Инжекторный движок. Инжектор - принцип работы. Схема работы инжектора

«Родившись» в 1951 году, инжектор постепенно пришел на смену карбюраторам, читаем статью — . А произошло это благодаря одному из его важнейших преимуществ, которое состоит в уменьшении количества используемого топлива. Помимо которого специалисты также отмечают лучшую динамику разгона инжекторных авто, стабильность функционирования таких моторов, а также снижение числа вредных выбросов от их работы в атмосферу.

Выясним, откуда берутся такие свойства, и вообще каков принцип работы инжектора, однако прежде кратко приведу основные недостатки последнего, чтоб вы не считали его идеальным:

  • дорогой ремонт узлов;
  • наличие элементов, не подлежащих ремонту;
  • необходимость использования качественного топлива;
  • необходимость применения спецоборудования для диагностики, ремонта и обслуживания.

Как работает инжектор?

Итак, как известно, в современных авто карбюраторная система уже полностью замещена . Последние, в отличие от карбюраторных, повышают мощность автомобиля, улучшают динамику его разгона, экологичность. При том, что расход топлива при этом уменьшается.

Кстати, высокие экологические показатели инжектор сохраняет без различных регулировок и настроек. Ведь там имеет место самонастройка топливовоздушной смеси, которая стала возможна благодаря кислородному датчику, установленному на выпускном коллекторе (лямбда-зонд).

Устройство инжектора.

Подача топлива в инжекторный движок производится форсунками, которые могут располагаться или на впускном коллекторе (моновпрыск), или недалеко от впускных клапанов цилиндров (распределенный впрыск), или непосредственно в ГБЦ — головке блока цилиндров (прямой впрыск — впрыск топлива осуществляется в саму камеру сгорания), о том, как промыть форсунок своими руками смотрим .

Помимо форсунок инжектор включает в себя следующие исполнительные элементы:

  • ЭБУ (контроллер) — обрабатывает данные от датчиков и управляет системами подачи топлива и зажигания;
  • бензонасос (электрический) — он подает топливо;
  • различные датчики: температуры, коленвала, распредвала, детонации;
  • — поддерживает разницу давления воздуха во впускном коллекторе и форсунках.

Также все инжекторные моторы оснащаются каталитическим нейтрализатором (катализатором) в виде «сот», на котором нанесен активный слой, способствующий догоранию топлива, остающемуся в выхлопных газах. Однако заправка этилированным бензином длительное время приводит к определенным поломкам, из-за которых катализатор теряет такую способность.

Датчик кислорода в инжекторе и его работа.

Наиболее известным типом является циркониевый кислородный датчик, подробнее в статье — . Он есть переключатель (к слову, один из самых важных), который резко изменяет свое состояние на отметке 0.5% кислорода, содержащегося в выхлопных газах.

Устройство интерфейса датчика выглядит следующим образом: прогретый датчик (300 градусов Цельсия и выше) при богатой смеси (содержание кислорода < 0.5%), как слабый источник тока, устанавливает на выходе напряжение от 0,45 до 0,8 Вольт, а при бедной смеси (содержание кислорода > 0.5%) - от 0.2 до 0.45 Вольт. И не важно, какой точно при этом уровень напряжения, учитывается лишь то, где он расположен по отношению к средней линии. То есть топливо добавляется, когда ECU определяет сигнал бедной смеси, и уменьшается, когда богатой. Следовательно, подача топлива регулируется в зависимости от практических результатов сгорания, что дает возможность системе приспособиться к разным условиям работы.

Известно, что надежно данный датчик работает только в хорошо прогретом состоянии, следовательно, ECU система TCCS заметит его показания только в случае прогрева двигателя до нужного уровня. Однако не всех это устраивает. Поэтому для придания скорости этому процессу в датчик кислорода часто монтируют электрический подогреватель.

Компьютер системы TCCS. Самодиагностика инжектора.

В современном инжекторе установлено много датчиков, это разрешает оптимизировать его работу.

Принцип работы механического инжектора.

