и роторного колеса – это и так высокие технологии, а организовать на таком центре дополнительное производство не стало большой проблемой. Поставлена задача добиться использования для производства двигателей ВК-800С комплектующих только из России.

Это становится возможным, поскольку агрегаты и основные узлы для этих моторов стали производить в Омске, Перми, Самаре и других российских городах, где расположены заводы и предприятия соответствующего профиля. Минпромторг уже сделал заказ на производство двух самолётов L-410UVP-E20 с российскими двигателями, а серийный выпуск ВК-800С начнётся сразу после процедуры сертификации, которую планируют закончить в течение двух лет.

Новый турбовинтовой двигатель ВК-800С для лёгких многоцелевых самолётов.

В сущности мотор ВК-800С – это версия вертолётного турбовального двигателя ВК-800В, который был создан в одном из подразделений объединённой двигателестроительной корпорации «ОДК-Климов» и предназначен для многоцелевых самолётов грузоподъёмностью до 1.5 тонны. Это весьма компактный двигатель, имеющий длину около одного метра, весом не более 140 кг и развивающий мощность на взлёте порядка 900 л.с.

«Русский самолёт» L-410

Ещё в 2008 году начался приход русских на чешский завод, точнее, после приобретения 51% акций, а в 2015 году УЗГА построил новые цеха и начал производство L-410 в ходе процесса постепенно заменяя все узлы и детали на отечественные комплектующее. Сам чехи уже называют L-410 «русским самолётом» и в действительности он станет полностью отечественным, как только уральский завод наладит серийный выпуск российских турбовинтовых двигателей ВК-800С.

Уральские специалисты наладили выпуск L-410 в 2016 году и готовят эти машины к суровым русским условиям. Самолёт оснащают нескольким видам шасси – лыжное предназначено для посадки на снежную поверхность, а поплавковое – на воду также готовится вариант для посадки на мягкий грунт и неподготовленные площадки. Словом, машину адаптируют полностью к эксплуатации в любых климатических условиях России, в том числе и на Крайнем Севере.

Лыжное шасси для L-410 найдёт применение на аэродромах Крайнего Севера и неподготовленных площадках Арктики.

Выпускаемый на уральском заводе L-410 получил современную авионику, связь и оборудование, изготовленные исключительно из отечественных комплектующих. Очевидно, что и двигатели у этой машины скоро будут российского производства.

Многоцелевой 19-местный самолёт L-410 востребован в различных вариантах как для гражданской авиации, так и для военной. Для обоих ведомств эта машина превосходно подходит как учебно-тренировочная для подготовки и обучения курсантов. На данный момент — это единственный самолёт обучения будущих пилотов военно-транспортной авиации. Простая и лёгкая в управлении машина способна прощать ошибки в пилотировании, особенно на посадке и лучших самолётов этого класса для подготовки курсантов пока не предвидится.

Пассажирский салон L-410 весьма комфортный и удобный.

Для гражданской авиации машина найдёт применение в грузопассажирском варианте, а её санитарная версия будет востребована в труднодоступной местности и при проведении поисково-спасательных работ. В военном ведомстве найдут применение разведывательные, санитарные и десантные варианты L-410 .

Заключение

На настоящее время в России отсутствуют самолёты подобного класса, такая машина нужна для первоначального обучения и для потребностей Минобороны. Хорошо известна неприхотливость этого самолёта, а оснащение его турбовинтовыми двигателями позволят использовать машину в полной мере, в том числе и для нужд Арктики. Значительно расширит область применения L-410 разработка нового шасси для мягких грунтов.

Турбовинтовой двигатель

В это время Опытный завод № 2 под Куйбышевом заполучил опытного двигателиста бывшего концерна «Юнкерс». Это был Фердинанд Бранднер, бывший ведущий проекта поршневого мотора с 24 цилиндрами Jumo 222. В 1944-м, когда эту тему закрыли, его назначили гауляйтером промышленности Австрии. Там он попадает в советский плен. Ему удается доказать, что он конструктор двигателей «Юнкерса». Тогда, в 1946 году, его отправляют в Уфу, где он налаживает серийное производство реактивного двигателя Jumo 004 под обозначением РД-10.

