Использование экологически безопасных видов топлива. Урок "экологическая характеристика видов топлива"

О влиянии, оказываемом на воздушный бассейн при сжигании различных видов топлив, можно судить по объемам выбросов вредных веществ за 1 час работы электростанции с установленной мощностью 1млн кВт (табл. 2.2.).

Россия располагает уникальными запасами органического топлива, но стратегия его использования пока мало учитывает природоохранные аспекты. Стоимость топлива не связана с потребительской эффективностью и, как правило, определяется затратами на добычу и транспортировку, не отражая экологических качеств топлива.

Большинство энергетических углей и мазутов имеют невысокое качество. Практически все жидкое топливо - это мазут с высоким содержанием серы. Твердое топливо разнообразно по составу. На Европейской территории страны преобладают высокосернистые угли Подмосковного и Печерского месторождений; в Сибири и на Дальнем Востоке - высоковлажные и низкосернистые бурые угли Канско-Ачинского бассейна и каменный уголь Кузнецкого.

Таблица 2.2. Характерные выбросы ТЭС

Уголь G =22,5 A=23,0 S=1,7

Мазут G=38,8 A=0,07 S=2,0

Природный газ G=33,5

Расход топлива при максимальной нагрузке, т/ч (м/ч)

Зола из топок т/ч

Зола из бункеров электрофильтров, т/ч

Зола из недожог топлива, выбрасываемые в атмосферу, т/ч

Диоксид серы, т/ч

Оксиды азота в пересчете на NО2, т/ч

Бенз(а)пирен.10 кг/ч

Соединения ванадия, в пересчете на V2O5, кг/ч

G - теплота сгорания топлива, МДж/кг; A - зольность; S - содержание серы, %.

Некоторые характеристики наиболее распространенных энергетических топлив приведены в табл. 2.3. На многие ТЭС поступает уголь с более высокой зольностью и более низкой теплотой сгорания, чем предусмотрено нормативными данными, приведенными в табл. 2.3.

Таблица 2.3. Характеристика наиболее распространенных топлив.

Теплота сгорания МДж/кг

Удельные выбросы, г/(кВт ч)

Золы % г/(кВт ч)

Оксиды серы

Оксиды азота

Бурый подмосковный

Каменный кузнецкий

Бурый канско-ачинский

Каменный донецкий (Украина)

Каменный экибастузский (Казахстан)

Еще статьи по теме

Экологические исследования в комплексных инженерных изысканиях
Инженерные изыскания являются одним из важнейших видов строительной деятельности, с них начинается любой процесс строительства и эксплуатации объектов. Инженерные изыскания обеспечивают комплексное изучение природных условий района строит...

Разработка установки по очистке воздуха от паров ацетона
Охрана воздушной среды от загрязнений промышленными выбросами, очистка промышленных выбросов входит в комплекс глобальных проблем охраны природы. Каждый год в атмосферный воздух попадает свыше тысячи тонн промышленной пыли и вредных газоо...

Автомобильный транспорт как источник загрязнения окружающей среды. Причины образования токсичных компонентов в отработанных газах ДВС

В последние годы в связи с ростом плотности движения автомобилей в городах резко увеличилось загрязнение атмосферы продуктами сгорания двигателей. Выпускные газы двигателей внутреннего сгорания (ДВС) состоят в основном из безвредных продуктов сгорания топлива – углекислого газа и паров воды. Однако в относительно небольшом количестве в них содержатся вещества, обладающие токсическим и канцерогенным действием. Это окись углерода, углеводороды различного химического состава, окислы азота, образующиеся в основном при высоких температуре и давлении.

При горении углеводородного топлива происходит образование токсичных веществ, связанное с условиями горения, составом и состоянием смеси. В двигателях с принудительным воспламенением концентрация окиси углерода достигает больших значений из-за недостатка кислорода для полного окисления топлива при их работе на богатой топливом смеси.

При движении автомобилей в городе и на дорогах с переменным уклоном и часто меняющимися скоростями с включенной передачей и открытой дроссельной заслонкой двигателям приходится около 1/3 путевого времени работать в режиме принудительного холостого хода. На принудительном холостом ходу двигатель не отдает а, напротив, поглощает энергию, накопленную автомобилем. При этом нерационально расходуется топливо, усиленное всасывание которого приводит к наибольшему выбросу токсичных газов СО и СН в атмосферу.

Автомобильные выхлопные газы - смесь примерно 200 веществ. В них содержатся углеводороды-не сгоревшие или не полностью сгоревшие компоненты топлива, доля которых резко возрастает, если двигатель работает на малых оборотах или в момент увеличения скорости на старте, т.е. во время заторов и у красного сигнала светофора. Именно в этот момент, когда нажимают на акселератор, выделяется больше всего несгоревших частиц: примерно в 10 раз больше, чем при работе двигателя в нормальном режиме. К несгоревшим газам относят и обычную окись углерода, образующуюся в том или ином количестве повсюду, где что-то сжигают. В выхлопных газах двигателя, работающего на нормальном бензине и при нормальном режиме, содержится в среднем 2,7% оксида углерода. При снижении скорости эта доля увеличивается до 3,9%, а на малом ходу-до 6,9%.

Основными эксплуатационными факторами, влияющими на уровень вредных выбросов двигателей, являются факторы, характеризующие состояние деталей цилиндропоршневой группы (ЦПГ). Повышенный износ деталей ЦПГ и отклонения от их правильной геометрической формы являются причиной увеличения концентрации токсичных компонентов в отработавших газах (ОГ) и картерных газах (КГ).

Базовой деталью ЦПГ, от которой зависит работоспособность и экологичность двигателя, является цилиндр, т. к. герметичность камеры сгорания зависит от уплотняющей способности кольца в сопряжении с цилиндром. От технического состояния цилиндров и поршневых колец главным образом зависит интенсивность роста зазоров между кольцами и канавками поршней. Таким образом, контроль и регулировка зазора между кольцом и цилиндром в процессе эксплуатации являются существенным резервом снижения количества вредных примесей в ОГ и КГ посредством улучшения условий сгорания топлива и снижения количества масла, оставшегося в надпоршневом пространстве.

Токсичными выбросами ДВС являются отработавшие и картерные газы. С ними поступает в атмосферу около 40% токсичных примесей от общего выброса. Содержание углеводородов в отработавших газах зависит от технического состояния и регулировок двигателя и на холостом ходу колеблется от 100 до 5000% и более. При общем небольшом количестве картерных газов равном 2-10% отработавших газов в общем загрязнении атмосферы, доля картерных газов составляет около 10% у мало изношенных двигателей и вырастает до 40% при эксплуатации двигателя с изношенной цилиндропоршневой группой, т.к. концентрация углеводородов в картерных газах в 15-10 раз выше, чем в отработавших двигателя. Количество КГ, а так же их химический состав зависят от состояния деталей ЦПГ, осуществляющих уплотнение камеры сгорания. От величины зазоров между трущимися деталями ЦПГ зависит проникновение газов из цилиндра в картер и обратно. При этом увеличивается доля углеводородов с канцерогенными свойствами из-за повышенного угара масла и увеличенного расхода картерных газов через замкнутую систему вентиляции картера.

К достижению предельного износа двигателя выбросы увеличиваются в среднем на 50%. На примере ускоренных испытаний, проведенных в НАМИ, установлено что износ двигателя увеличивает выбросы ОГ углеводородов в 10 раз. Основная масса двигателей с повышенной дымностью ОГ приходится на двигатели, прошедшие капитальный ремонт.