Теперь, после объединения двух ОКБ, Фердинанд Бранднер становится неофициальным руководителем немецких конструкторов. Номенклатура трофейных двигателей была достаточно большой. Но стало ясно, что Опытный завод № 2 не в состоянии разрабатывать все направления. Да это оказалось и не нужно. Двигатели Jumo 004 и BMW 003 уже серийно выпускаются в Уфе и Казани под индексами РД-10 и РД-20. Реанимированный и модифицированный Jumo 012, с тягой, в три раза большей, продемонстрировал все свои возможности в разных вариантах. Оказалось, что для будущих советских истребителей он тяжеловат и расходует много топлива, а моторные ОКБ Климова, Микулина и Люльки набирались знаний и опыта. Их реактивные двигатели уже были не хуже немецких и английских.

Турбовинтовой двигатель Jumo 022

Назначенный в мае 1949 года главным конструктором Опытного завода № 2, Николай Кузнецов нацеливает коллектив конструкторов на доводку одного немецкого двигателя – турбовинтового Jumo 022. Только один экземпляр этого уникального технического сооружения немцы успели изготовить в конце войны, но так и не испытали. И вот он здесь, под Куйбышевом, и здесь же многие его создатели.

Николай Кузнецов с реактивными двигателями «Юнкерса» был хорошо знаком. Он год проработал главным конструктором моторного завода в Уфе. Там Jumo 004 стал родным, пока его превращали в серийный РД-10. Там Кузнецов работал с Бранднером, а теперь перетащил сюда из Уфы многих опытных инженеров. На завод стали распределять и молодых специалистов. Общая численность работников перевалила за две тысячи.

Первоначально на «Юнкерсе» турбовинтовой 022 создавался на базе турбореактивного 012 с таким расчетом, что половина тяги будет создаваться двумя соосными винтами противоположного вращения, другая половина – реактивным соплом.

Турбовинтовой двигатель НК-12

Немецкий опытный турбовинтовой двигатель послужил «печкой», от которой начали танцевать. Главный вопрос – как понизить удельный расход. Немецкие конструкторы активно совершенствовали двигатель. Начальник отдела турбины доктор Кордес создает новую методику ее расчета и проектирования. Удельный расход снизился. Модернизированный Jumo 022 впервые прошел 50-часовые государственные испытания. С марта 1951 года двигатель стали называть ТВ-2, а в мае начались его успешные испытания в воздухе на летающей лаборатории Ту-4.

В начале 1950 года бригада перспективных проектов, которой руководит доктор Йозеф Фогтс, получает задание разработать проект турбовинтового двигателя удвоенной мощности для стратегического бомбардировщика. В этой бригаде трудились самые умные и образованные немцы. Доктор Хельмут Гайнрих руководил термодинамическими расчетами. Доктор Макс Лоренц – аэродинамика и воздушные винты с реверсом. Основной компоновщик двигателей «Юнкерса» Отто Гассенмайер все идеи переводил в графику на кальках чертежей.

Разработанный проектировщиками двигатель мощностью десять тысяч лошадиных сил на воздушных винтах не приняли конструкторы. Начальник бригады компрессоров Ганс Дайнхард категорически заявил, что получить степень повышения давления 13 в четырнадцати ступенях невозможно. Начальник бригады камер сгорания Манфред Герлах не видит возможности удвоения количества сжигаемого топлива. Начальник бригады редуктора Рихард Эльце назвал разработанный планетарно-дифференциальный редуктор, обеспечивающий противоположное вращение двух воздушных винтов, технической авантюрой. Начальник бригады прочности доктор Рудольф Шайност сказал, что гарантировать работоспособность такого двигателя он не может и проект не поддерживает. Только начальник бригады турбин доктор Герхард Кордес верил в реальность создания четырехступенчатой турбины. Главный немецкий конструктор Фердинанд Бранднер сделал по проекту только несколько замечаний, так и не одобрив его. Но, несмотря на разногласия немецких конструкторов, Кузнецов дает команду двигатель разрабатывать, организуя параллельно экспериментальные исследования проблемных узлов и агрегатов.

В 1951 году Сталин забраковал дальний бомбардировщик Туполева Ту-85 из-за его малой скорости и дальности. «Немецкое» ОКБ Кузнецова получило задание разработать турбовинтовой двигатель ТВ-12 мощностью более двенадцати тысяч лошадиных сил для стратегического бомбардировщика Ту-95.

Через год новый двигатель с пятиступенчатой турбиной «запирался» и не хотел запускаться. Только в ноябре 1952 года, когда были изобретены и установлены управляемые клапаны перепуска воздуха в компрессоре, проблему решили. Потом долго доводили редуктор. Только специальная система охлаждения и смазки шестерен дала результат. Доводка компрессора и турбины также потребовала времени.

Гигантский турбовинтовой двигатель еще испытывали по частям и вносили изменения в его конструкцию, когда в ноябре 1953 года немцам разрешили вернуться домой. Уникальная машина, в создании которой они приняли самое активное и весомое участие, продемонстрирует свое рождение только через год. За создание самого мощного в мире серийного турбовинтового двигателя НК-12 Николай Кузнецов будет удостоен звания Героя Социалистического Труда и получит Ленинскую премию.

Значение работы двигателистов «Юнкерса» в Советском Союзе трудно переоценить. Начиная с 1946 года они выступали в роли учителей и творцов новых конструкторских решений. В Куйбышев, в поселок Управленческий, приезжали конструкторы и технологи от всех организаций, связанных с выпуском реактивных двигателей. Эксперименты и результаты испытаний вариантов новых двигателей, проводимые немецкими специалистами, становились достоянием конструкторов ОКБ Микулина, Климова и Люльки, а также ученых ЦИАМа, НИАТа и ВИАМа.

Из книги Киевской Руси не было, или Что скрывают историки автора

Торговля - двигатель прогресса Если строго следовать постулатам исторического материализма, то в эпоху феодализма главную ценность представляла собой земля. Государства по этой концепции возникают тогда, когда земледелец становится способен создавать прибавочный

Из книги Третий проект. Том III. Спецназ Всевышнего автора Калашников Максим

Пушкин и его двигатель Живет и здравствует еще один добрый знакомый Шама – Ростислав Михайлович Пушкин. Этот неукротимый изобретатель из подмосковного Красноармейска, сделавшись заодно и главой фирмы «Простор», совершает целый переворот в двигателестроении.Он изобрел

Из книги Киевской Руси не было, или Что скрывают историки автора Кунгуров Алексей Анатольевич

автора

Перевернутый двигатель Выдающимся достижением Хуго Юнкерса явилась разработка небольшого 12-цилиндрового бензинового двигателя L10, которую он начал в 1931 году. Хуго Юнкерс задумал его как высокооборотный и экономичный с высокими удельными параметрами. Такой двигатель

Из книги Неизвестный Юнкерс автора Анцелиович Леонид Липманович

Реактивный двигатель Это было самое выдающееся изобретение двигателистов концерна «Юнкерс». Профессор Отто Мадер сначала не питал особых надежд на то, что у них получится что-то путное. Не было ни опыта, ни специалистов. Был только дерзкий рывок Хейнкеля, который показал

Из книги Пестрые истории автора Рат-Вег Иштван

Орфир? и его вечный двигатель Иоганн Элиас Бесслер позолотил сам себя романтическим именем Орфире, когда путем ряда мошеннических трюков смог обеспечить себе почтенное бюргерское благополучие. Поначалу жажда приключений и неистребимое отвращение к систематическому

Из книги Россия: критика исторического опыта. Том1 автора Ахиезер Александр Самойлович

Из книги Советская водка. Краткий курс в этикетках [илл. Ирина Теребилова] автора Печенкин Владимир

Из книги Тайны древних цивилизаций. Том 2 [Сборник статей] автора Коллектив авторов

Радиация – двигатель прогресса Но историческую миссию Каспиотиды как протоцивилизации определил, прежде всего, высокий радиоактивный фон региона. Экосистема впадины Каспийского моря благодаря особенностям своего геологического развития отличается радиоактивной