Степень разуплотнения камеры сгорания зависит от износа деталей ЦПГ, отклонения их макрогеометри от правильной геометрической формы. При увеличении неплотностей камеры сгорания происходит возрастание СО и СН и снижение СО2 в результате ухудшения условий сгорания топлива. Кроме снижения качества организации рабочего процесса, зазоры между кольцом и цилиндром, а также зазоры между кольцом и канавкой поршня приводят к увеличению количества масла, попавшего в надпоршневое пространство, к увеличению отклонения от заданной динамики тепловыделения в процессе сгорания, а, следовательно, - к увеличению общей массы токсических выбросов. Масло составляет 30-40% твёрдых частиц ОГ.

Базовой деталью ЦПГ является цилиндр, от которого зависит экономическая и экологическая целесообразность эксплуатации двигателя. Износ гильз цилиндров имеет выраженную форму овала, большая ось которого расположена в плоскости качания шатуна. Причиной образования овальности цилиндров главным образом является увеличенная нагрузка поршней на гильзы именно в плоскости качания шатунов. На овальность цилиндров влияет также несовершенство технологии сборки блока цилиндров. Изменение макрогеометрии цилиндров (овальности и конусности) после сборки двигателя также приводит к ухудшению прилегания поршневых колец к зеркалу цилиндра. Известно, что при установке гильз в блоки различных марок ДВС, овальность в цилиндрах увеличивается в 2-3 раза.

Очень важно отметить, что характер искажения макрогеометрии гильз цилиндров после сборки и в процессе эксплуатации одинаков для большинства конструкций блоков цилиндров с “мокрыми гильзами”. Большая ось овала цилиндра, образующегося при сборке, в зоне остановки верхнего компрессионного кольца в верхней мёртвой точке поршня имеет такую же направленность, как и большая ось овала, образующегося при эксплуатации. Такой характер деформации цилиндров объясняется большей деформацией блока в местах между расточками под гильзы.

Снижение овальности цилиндров способствует снижению интенсивности износа колец и канавок поршней, что в целом способствует улучшению работы поршневых колец и улучшению уплотнения камеры сгорания. Известно, что замена маслосъёмных колец после выработки предельного ресурса в некоторой степени восстанавливает средний уровень токсичности двигателя. Бесспорно, если при замене колец произвести регулировку овальности цилиндров до уровня предельной величины на изготовление новых гильз, то эффект будет намного значительнее.

Разработка новых способов смешения и растворения и математического описания воздействия соответствующих присадок и добавок в нефтяном топливе позволит значительно сократить время на разработку новых составов альтернативных топлив и предсказания их физико-химических свойств, что позволит довести рабочий процесс двигателя при использовании новых альтернативных топлив.

Анализ отечественной и зарубежной литературы показал, что развитие перехода на новые виды топлива будет проходить три основных этапа. На первом этапе будет использоваться стандартное нефтяное топливо, спирты, добавки водорода и водородсодержащих топлив, газовое топливо и различные их сочетания, что позволит решить проблему частичной экономии нефтяного топлива. Второй этап будет базироваться на производстве синтетических топлив, подобных нефтяным, производимых из угля, горючих сланцев и т.д. На этом этапе решатся проблемы долгосрочного снабжения существующего парка двигателей новыми видами топлива. На заключительном, третьем этапе будет характерен переход к новым видам энергоносителей и энергосиловых установок (работа двигателей на водороде, использование атомной энергии).

Перевод ДВС на водород и водородсодержащее топливо представляет собой сложный социально-экономический процесс, для осуществления которого потребуется крупная перестройка ряда отраслей промышленности, поэтому на первом этапе наиболее приемлемым вариантом является работа дизелей с добавками водородсодержащих топлив. Крайне ограниченные сведения в литературе об особенностях горения углеводородного топлива с добавками водорода и аммиака в дизелях не позволяют однозначно ответить на вопрос о влиянии водородсодержащих топлив на показатели рабочего процесса дизеля.

Также крайне слабо исследован вопрос о применении в дизелях синтетического жидкого топлива (СЖТ), вырабатываемого из угля. Различные литературные данные не позволяют дать однозначную оценку влияния СЖТ на рабочий процесс, в связи с тем, что его физико-химические свойства очень сильно зависят от исходного сырья и технологии переработки.

Наиболее вероятным источником моторного топлива могут служить спирты, однако следует учесть их крайне плохие моторные свойства в случае использования их в дизелях. Применяемые способы использования спиртовых топлив требуют дополнительного усложнения конструкции (установка карбюраторов, свечей зажигания или второй топливной системы), либо удорожания топлива (использование добавок, повышающих цетановое число). Наиболее оптимальным в этой ситуации может служить способ использования растворов этанола или метанола с дизельным топливом в дизелях.

Исследование влияния различных типов альтернативных топлив проводилось для нескольких типов быстроходных дизелей с различными способами смесеобразования, поэтому было необходимо получить как можно более полную информацию о протекании процессов топливоподачи, сгорания, сажеобразования, токсичности и т.д. Поэтому была разработана и внедрена автоматизированная система регистрации и обработки информации на базе ПК. Для этого комплекса был разработан пакет прикладных программ, включающий программу сбора информации с различных датчиков во время испытаний, программы обработки полученных данных по анализу индикаторной диаграммы, результатов оптического индицирования, топливоподачи и обсчета параметров режима.

Для одновременной подачи цикловой порции дизельного топлива и газа в цилиндр автором разработана специальная двухтопливная форсунка, которая дополнялась отдельной магистралью, состоящей из штуцера подвода газа и каналов в корпусе форсунки и распылителя. В канале корпуса форсунки выполнен обратный клапан, прижимаемый к седлу пружиной. В канал распылителя запрессована цилиндрическая вставка с винтовой нарезкой на поверхности, которая образует смесительно-аккумулирующую камеру, соединяющуюся с подъигольной полостью распылителя форсунки.

На базе разработанной форсунки была изготовлена топливная система дизеля, позволяющая подавать различные виды газообразных добавок к топливу.

Наиболее эффективно проводить рассмотрение особенностей рабочего процесса при использовании альтернативных топлив, обладая информацией о пространственном распределении полей концентрации сажи и температуры. На сегодняшний день существует в основном двухмерное представление температурно-концентрационной неоднородности в цилиндре дизеля. В результате была поставлена задача экспериментального исследования пространственного распределения полей температуры и концентраций сажи. В работе использовалось оригинальное экспериментальное оборудование для определения массовой концентрации сажи, основанное на оптическом индицировании цилиндров, и программно реализованные методики определения температурных полей.

Расчетные исследования растворимости газа (водорода, аммиака и др.) основывались на следующих предположениях: во-первых -процесс растворения идет в смесительно-аккумулирующей камере и распылителе форсунки; во-вторых - растворение протекает в соответствии с моделью обновления поверхности, т.е. поверхность контакта топлива с газом обновляется с частотой, равной частоте колебания давления топлива в нагнетательном трубопроводе высокого давления.

Одним из путей преодоления трудностей приготовления смесей дизельного топлива с альтернативными является применение третьего компонента - совместного растворителя дизельного топлива и спирта. Совместный растворитель должен иметь свойства дизельного топлива и спирта, т.е. его молекула должна иметь как полярные свойства, так и алифатическую составляющую для образования связей с углеводородами.

Попытки использования водорода в качестве топлива для двигателей внутреннего сгорания известны достаточно давно. Так, например, в двадцатые годы исследовали вариант использования водорода как добавки к основному топливу для двигателей внутреннего сгорания дирижаблей, что давало возможность увеличить дальность их полета.

Использование водорода в качестве топлива для ДВС представляет собой комплексную проблему, которая включает обширный круг вопросов:

Возможность перевода на водород современных двигателей;

Изучение рабочего процесса двигателей при работе на водороде;

Определение оптимальных способов регулирования рабочего процесса обеспечивающих минимальную токсичность и максимальную топливную экономичность;

Разработку системы топливоподачи обеспечивающую организацию эффективного рабочего процесса в цилиндрах ДВС;

Разработку эффективных способов хранения водорода на борту транспорта;

Обеспечение экологической эффективности применения водорода для ДВС;

Обеспечение возможности заправки и аккумулирования водорода для двигателей.

Решение этих вопросов имеет вариантный уровень, однако, общее состояние исследований по этой проблеме можно рассматривать, как реальную базу для практического применения водорода. Подтверждением этому являются практические испытания, исследования вариантных двигателей работающих на водороде. Так, например, фирма "Mazda" делает ставку на водородный роторно-поршневой двигатель.

Исследования в этой области отличаются широким спектром вариантов использования водорода для двигателей внешнего и внутреннего смесеобразования, при использовании водорода в качестве присадки, частично замещая топливо водородом, и работе двигателя только на водороде.

Обширный перечень исследований определяет необходимость их систематизации и критического анализа. Использование водорода известно в двигателях, работающих на традиционных топливах нефтяного происхождения, а также в сочетании с альтернативными топливами. Так, например, со спиртами (этиловый, метиловый) или с природным газом. Возможно использование водорода в сочетании с синтетическими топливами, мазутами и другими топливами.

Исследования этой области известны как для бензиновых двигателей, так и для дизелей, а также для других типов двигателей. Некоторые авторы работ этой тематики считают, что водород является неизбежностью и необходимо лучше подготовиться к встрече с этой неизбежностью.

Отличительной особенностью водорода является его высокие энергетические показатели, уникальные кинетические характеристики, экологическая чистота и практически неограниченная сырьевая база. По массовой энергоемкости водород превосходит традиционные углеводородные топлива в 2,5-3 раза, спирты - в 5-6 раз, аммиак - в 7 раз.

Качественное влияние на рабочий процесс ДВС водорода определяется, прежде всего, его свойствами. Он обладает более высокой диффузионной способностью, большей скоростью сгорания, широкими пределами воспламенения. Энергия воспламенения водорода на порядок меньше, чем у углеводородных топлив. Реальный рабочий цикл определяет более высокую степень совершенства рабочего процесса ДВС, лучшие показатели экономичности и токсичности.

Чтобы приспособить существующие конструкции поршневых ДВС, бензиновых и дизелей к работе на водороде, как основном топливе, необходимы определенные изменения, в первую очередь - конструкции топливоподающей системы. Известно, что применение внешнего смесеобразования приводит к уменьшению наполнения двигателя свежим окислителем, а значит и снижению мощности до 40%, из-за низкой плотности и высокой летучести водорода. При использовании внутреннего смесеобразования картина меняется, энергоемкость заряда водородного дизеля может возрастать до 12%, или может быть обеспечена на уровне, соответствующем работе дизеля на традиционном углеводородном дизельном топливе. Особенности организации рабочего процесса водородного двигателя определяются свойствами водородно-воздушной смеси, а именно: пределами воспламенения, температурой и энергией воспламенения, скоростью распространения фронта пламени, расстоянием гашения пламени.

Практически во всех известных исследованиях рабочего процесса водородного двигателя отмечается трудноконтролируемое воспламенение водородно-воздушной смеси. Воздействие на преждевременное воспламенение путем подачи воды во впускной трубопровод или путем впрыска «холодного» водорода исследованы и дают положительные результаты.

Остаточные газы и горячие точки камеры сгорания интенсифицируют преждевременное воспламенение водородно-воздушной смеси. Это обстоятельство требует дополнительных мероприятий по предупреждению неконтролируемого воспламенения. В то же время, низкая энергия воспламенения в широких пределах коэффициента избытка воздуха позволяет использовать существующие системы зажигания при переводе двигателей на водород.

Самовоспламенение водородно-воздушной смеси в цилиндре двигателя при степени сжатия, соответствующей дизелям, не происходит. Для самовоспламенения этой смеси необходимо обеспечить температуру конца сжатия не менее 1023К. Возможно, воспламенение воздушной смеси от запальной порции углеводородного топлива, за счет увеличения температуры конца сжатия применением наддува или подогревом на впуске воздушного заряда.

Водород в качестве топлива для дизелей характеризуется большой скоростью распространения фронта пламени. Эта скорость может превышать 200 м/с и вызывать возникновение волны давления, перемещающейся в камере сгорания со скоростью свыше 600 м/с. Высокая скорость сгорания водородно-воздушных смесей, с одной стороны, должна оказывать положительное влияние на повышение эффективности рабочего процесса, с другой стороны, этим предопределяются высокие значения максимального давления и температуры цикла, более высокая жесткость рабочего процесса водородного двигателя. Повышение максимального давления цикла влечет снижение моторесурса двигателя, а повышение максимальной температуры приводит к интенсивному образованию окислов азота. Возможно снижение максимального давления за счет дефорсирования двигателя или сжигания водорода по мере его подачи в цилиндр на такте рабочего хода. Снижение эмисси окислов азота до незначительного уровня возможно путем обеднения рабочей смеси или путем использования воды, подаваемой во впускной трубопровод. Так, при а>1,8 эмиссия окислов азота практически отсутствует. При подаче воды по массе в 8 раз больше, чем водорода, эмиссия окислов азота снижается в 8… 10 раз.

CNG разрешено непосредственно в городских кварталах жилой и общественной застройки. Более того, во многих странах разрешена заправка транспортных средств природным газом в подземных гаражах. 1.6. Производство газового оборудования для автомобилей. В наши дни славу лучшего в мире производителя газовой автоаппаратуры перехватила Италия. И сейчас на мировом рынке наибольшим спросом пользуется...

Модель, получившая обозначение «H2R», развивает скорость свыше 300 км/ч. Перспективным представляется новое направление в двигателестроении на водородном топливе, основанное на применении двигателя Стирлинга. Этот двигатель до конца XX в. широко не применялся на автотранспорте из-за более сложной по сравнению с двигателем внутреннего сгорания конструкции, большей материалоемкости и стоимости. ...

ВИДЫ ТОПЛИВА. КЛАССИФИКАЦИЯ ТОПЛИВА

По определению Д.И.Менделеева, «топливом называется горючее вещество, умышленно сжигаемое для получения теплоты».

В настоящее время термин «топливо» распространяется на все материалы, служащие источником энергии (например, ядерное топливо).

Топливо по происхождению делят на:

Природное топливо (уголь, торф, нефть, горючие сланцы, древесина и др.)

Искусственное топливо (моторное топливо, генераторный газ, кокс, брикеты и др.).

По своему агрегатному состоянию его делят на твёрдое, жидкое и газообразное топливо, а по своему назначению при использовании – на энергетическое, технологическое и бытовое. Наиболее высокие требования предъявляются к энергетическому топливу, а минимальные требования – к бытовому.

Твёрдое топливо – древесно-растительная масса, торф, сланцы, бурый уголь, каменный уголь.

Жидкое топливо – продукты переработки нефти (мазут).

Газообразное топливо – природный газ; газ, образующийся при переработке нефти, а также биогаз.

Ядерное топливо – расщепляющиеся (радиоактивные) вещества (уран, плутоний).