Из книги Киевской Руси не было. О чём молчат историки автора Кунгуров Алексей Анатольевич

Торговля – двигатель прогресса Если строго следовать постулатам исторического материализма, то в эпоху феодализма главную ценность представляла собой земля. Государства по этой концепции возникают тогда, когда земледелец становится способен создавать прибавочный

Из книги Россия и Запад. От Рюрика до Екатерины II автора Романов Петр Валентинович

Ересь как двигатель прогресса Ересь стригольников заключала в себе некоторые внешние черты, роднившие ее с западным рационализмом. Последующее движение уже отчетливо несет на себе следы связи с Западом. «Если не прямо с Западом эпохи Возрождения, то с ее отзвуками, хотя,

автора Гумилевский Лев Иванович

5. Универсальный двигатель ПолзуновПодобно тому как в произведении искусства сказывается творческая индивидуальность его автора, в любом инженерном сооружении - будь то железнодорожный мост, самолет или паровой двигатель - мы легко можем обнаружить личность творца,

Из книги Создатели двигателей [илл. Е.Ванюков] автора Гумилевский Лев Иванович

6. Идеальный тепловой двигатель КарноВ эпоху промышленной революции практический опыт шел далеко впереди научных знаний. Даже после того как паровые машины проникли во все области промышленности и транспорта, теоретические представления о том, что происходит в этих

Из книги Создатели двигателей [илл. Е.Ванюков] автора Гумилевский Лев Иванович

4. Вторичный двигатель Кооперация современниковМощность магнитоэлектрических машин зависела главным образом от силы магнита, возбуждающего в катушках электрические токи. К усилению этих магнитов и стремились конструкторы. Однако многого они в этом направлении не

Из книги Новгород и Ганза автора Рыбина Елена Александровна

4. Язык как двигатель торговли Знание русского языка считалось у ганзейцев очень важным и ценным качеством для купца, ведущего торговые дела с Русью, однако его изучение рассматривалось как большое и трудное дело, которое не должно было мешать основной деятельности

Из книги Россия и Запад на качелях истории. Том 1 [От Рюрика до Александра I] автора Романов Петр Валентинович

Ересь как двигатель прогресса Ересь стригольников заключала в себе некоторые внешние черты, роднившие ее с западным рационализмом. Последующее движение уже отчетливо несет на себе следы связи с Западом.Если не прямо с Западом эпохи Возрождения, то с ее отзвуками, хотя,

Двигатель называют сердцем самолёта. И это действительно так. Ведь без него самолёт перестанет быть самолётом. Чем мощнее двигатель, тем быстрее самолёт преодолеет силу сопротивления воздуха и тем большую скорость он сможет развить.

«Но то же самое можно сказать и об автомобиле», - возразите вы. И будете правы. Без двигателя ни самолёт, ни автомобиль не смогут двигаться.

Для чего же нужен двигатель?

Любой двигатель, авиационный или автомобильный, предназначен для создания тяги. И принцип работы у них почти одинаков. Но авиационные двигатели всё-таки имеют свои особенности. Они отличаются от автомобильных размерами и меньшим удельным весом, то есть, весом, приходящимся на единицу мощности. Удельный вес авиационных двигателей в десятки и даже сотни раз меньше удельного веса автомобильных. Ну и, конечно же, в авиации они выполнятся из более лёгких и прочных материалов. Конструкция авиационного двигателя такова, что он может надёжно работать в любом перевёрнутом положении, ведь самолёту иногда приходится выполнять различные манёвры в воздухе. И ещё одна его важная особенность – возможность устойчиво работать, не теряя мощность, на высоте, когда падают плотность и давление воздуха.

Авиационные двигатели

Первые двигатели, предназначенные специально для авиации, начали проектировать и строить в начале ХХ века. Они представляли собой двигатели внутреннего сгорания, устройство которых было позаимствовано у автомобильных двигателей.

По мере развития авиации изменялись и авиационные двигатели. Все известные современные их модификации можно разделить на 2 принципиально отличающиеся группы: двигатели, способные работать только в пределах атмосферы и такие, для работы которых наличие атмосферы не требуется.