Органическое топливо, т.е. уголь, нефть, природный газ, составляет подавляющую часть всего энергопотребления. Образование органического топлива является результатом теплового, механического и биологического воздействия в течение многих столетий на останки растительного и животного мира, откладывающиеся во всех геологических формациях. Всё это топливо имеет углеродную основу, и энергия высвобождается из него, главным образом, в процессе образования диоксида углерода.

ТВЁРДОЕ ТОПЛИВО. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ

Твёрдое топливо. Ископаемое твёрдое топливо (за исключением сланцев) является продуктом разложения органической массы растений. Самое молодое из них – торф – представляет собой плотную массу, образовавшуюся из перегнивших остатков болотных растений. Следующими по «возрасту» являются бурые угли – землистая или чёрная однородная масса, которая при длительном хранении на воздухе частично окисляется («выветривается») и рассыпается в порошок. Затем идут каменные угли, обладающие, как правило, повышенной прочностью и меньшей пористостью. Органическая масса наиболее старых из них – антрацитов – претерпела наибольшие изменения и на 93 % состоит из углерода. Антрацит отличается высокой твёрдостью.

Мировые геологические запасы угля, выраженные в условном топливе, оцениваются в 14000 млрд.тонн, из которых половина относится к достоверным (Азия – 63%, Америка – 27%). Наибольшими запасами угля располагают США и Россия. Значительные запасы имеются в ФРГ, Англии, Китае, на Украине и в Казахстане.

Всё количество угля можно представить в виде куба со стороной 21 км, из которого ежегодно изымается человеком «кубик» со стороной 1,8 км. При таких темпах потребления угля хватит примерно на 1000 лет. Но уголь – тяжёлое неудобное топливо, имеющее много минеральных примесей, что усложняет его использование. Запасы его распределены крайне неравномерно. Известнейшие месторождения угля: Донбасский (запасы угля 128 млрд.т.), Печорский (210 млрд.т.), Карагандинский (50 млрд.т.), Экибастузский (10 млрд.т.), Кузнецкий (600 млрд.т.), Канско-Ачинский (600 млрд.т.). Иркутский (70 млрд.т.) бассейны. Самые крупные в мире месторождения угля – Тунгусское (2300 млрд.т. – свыше 15% от мировых запасов) и Ленское (1800 млрд.т. – почти 13% от мировых запасов).

Добыча угля ведётся шахтным методом (глубиной от сотен метров до нескольких километров) или в виде открытых карьерных разработок. Уже на этапе добычи и транспортировки угля, применяя передовые технологии, можно добиться снижения потерь при транспортировке. Уменьшения зольности и влажности отгружаемого угля.

Возобновляемым твёрдым топливом является древесина. Доля её в энергобалансе мира сейчас чрезвычайно невелика, но в некоторых регионах древесина (а чаще её отходы) также используется в качестве топлива.

В качестве твёрдого топлива могут быть также использованы брикеты – механическая смесь угольной и торфяной мелочи со связующими веществами (битум и др.), спрессованная под давлением до 100 МПа в специальных прессах.

ЖИДКОЕ ТОПЛИВО. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ

Жидкое топливо. Практически всё жидкое топливо пока получают путём переработки нефти. Нефть, жидкое горючее полезное ископаемое, представляет собой бурую жидкость, содержащую в растворе газообразные и легколетучие углеводороды. Она имеет своеобразный смоляной запах. При перегонке нефти получают ряд продуктов, имеющих важное техническое значение: бензин, керосин, смазочные масла, а также вазелин, применяемый в медицине и парфюмерии.

Сырую нефть нагревают до 300-370 °С, после чего полученные пары разгоняют на фракции, конденсирующиеся при различной температуре tª: сжиженный газ (выход около 1%), бензиновую (около 15%, tª=30 - 180°С). Керосиновую (около 17 %, tª=120 - 135°С), дизельную (около 18 %, tª=180 - 350°С). Жидкий остаток с температурой начала кипения 330-350°С называется мазутом. Мазут, как и моторное топливо, представляет собой сложную смесь углеводородов, в состав которых входят, в основном, углерод (84-86 %) и водород (10-12%).

Мазут, получаемый из нефти ряда месторождений, может содержать много серы (до 4.3%), что резко усложняет защиту оборудования и окружающей среды при его сжигании.

Зольность мазута не должна превышать 0,14 %, а содержание воды должно быть не более 1,5 %. В состав золы входят соединения ванадия, никеля, железа и других металлов, поэтому её часто используют в качестве сырья для получения, например, ванадия.

В котлах котельных и электростанций обычно сжигают мазут, в бытовых отопительных установках – печное бытовое топливо (смесь средних фракций).

Мировые геологические запасы нефти оцениваются в 200 млрд. т., из которых 53 млрд.т. составляют достоверные запасы. Более половины всех достоверных запасов нефти расположено в странах Среднего и Ближнего Востока. В странах Западной Европы, где имеются высокоразвитые производства, сосредоточены относительно небольшие запасы нефти. Разведанные запасы нефти всё время увеличиваются. Прирост происходит в основном за счёт морских шельфов. Поэтому все имеющиеся в литературе оценки запасов нефти являются условными и характеризуют только порядок величин.

Общие запасы нефти в мире ниже, чем угля. Но нефть более удобное для использования топливо. Особенно в переработанном виде. После подъёма через скважину нефть направляется потребителям в основном по нефтепроводам, железной дорогой или танкерами. Поэтому в себестоимости нефти существенную часть имеет транспортная составляющая.


ГАЗООБРАЗНОЕ ТОПЛИВО. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ

Газообразное топливо. К газообразному топливу относится, прежде всего, природный газ. Это газ, добываемый из чисто газовых месторождений, попутный газ нефтяных месторождений, газ конденсатных месторождений, шахтный метан и т.д. Основным его компонентом является метан СН 4 ; кроме того, в газе разных месторождений содержатся небольшие количества азота N 2 , высших углеводородов СnНm , диоксида углерода СО 2 . В процессе добычи природного газа его очищают от сернистых соединений, но часть их (в основном сероводород) может оставаться.

При добыче нефти выделяется так называемый попутный газ, содержащий меньше метана, чем природный, но больше высших углеводородов и поэтому выделяющий при сгорании больше теплоты.

В промышленности и особенно в быту находит широкое распространение сжиженный газ, получаемый при первичной обработке нефти и попутных нефтяных газов. Выпускают технический пропан (не менее 93% С 3 Н 8 + С 3 Н 6), технический бутан (не менее 93% С 4 Н 10 + С 4 Н 8) и их смеси.

Мировые геологические запасы газа оцениваются в 140-170 триллионов м³.

Природный газ располагается в залежах, представляющих собой «купола» из водонепроницаемого слоя (типа глины), под которым в пористой среде (песчаник) под давлением находится газ, состоящий в основном из метана СН 4 . На выходе из скважины газ очищается от песчаной взвеси, капель конденсата и других включений и подаётся на магистральный газопровод диаметром 0,5 – 1,5 м длиной несколько тысяч километров. Давление газа в газопроводе поддерживается на уровне 5 МПа при помощи компрессоров, установленных через каждые 100-150 м. Компрессоры вращаются газовыми турбинами, потребляющими газ. Общий расход газа на поддержание давления в газопроводе составляет 10-12% от всего прокачиваемого. Поэтому транспорт газообразного топлива весьма энергозатратен.

В последнее время в ряде мест всё большее применение находит биогаз – продукт анаэробной ферментации (сбраживания) органических отходов (навоза, растительных остатков, мусора, сточных вод и т.д.). В Китае на самых разных отбросах работают уже свыше миллиона фабрик биогаза (по данным ЮНЕСКО – до 7 млн.). В Японии источниками биогаза служат свалки предварительно отсортированного бытового мусора. «Фабрика», производительностью до 10-20 м³ газа в сутки. Обеспечивает топливом небольшую электростанцию мощностью 716 кВт.