Двигатели первой группы называются воздушными , или атмосферными. А вторая группа получила название ракетных . Их принципиальное различие в том, что для воздушных двигателей рабочим телом, совершающим механическую работу, является атмосфера. А у ракетных рабочее тело находится в самом летательном аппарате.

Авиационный двигатель, как и любой другой, преобразует энергию топлива в кинетическую энергию. В любом из них происходит реакция горения топлива. А для протекания этой реакции необходим кислород. В воздушных двигателях этот кислород берётся из атмосферы. А в ракетных окислитель находится на борту летательного аппарата.

Винтовые двигатели

Воздушные двигатели делятся на винтовые и реактивные .

В свою очередь, винтовые подразделяются на винто-моторные, или поршневые , и турбовинтовые . И у тех, и у других движителем служит воздушный винт. Но у винтомоторных тепловой машиной является мотор, а у турбовинтовых – турбокомпрессор.

Поршневой (винто-моторный) двигатель

Поршневые двигатели можно назвать ровесниками современной авиации. Они устанавливались на первых самолётах, поднятых в воздух братьями Райт. И вплоть до 40-х годов ХХ века альтернативы им не было. Но, несмотря на то, что впоследствии были изобретены и другие двигатели, основанные на совершенно другом принципе работы, поршневые используются в авиации и сейчас.

Современный авиационный поршневой двигатель представляет собой двигатель внутреннего сгорания (ДВС). Принцип его работы такой же, как и у автомобильных ДВС. Разница лишь в том, что движение поршня через специальные механизмы в автомобиле передаётся на колёса, а в самолёте – на воздушный винт. А лопасти винта захватывают воздух, отбрасывают его назад, тем самым создавая тягу.

Турбовинтовой двигатель (ТВД)

1 - воздушный винт; 2 - редуктор; 3- турбокомпрессор.

Турбовинтовой двигатель является разновидностью газотурбинного двигателя.

Простейшую конструкцию газотурбинного двигателя можно представить как вал, на котором находятся два диска с лопатками, между которыми расположена камера сгорания. Первый диск – диск компрессора. Второй – диск турбины. Атмосферный воздух сжимается в компрессоре и подаётся в камеру сгорания. Туда же подаётся и топливо. Смесь воздуха с топливом с помощью свечи зажигания поджигается и сгорает, образуя продукты сгорания под высоким давлением, которые приводят во вращение диск турбины. Таким образом, энергия сжатого и нагретого газа преобразуется в механическую работу.

Газотурбинный двигатель первоначально был разработан вовсе не для авиации. В нём нет выходящей реактивной струи. Вся его мощность сосредоточена на валу, который вращает нужные агрегаты. Но в турбовинтовом авиационном двигателе вал приводит во вращение винт, который через редуктор укрепляется на нём перед компрессором. А винт уже и создаёт тягу.

Существуют вертолётные турбовинтовые двигатели, которые приводят в движение несущий винт вертолёта.

Реактивные двигатели

К реактивным относятся турбореактивные, турбореактивные двухконтурные, прямоточные и пульсирующие реактивные двигатели.

Турбореактивный двигатель (ТРД)

Этот тип двигателя является основным в реактивной авиации.

Сила тяги, необходимая для движения, создаётся путём преобразования внутренней энергии топлива в кинетическую энергию реактивной струи продуктов сгорания топлива.

В теплотехнике существует понятие «рабочее тело». Это какое-то условное тело, которое расширяется при нагревании и сжимается при охлаждении. Энергию рабочее тело получат при сжатии, а при расширении оно выполняет механическую работу, благодаря которой приводится в движение рабочий орган.

В турбореактивном авиационном двигателе рабочим телом является атмосферный воздух, который через входное устройство подаётся в компрессор, где и сжимается. Следующий этап – камера сгорания, где воздух нагревается и смешивается с продуктами сгорания керосина. Образовавшаяся газовоздушная смесь попадает на турбину, через рабочие лопатки вращает её, расширяется и теряет часть своей энергии. Эта энергия превращается в механическую энергию основного вала, расходуется на работу компрессора, а также на работу топливных и масляных насосов, привода электрогенераторов, которые вырабатывают электроэнергию для различных бортовых систем самолёта.