Анаэробное сбраживание отходов крупных животноводческих комплексов позволяет решить чрезвычайно острую проблему загрязнения окружающей среды жидкими отходами путём превращения их в биогаз (примерно 1 куб.м в сутки на единицу крупного рогатого скота) и высококачественные удобрения.

Весьма перспективным видом топлива, обладающим в три раза большей удельной энергоёмкостью по сравнению с нефтью, является водород, научно-экспериментальные работы по изысканию экономичных способов промышленного преобразования которого активно ведутся в настоящее время как в нашей стране, так и за рубежом. Запасы водорода неистощимы и не связаны с каким-то регионом планеты. Водород в связанном состоянии содержится в молекулах воды (Н 2 О). При его сжигании образуется вода, не загрязняющая окружающую среду. Водород удобно хранить, распределять по трубопроводам и транспортировать без больших затрат.

Специалисты разных стран ведут исследования в области применения новых видов топлива и источников энергии на автомобильных транспортах. Это связано со значительным ростом численности автотранспортных средств и все большим загрязнением окружающей среды окружающей среды.

К наиболее эффективным и перспективным видам моторного топлива следует отнести природный газ, водород, пропан-бутановую смесь, метанол и др.

Перспективное автомобильное топливо -- это любой химический источник энергии, использование которого в традиционных или разрабатываемых автомобильных двигателях позволяет в какой-то степени решить энергетическую проблему и уменьшить вредное воздействие на окружающую среду. Исходя из этого формулируются пять основных условий перспективности новых источников энергии:

наличие достаточных энергосырьевых ресурсов;

возможность массового производства;

технологическая и энергетическая совместимость с транспортными силовыми установками;

приемлемые токсичные и экономические показателипроцесса использования энергии;

безопасность и безвредность эксплуатации.

Существует несколько различных классификаций перспективных автомобильных топлив. Большой практический интерес представляет энергетическая классификация, в основу которой положена калорийность традиционного жидкого углеродного топлива.

У традиционного жидкого углеводородного топлива самая высокая энергоплотность, поэтому автомобиль, работающий на нем, имеет небольшие размеры и массу топливного бака и топливной аппаратуры и не требует сложной системы заправки и хранения топлива. Углеводородные газы и водород обладают более высокой массовой энергоемкостью, но из-за малой плотности у них значительно худшие объемные энергетические показатели. Поэтому использование этих топлив возможно только в сжатом или сжиженном состоянии, что в ряде случаев значительно усложняет конструкцию автомобиля.

Водородное топливо. Большие надежды возлагаются на водородное топливо как на топливо будущего. Обусловлено это его высокими энергетическими показателями, отсутствием большинства токсичных веществ в продуктах сгорания и практически неограниченной сырьевой базой. Именно с водородом связывают перспективное развитие энергетики.

По массовой энергоемкости водород превосходит углеводородные топлива примерно в 3 раза; спирты -- в 5--6 раз. Но из-за очень малой плотности его энергоплотность низка. Водород обладает рядом свойств, сильно затрудняющих его использование: сжижается при 24К; обладает высокой диффузионной способностью; предъявляет повышенные требования к контактирующим материалам, взрывоопасен. Однако несмотря на это, ученые многих стран ведут работы по созданию автомобилей, работающих на водородном топливе. Многочисленные схемы возможного его применения в автомобиле делятся на две группы: водород как основное топливо и как добавки к современным моторным топливам. Основной трудностью при использовании водорода в сжиженном состоянии является его низкая температура. Обычно жидкий водород транспортируется в криогенных резервуарах с двойными стенками, пространство между которыми заполнено изоляцией. Для безопасной эксплуатации жидкого водорода необходимы полная герметизация топливоподающей системы и обеспечение сброса избыточного давления.

Водородная технология, водородная энергетика -- о них говорят все настойчивее по той причине, что этот химический элемент -- основа единственного известного сегодня топлива, не образующего при сгорании пресловутого угарного газа и потому экологически наименее вредного. К тому же запасы его в природе практически неисчерпаемы. Вот почему уже много лет предпринимаются попытки использовать водород для двигателей внутреннего сгорания. В этом направлении еще в 30-е годы работали Московский автомеханический институт, МГТУ имени Баумана и ряд других институтов.

Во время Великой Отечественной войны идею водородного топлива практически применили для автомобилей в войсках противовоздушной обороны на Ленинградском фронте.

В послевоенные годы академик Е. А. Чудаков и профессор И. Л. Варшавский использовали водород для питания одноцилиндрового двигателя в Автомобильной лаборатории АН СССР. Занимались этой проблемой академик В. В. Струминский и другие исследователи. Однако эксперименты тогда не получили широкого размаха. Они стали более актуальными и возобновились позднее. Только в США к 1976г. по этой теме вели исследования 15 экспериментально-конструкторских групп, которые создали 42 разновидности «водородных» двигателей. Аналогичные поиски развернуты учеными ФРГ и Японии.

Столь большой интерес к водороду как к топливу объясняется не только его преимуществами экологического характера, но и физико-химическими свойствами: теплота сгорания у него втрое выше, чем у нефтепродуктов, воспламеняемость смеси с воздухом имеет широкие пределы, водород обладает высокой скоростью распространения пламени и низкой энергией воспламенения -- в 10--12 раз ниже, чем бензин.

В нашей стране обширные работы по использованию водорода для автомобильных двигателей активно ведут многие научные центры.

Метод получения этого химического элемента с применением так называемых энергоаккумулирующих веществ детально разработан Институтом проблем машиностроения АН Украины, который проводит также фундаментальные исследования процессов сгорания водородовоздушных и бензоводородовоздушных смесей, разрабатывает принципиальные схемы силовой установки автомобиля при различных методах хранения нового горючего на борту.

Водород как моторное топливо имеет некоторые особенности, обусловленные его свойствами. Широкие пределы воспламеняемости позволяют лучше регулировать протекание рабочего процесса двигателя. В результате удается повысить экономичность при частичных нагрузках -- режиме, в котором автомобильный двигатель «живет» довольно долго. Теплотворность однородной смеси водорода с воздухом ниже, чем у бензина. Поэтому мощность двигателя на водороде в большей степени, чем при использовании бензина, зависит от способа смесеобразования.

Исследования детонационной стойкости бензоводородовоздушных и водородовоздушных смесей показали, что их склонность к детонации в значительной степени зависит от коэффициента избытка воздуха. И в этом отношении при использовании водорода в качестве топлива выявлены иные закономерности, чем для бензина. Изучение работы двигателей на водородовоздушных и бензоводородовоздушных смесях показало высокую стабильность рабочего процесса. Сравнивая пределы изменения оптимального угла опережения зажигания при работе на водороде и бензине, можно заметить, что в первом случае он существенно зависит от коэффициента избытка воздуха. При обогащении смеси наивыгоднейший угол опережения зажигания значительно уменьшается. Поэтому при работе на водороде двигателю нужны иные регулировки этого параметра.

Наконец, при сгорании водорода отработавшие газы не содержат таких вредных компонентов, как СО, углеводороды, РЬО. Остается только один токсичный компонент в выхлопе -- NО (и то в меньших количествах, чем при работе на бензине). При использовании водорода в качестве добавки содержание вредных компонентов резко сокращается благодаря полноте сгорания. Кроме того, уменьшается необходимость использования вредных антидетонационных свинцовых присадок к бензинам.

Эксперименты показали, что двигатели внутреннего сгорания могут с успехом работать как на чистом водороде, так и на смеси его с парами бензина. Любопытно, что уже 10-процентная добавка (от массы расходуемого топлива) водорода может оказать существенное влияние, снижая токсичность отработавших газов и улучшая экономические показатели. Она намного расширяет пределы воспламеняемости смеси, что создает условия для эффективного регулирования процесса сгорания. Практически это означает возможность устойчивой работы на очень бедных бензоводородовоздушных смесях с большим коэффициентом избытка воздуха, чем обеспечивается значительная экономия бензина. Учитывая то обстоятельство, что двигатель в городских условиях до 30% времени работает на холостом ходу или режимах неполной нагрузки, можно представить себе, какие экономические выгоды несет использование водорода. А работа двигателя при высоких коэффициентах избытка воздуха сопровождается почти полным сгоранием смеси, и, следовательно, в отработавших газах нет токсичных компонентов. В Институте проблем машиностроения АН Украины уже разработаны автомобильные силовые установки, действующие на водородном топливе. Для них водород получают из воды (с применением энергоаккумулирующих веществ, в основе которых лежат окислы металлов), а также из гидридов -- веществ, способных при охлаждении поглощать водород, а при нагревании -- отдавать его.

Связывать водород гидридами необходимо в интересах безопасности, так как при утечках из баллонов он образует, смешиваясь с воздухом, взрывчатую смесь, которая легко воспламеняется (вспомните частые аварии дирижаблей с емкостями, заполненными водородом). Но важнее тот факт, что гидриды являются более рациональным методом хранения водорода на борту автомобиля по объемным показателям.

Общая схема силовой установки топлива: водородное топливо, получаемое в результате взаимодействия энергоаккумулирующих веществ с водой, подается системой питания в двигатель. Мощность двигателя регулируется компонентами, подаваемыми в реактор для освобождения связанного водорода.

Силовая установка может быть выполнена как по открытому, так и закрытому циклу. В первом случае на борту автомобиля размещаются только емкости для энергоаккумулирующих веществ и воды, а продукты сгорания выбрасываются в атмосферу. При замкнутом цикле дополнительно вводятся теплообменник и конденсатор, позволяющие использовать пары воды из выхлопных газов. Поступающая в реактор с энергоаккумулирующими веществами вода снова служит источником для получения водорода. Так при замкнутом цикле «носителем» топлива служит вода, а энергией -- энергоаккумулирующие вещества. Водородное топливо при обоих циклах может использоваться в чистом виде или в качестве добавок (5--10% по массе). В последнем случае на машине сохраняется система питания бензином. «Извлечение» водорода из воды происходит в реакторе, содержащем энергоаккумулирующие вещества. Наиболее простым является реактор постоянного действия, в котором давление поддерживается регулировкой подачи компонентов в зону реакции.

Процесс получения в нем топлива происходит не мгновенно, т. е. он обладает некой инерцией. Выделяющийся в реакторе водород поэтому должен поступать к мотору через редуктор-регулятор, поддерживающий оптимальное давление перед форсунками подачи.

По разработанным методикам для испытаний с применением энергоаккумулирующих веществ на основе оксидов металлов, а также с использованием гидридов были апробированы серийные легковые автомобили «Москвич» и «ВАЗ».

Первый эксперимент (применение энергоаккумулирующих веществ -- автомобиль «Москвич») -- система питания бензином оставлена без изменения. На машине смонтированы два реактора 1, обеспечивающие получение водорода из воды, и редуктор 5, предназначенный для дозирования подачи топлива на разных режимах работы двигателя.

Реакторы периодического действия имеют постоянную загрузку энергоаккумулирующих веществ на основе кремния или алюминия с регулируемой подачей воды. Насосы высокого давления 4, приводимые электродвигателем, подают воду из бака через подогреватель и фильтр к реактору, где ее распыляют форсунки. В водяной системе установлены обратные клапаны, предотвращающие проникновение туда водорода при прекращении подачи воды. Кроме того, в ней предусмотрен кран 3, который переключает подачу воды с одного реактора на другой. Все агрегаты этой экспериментальной установки смонтированы на общей раме и помещены в багажнике.

Установка с применением энергоаккумулирующих веществ для питания двигателя водородом: 1 -- реакторы периодического действия; 2 -- бак для воды; 3 -- кран подачи воды в реактор; 4 -- блок насосов с электроприводом; 5 -- редуктор в системе подачи водорода

Водород от реакторов поступает к крану, установленному на приборной панели, которым водитель соединяет работающий реактор 1 с системой подачи водорода. Последняя состоит из понижающего редуктора, влагоотделителя, газового счетчика и редуктора регулирования подачи водорода (управляется специальной педалью). Топливо вводится во впускной трубопровод, непосредственно перед впускным клапаном.

Для работы на водороде, получаемом из гидридов, система питания бензином также сохранена и дополнительно установлена система хранения и подачи водорода (автомобиль «ВАЗ»). Она состоит из гидридного бака 1, нагреваемого отработавшими газами, редуктора со всережимным вакуумным регулятором 9 расхода водорода и смесителя 8, сделанного на базе серийного карбюратора. Скорость выделения водорода гидридом система регулирует автоматически (блок управления 10, реле давления 2, заслонка с электромагнитным приводом 7 на выпускной трубе), поддерживает постоянным, независимо от режима двигателя, давление водорода в системе. Гидридный бак при зарядке охлаждается водой.

Установка с применением гидридов: 1 -- гидридный бак; 2 -- реле давления; 3 -- вентиль заправки; 4 -- выхлопной патрубок гидридного бака; 5 -- глушитель; 6 -- бензиновый бак; 7 -- электромагнитный привод заслонки; 8 -- смеситель; 9 -- регупятор давления и расхода водорода; 10 -- блок электронного управления

Применение водорода в качестве дополнительного топлива для карбюраторных двигателей открывает возможность принципиально нового подхода к организации рабочего процесса. При минимальной модификации двигателя, касающейся в основном системы питания, можно достичь значительного повышения его топливной экономичности (эксплуатационный расход бензина снижается на 35--40%) и уменьшить токсичность отработавших газов.

Таблица 13 Токсичность отработавших газов,

Водотопливные эмульсии. Применение воды в рабочем процессе двигателя внутреннего сгорания не является новинкой последних лет. Впрыск воды использовался для обеспечения работы двигателей внутреннего сгорания на низкооктановых топливах еще в 30-е годы.

Сейчас основное внимание при использовании воды в качестве добавки к топливу уделяется возможности повышения экономичности и снижения токсичности отработавших газов автомобиля.

Водотопливные эмульсии -- это жидкое топливо с мельчайшими каплями равномерно распределенной по объему топлива воды. Эмульсия приготовляется непосредственно на автомобиле. Для предотвращения расслоения эмульсии в топливо добавляется эмульгатор в количестве 0,2--0,5%. Содержание воды в водотопливной эмульсии может достигать 30--40%.

Применение водотопливных эмульсий возможно как в карбюраторном, так и дизельном двигателе. Но в карбюраторном двигателе применение водотопливных эмульсий в ряде случаев приводит к ухудшению некоторых показателей (в частности, топливной экономичности), отказам при полном открытии дроссельной заслонки, перебоям при движении с низкой скоростью. Наилучшие результаты дает использование водотопливных эмульсий на дизельных двигателях. Подача в камеру сгорания воды обеспечивает дополнительное распыление топлива за счет дробления перегретыми парами воды. Удельный расход топлива при этом снижается на 4--10%.