Но основная часть энергии газовоздушной смеси разгоняется в специальном сужающемся устройстве, которое называется реактивное сопло. За счёт реактивной струи появляется сила тяги двигателя.

На сверхзвуковых самолётах применяют турбореактивные двигатели с форсажной камерой. В них между турбиной и соплом установлена дополнительная камера, которая и называется форсажной. В этой камере сжигается дополнительное топливо, что вызывает увеличение тяги (форсаж) до 50 %. Но его расход в таких двигателях значительно выше, чем у обычных ТРД.

Турбореактивный двухконтурный двигатель (ТРДД)

1 - компрессор низкого давления; 2 - внутренний контур; 3 - выходной поток внутреннего контура; 4 - выходной поток внешнего контура.

Этот двигатель имеет два контура: внутренний и внешний. Его отличие от обычного турбореактивного заключается в том, что весь воздушный поток сначала попадает в компрессор низкого давления. Затем основная часть воздуха проходит по внутреннему контуру такой же путь, как и в обычном турбореактивном двигателе. То есть, попадает в другой компрессор, сжимается, нагревается, смешивается в камере сгорания с топливом и разгоняется в сопле для образования реактивной тяги. А вторая часть воздуха проходит напрямую по внешнему контуру поверх внутреннего контура, оставаясь холодной, и выбрасывается, не сгорая. Тем самым создаётся дополнительная тяга и уменьшается расход топлива, что очень важно для самолёта. А также снижается и шум двигателя.

Прямоточный воздушно-реактивный двигатель (ПВРД)

1 - воздух; 2 - впрыск горючего; 3 - стабилизатор пламени; 4 - камера сгорани; 5 - сопло; 6 - форсунки.

Этот двигатель не имеет ни турбины, ни компрессора. Он состоит из трёх обязательных элементов: диффузора, камеры сгорания и сопла.

Диффузор повышает статистическое давление за счёт торможения встречного потока воздуха. В камере сгорания происходит сгорание топлива. Окислителем служит кислород воздуха, поступающий из диффузора. Тяга создаётся за счёт реактивной струи, вытекающей из сопла.

В зависимости от скорости полёта ПВРД подразделяют на дозвуковые, сверхзвуковые и гиперзвуковые. Каждая из групп имеет свои конструктивные особенности.

Пульсирующий воздушно-реактивный двигатель

1 - воздух; 2 - горючее; 3 - клапанная решётка; 4 - форсунки; 5 - свеча зажигания; 6 - камера сгорания; 7 - сопло.

В таком двигателе имеется камера сгорания с входными клапанами и длинное выходное сопло цилиндрической формы. Когда клапаны открываются, в камеру сгорания подаются воздух и топливо. Искра свечи зажигания поджигает смесь. Образуется избыточное давление, которое закрывает клапаны. А продукты сгорания выбрасываются через сопло, тем самым создавая реактивную тягу.

И прямоточные, и пульсирующие воздушно-реактивные двигатели на практике применяются довольно редко.

Ракетные двигатели

В авиации ракетные двигатели используются в особых случаях как дополнительные двигатели для сокращения длины разбега самолёта при взлёте или сокращения длины пробега при посадке, а также для увеличения мощности при полётах в чрезвычайных ситуациях. Применяют их и на исследовательских или экспериментальных самолётах.

Ракетные двигатели разделяются на твёрдотопливные и жидкостные. В твёрдотопливных (РДТТ) и топливо, и окислитель находятся в твёрдом состоянии, а в жидкостных (ЖРД) – в жидком агрегатном состоянии. Сгорание топлива происходит в камере сгорания – основной части ракетного двигателя. А газы, образуемые при сгорании, выбрасываются через реактивное сопло, создавая реактивную тягу.

Так как окислитель для горения ракетные двигатели везут с собой, то они не зависят от воздушной среды, и прекрасно зарекомендовали себя в разреженном и безвоздушном пространстве. Их используют для подъёма и разгона баллистических ракет, космических кораблей, запуска спутников.