Добавка воды к топливу позволяет снизить содержание некоторых токсичных веществ в отработавших газах за счет уменьшения максимальных температур в камере сгорания, величина которых определяет количество NОх. При применении водотопливных эмульсий количество NOх может снизиться на 40-- 50%. Снижается также дымность отработавших газов, так как сажа при наличии паров воды взаимодействует с ними с образованием углекислого газа и азота. Выделение СО остается практически неизменным по сравнению с работой двигателя внутреннего сгорания на топливе без добавки воды, а выделение СпНш несколько увеличивается. Этот вид топлива пока не нашел широкого применения на автомобильном транспорте, поскольку усложняется конструкция автомобиля, возникает ряд проблем при эксплуатации в зимний период, недостаточно изучено влияние воды на условия работы и долговечность двигателя внутреннего сгорания.

Синтетические спирты. В качестве топлива для двигателя внутреннего сгорания автомобилей нашли применение метанол и этанол как в чистом виде, так и в составе многокомпонентных смесей.

Наибольшее распространение автомобили, работающие на спиртовом топливе, получили в Бразилии, которая ввозит 80--85% нефтепродуктов, расплачиваясь за них валютой. Расходы на горючее растут из года в год и исчисляются миллиардами долларов. Поэтому в стране с энтузиазмом был встречен объявленный президентом в 1975г. проект «алкоголизации транспорта». Топливные баки бразильских автомобилей заправляются смесью спирта и бензина в пропорции 1:4.

Со временем предполагается перевести весь автопарк на использование этилового спирта вместо бензина. Спирт получают из сахарного тростника (Бразилия -- крупнейший в мире производитель этой культуры). Возможно получение до 80 т биомассы с 1га в год. Плантаций, занимающих 2% территории страны, будет достаточно, чтобы обеспечить потребность в новом горючем.

По расчетам специалистов 1л спирта обходится на 30-- 35 % дешевле бензина.

Мексика, вторая по численности населения страна Латинской Америки, готова последовать бразильскому примеру. В США также проявляется интерес к производству топливного спирта из древесных, сельскохозяйственных и иных отходов.

С энергетической точки зрения преимущество спиртовых топлив заключается в высоком КПД рабочего процесса и высокой антидетонационной стойкости топлива, но теплота сгорания спиртов примерно вдвое ниже, чем у бензинов. Низкая энергоемкость спиртов ведет к увеличению удельного расхода топлива.

Использование спиртов требует сравнительно небольшого изменения конструкции автомобиля. Основные мероприятия сводятся к увеличению объема топливных баков и установке устройств, обеспечивающих стабильный пуск двигателя в любую погоду. Требуется также замена некоторых металлов и прокладочных материалов, в частности облицовка пластмассой метанольного бака. Это связано с высокой коррозийной активностью спиртов и необходимостью более тщательной герметизации топливоподающей системы, поскольку метанол является нервно-сосудистым ядом. Применение бензометанольной смеси выдвигает ряд других специфических требований. В частности, ужесточаются требования к давлению насыщенных паров бензина, поскольку даже с 5 %-ной добавкой метанола оно значительно увеличивается. Чтобы избежать расслоения смеси, при ее хранении, транспортировке и применении необходимо соблюдать определенную температуру и не допускать попадания в нее воды. Некоторые синтетические материалы, используемые в системах подачи топлива и в автомобильных системах питания, оказались нестойкими к бензометанольной смеси. При переводе автомобиля с бензина на бензометанольную смесь пришлось изменить пропускную способность жиклеров, при этом несколько увеличился общий расход топлива. Вместе с тем установлено, что смесь с содержанием метанола до 15 % не ухудшает основных технико-эксплуатационных показателей грузовых автомобилей. Высокие антидетонационные показатели спиртов позволяют повышать степень сжатия двигателя внутреннего сгорания до 14--15 единиц.

Использование спиртовых топлив снижает содержание токсичных веществ в отработавших газах, что объясняется более низкой температурой горения спиртового топлива.

С начала 70-х годов, когда резко обострилась энергоэкологическая ситуация, практически все промышленно развитые страны развернули широкий поиск альтернативных энергоносителей, способных заменить бензин и дизельное топливо. Среди альтернативных топлив особое внимание уделяется водороду: его использование для двигателей внутреннего сгорания позволяет решить как сырьевую, так и экологическую проблемы, причем сделать это без коренной перестройки технической базы современного двигателестроения. В частности, исследования показали, что применение водорода в качестве основного или дополнительного топлива для двигателей с принудительным воспламенением заряда повышает их топливную экономичность на 30--40% и резко снижает токсичность отработавших газов, так как моторные свойства позволяют двигателям работать на бедных смесях при качественном регулировании мощности. За рубежом работы по созданию автомобильных «водородных» двигателей внутреннего сгорания ведутся передовыми развитыми странами уже давно и довольно успешно. В частности, автомобильная компания «Даймлер--Бенц» (Германия) изготавливала легковые автомобили и микроавтобусы на базе серийных моделей, двигатели которых питаются как бензином с добавкой водорода, так и «чистым» водородом. Из трех приемлемых для автотранспортных средств способов аккумулирования водорода -- в сжатом до 20 МПа, сжиженном при температуре 20К или химически связанном в металлогидридах состоянии -- на экспериментальных автомобилях фирмы «Даймлер--Бенц» применялся последний.

Определяющее влияние транспорта на состояние окружающей среды требует особого внимания к при­менению новых экологически чистых видов топлива. К ним относится, прежде все­го, сжиженный или сжатый газ.

В мировой практике в качестве моторного топлива наиболее широко используется сжатый природный газ, содержащий не менее 85 % метана.

В меньшей степени распространено применение по­путного нефтяного газа; представляющего собой смесь, в основном - пропана и бутана. Эта смесь может нахо­диться в жидком состоянии при обычных температу­рах под давлением до 1,6 МПа. Для замещения 1 л бензина требуется 1,3 л сжиженного нефтяного газа, а экономическая эффективность его по эквивалентным затратам на топливо в 1,7 раз ниже, чем у сжатого газа. Следует отметить, что природный газ, в отличие от не­фтяного газа, не токсичен.

Анализ показывает, что применение газа сокращает выбросы: окислов углерода - в 3-4 раза; окислов азо­та - в 1,5-2 раза; углеводородов (не считая метана) - в 3-5 раз; частиц сажи и двуокиси серы (дымность) дизельных двигателей - в 4-6 раз.

При работе на природном газе с коэффициентом из­бытка воздуха а=1,1 выбросы ПАУ, образующихся в двигателе при сгорании топлива и смазочного масла (включая бенз(а)пирен), составляют 10 % от выбросов при работе на бензине. Двигатели, работающие на природном газе, уже сейчас удовлетворяют всем современ­ным нормам по содержанию газообразных и твердых составляющих в выхлопных газах.

Токсичные компоненты выхлопных газов

Вид топлива

(без метана)

Бензапирен

Бензин (двигатели с нейтрализат.)

Дизтопливо

Газ+дизтопливо

Пропан-бутан

природ, сжатый

Особо следует остановиться на выбросах углеводоро­дов, которые претерпевают в атмосфере фотохимичес­кое окисление под действием ультрафиолетового облу­чения (ускоряющееся в присутствии NO x). Продукты этих окислительных реакций образуют так называемый смог. В бензиновых двигателях основное количество уг­леводородных выбросов приходится на этан и этилен, а в газовых - на метан. Это связано с тем, что эта часть выбросов бензиновых двигателей образуется в резуль­тате крекинга паров бензина в несгорающей части сме­си при высоких температурах, а в газовых двигателях несгорающий метан никаким преобразованиям не под­вергается.

Легче всего под воздействием ультрафиолетового облучения окисляются непредельные углеводороды, такие, как этилен. Предельные углеводороды, вклю­чая метан, более стабильны, т.к. требуют для фотохимической реакции более жесткого (коротковолнового) излучения. В спектре солнечного излучения составля­ющая, инициирующая окисление метана, имеет столь малую интенсивность по сравнению с инициаторами окисления других углеводородов, что практически окис­ление метана не происходит. Поэтому в ограничитель­ных стандартах автомобильных выбросов ряда стран углеводороды учитывают без метана, хотя пересчет ве­дется на метан.

Таким образом, несмотря на то, что сумма углево­дородов в выхлопных газах двигателей, использую­щих газомоторное топливо, оказывается такой же, как и у бензиновых двигателей, а в газодизеле часто и выше, эффект загрязнения воздушного бассейна этими ком­понентами при газовом топливе в несколько раз мень­ше, чем при жидком.

Важно также иметь в виду, что при применении газового топ­лива увеличивается моторесуры двигателя - в 1,4- 1,8 раза; срок службы свечей зажигания - в 4 раза и моторного масла - в 1,5-1,8 раза; межремонтный пробег - в 1,5-2 раза. При этом снижаются уровень шума на 3-8 дБ и время заправки. Все это обеспечива­ет быструю окупаемость затрат на перевод транспорта на газомоторное топливо.

Внимание специалистов привлекают вопросы безо­пасности использования газомоторного топлива. В це­лом взрывоопасная смесь газовых топлив с воздухом образуется при концентрациях, в 1,9-4,5 раза. Однако определенную опасность представляют утеч­ки газа через неплотность соединений. В этом отноше­нии наиболее опасен сжиженный нефтяной газ, т.к. плотность его паров больше, чем воздуха, а для сжато­го - меньше (соответственно, 3:1,5:0,5). Следователь­но, утечки сжатого газа после выхода из неплотностей поднимаются вверх и улетучиваются, а сжиженного - образуют местные скопления и, подобно жидким неф­тепродуктам, «разливаются», что при возгорании уве­личивает очаг пожара.

Кроме сжиженного или сжатого газа многие специ­алисты предрекают большое будущее жидкому водоро­ду, как практически идеальному, с экологической точ­ки зрения, моторному топливу. Еще несколько десяти­летий назад применение жидкого водорода в качестве горючего казалось достаточно отдаленным. К тому же трагическая гибель в канун второй мировой войны на­полненного водородом дирижабля «ГинденбурТ» настоль­ко подмочила общественную репутацию «топлива бу­дущего», что надолго вычеркнуло его из каких-либо серьезных проектов.

Быстрое развитие космической техники вновь зас­тавило обратиться к водороду, на этот раз уже жидко­му, как почти идеальному горючему для исследования и освоения мирового пространства. Тем не менее, по-прежнему не исчезли сложные инженерные проблемы, связанные как со свойствами самого водо­рода, так и его производством. Как горючее для транс­порта водород удобнее и безопаснее применять в жид­ком виде, где в пересчете на один килограмм он пре­восходит по калорийности керосин в 8,7 раза и жидкий метан в 1,7 раза. В то же время плотность жидкого водорода меньше, чем у керосина почти на порядок, что требует значительно больших баков. К тому же во­дород должен храниться при атмосферном давлении при очень низкой температуре - 253 градуса Цельсия. От­сюда необходимость соответствующей теплоизоляции баков, что также тянет за собой дополнительный вес и объем. Высокая температура горения водорода приво­дит к образованию значительного количества экологи­чески вредных окислов азота, если окислителем является воздух. И, наконец, пресловутая проблема безо­пасности. Она по-прежнему остается серьезной, хотя и считается теперь значительно преувеличенной. Отдельно следует сказать о производстве водорода. Почти един­ственным сырьем для получения водорода служат на сегодня те же горючие ископаемые: нефть, газ и уголь. Поэтому истинный перелом в мировой топливной базе на основе водорода может быть достигнут лишь путем принципиального изменения способа его производства, когда исходным сырьем станет вода, а первичным ис­точником энергии - Солнце или сила падающей воды. Водород принципиально превосходит все ископаемые виды горючего, включая и природный газ, в своей об­ратимости, то есть практической неисчерпаемости. В отличие от горючих, добываемых из-под земли, кото­рые после сгорания теряются безвозвратно, водород добывается из воды и сгорает опять в воду. Разумеется, чтобы получить водород из воды, нужно затратить энер­гию, причем значительно большую, чем можно исполь­зовать затем при его сгорании. Но это не имеет суще­ственного значения, если так называемые первичные источники энергии будут в свою очередь неисчерпае­мыми и экологически чистыми.

Разрабатывается и второй проект, где в качестве источника первичной энергии используется Солнце. Подсчитано, что на широтах ± 30-40 градусов наше светило греет примерно в 2-3 раза сильнее, чем в бо­лее северных широтах. Это объясняется не только бо­лее высоким положением Солнца на небе, но и несколько меньшей толщиной атмосферы в тропических регио­нах Земли. Однако почти вся эта энергия быстро рассе­ивается и пропадает. Получение с помощью ее жидкого водорода - наиболее естественный способ аккумуляции солнечной энергии с последующей доставкой ее в север­ные районы планеты. И не случайно научно-исследова­тельский центр, организованный в Штутгарте, имеет характерное название «Солнечный водород - источ­ник энергии будущего». Установки, аккумулирующие солнечный свет, предполагается, согласно указанному проекту, разместить в Сахаре. Сконцентрированное та­ким образом небесное тепло будет использовано для привода паротурбин, вырабатывающих электроэнергию. Дальнейшие звенья схемы те же, что и в канадском варианте, с той лишь разницей, что жидкий водород доставляется в Европу через Средиземное море. Прин­ципиальное сходство обоих проектов, как видим, в том, что они экологически чисты на всех стадиях, включая даже перевозку сжиженного газа по воде, поскольку танкеры работают опять-таки на водородном топливе. Уже сейчас такие всемирно известные немецкие фир­мы, как «Линде» и «Мессергрисхейм», расположенные в районе Мюнхена, производят все необходимое обору­дование для получения, сжижения и транспортировки жидкого водорода, за исключением разве что криоген­ных насосов. Громадный опыт по использованию жид­кого водорода в ракетно-космической технике накоп­лен фирмой «МББ», расположенной в Мюнхене и при­нимающей участие практически во всех престижных программах Западной Европы по освоению космоса. Научно-исследовательское оборудование фирмы в об­ласти криогеники используется также на американс­ких космических челноках. Широко известная немец­кая авиакомпания «Дейче Эрбас» разрабатывает пер­вый в мире аэробус, летающий на жидком водороде. Помимо экологических соображений применение жид­кого водорода в обычной и сверхзвуковой авиации пред­почтительно и по другим причинам. Так, примерно на 30 % при прочих равных условиях снижается взлет­ный вес самолета. Это позволяет, в свою очередь, со­кратить разбег и сделать взлетную кривую более кру­той. В результате снижается шум - этот бич современ­ных аэропортов, расположенных зачастую в густо­населенных районах. Не исключена также возможность снижения лобового сопротивления самолета путем силь­ного охлаждения его носовых частей, встречающих поток воздуха.

Все изложенное выше позволяет сделать вывод, что переход на водородное топливо, в первую очередь в авиа­ции, а затем и в наземном транспорте станет реальнос­тью уже в первые годы нового века. К этому времени будут преодолены технические проблемы, окончатель­но ликвидировано недоверие к водороду как чересчур опасному виду горючего и создана необходимая инфра­структура.