Хотя ранее использовались иные конструкции инжекторных моторов с впрыском. К примеру, известен такой двигатель, в котором управление происходит при помощи механических устройств. Управление здесь — дозировка объема топлива при помощи специального клапана. Клапан же управляется системой рычагов, которую приводит в действие воздушный поток. Сегодня механически управляемые клапаны уже полностью изжили себя.

В настоящее же время в каждой системе впрыска есть встроенная подсистема самодиагностики, которая позволяет установить неисправности узлов, датчиков и исполнительных механизмов системы. После самодиагностики компьютер вырабатывает диагностические коды. Они извлекаются из памяти компьютера и расшифровываются согласно таблицам. У каждого производителя свой вариант извлечения данных кодов. Найти практически всех их можно в свободном доступе в интернете, подробнее о диагностике инжектора своими руками, можно прочитать . Кроме того рекомендую ознакомиться с инструкцией, о том .

Инжектор (или форсунка) нужен для точечной подачи топлива в двигатель, его распыления в камере сгорания, а так же образования воздушно-топливной смеси.

Инжектор пришел на смену карбюратору из-за несостоятельности последнего. На современных машинах форсунка используется повсеместно, причем как на бензиновых, так и на дизельных движках.

Виды инжекторов

В зависимости от способа подачи топлива в двигатель различают три вида форсунок.

Электромагнитная форсунка. Подобный инжектор пользуется популярностью на бензиновых двигателях. Устройство форсунки включает сопло и электромагнитный клапан с иглой. Работа инжектора осуществляется благодаря постоянному заложенному алгоритму. Блок управления подает напряжение на обмотку клапана. Электромагнитное поле, образованное этим действием, преодолевает усилие пружины и втаскивает иглу. Освобождается сопло, через которое впрыскивается топливо. После этого напряжение уходит, игла форсунки возвращается на седло.

Электрогидравлическая форсунка. Такой инжектор используют на дизельных движках. Устройство форсунки объединяет камеру управления, дроссели (сливной и впускной), а так же электромагнитный клапан.

В начальном положении игла форсунки прижата давлением топлива на поршень к седлу, клапан закрыт и обесточен. Затем из электронного блока управления подается команда на клапан, он открывает сливной дроссель. Через него топливо вытекает в сливную магистраль из камеры управления. Впускной же дроссель препятствует скорому выравниванию давлений во впускной магистрали и камере управления. Вследствие этого давление на поршень падает, а на иглу не меняется, поэтому и происходит впрыск топлива.

Пьезоэлектрическая форсунка. Быстрота срабатывания, точность дозировки впрыскиваемого топлива, а так же возможность его многократного впрыска: все эти параметры позволяют назвать пьезоэлектрический инжектор лучшей форсункой из имеющихся устройств на данный момент. Сделана форсунка на основе пъезокристалла, включает в себя переключающий клапан, иглу, толкатель.

Работа пьезоэлектрического инжектора основана на принципе гидравлики. В начальном положении игла сидит на седле с помощью высокого топливного давления. На пьезоэлемент подается электрический сигнал, что увеличивает его длину. Усилие переходит на поршень, раскрывается переключающий клапан и топливо подается в сливную магистраль. Игла поднимается за счет разницы давлений в нижней части и собственно на иглу, происходит впрыск топлива в двигатель.

Принцип работы инжектора


Наука далеко шагнула вперед, и в отличие от движков старого типа, под каждый из цилиндров ставят отдельный инжектор. Они соединяются между собой топливной рампой, а за каждой из форсунок находится топливо, которое под давлением подает электронный бензонасос. Инжектор оборудован электромагнитным клапаном. Когда он открывается, топливо впрыскивается либо в коллектор, либо в цилиндр, если стоит система прямого впрыска. Чем дольше клапан остается раскрытым, тем больше топлива попадает в цилиндр, и тем выше будут обороты движка. В современных авто за эту систему отвечает электроника. Электронный блок работает на основании сведений от множества датчиков (о них мы расскажем ниже). Эта информация позволяет настраивать двигатель в соответствии с любой нагрузкой, при любой температуре и при любых его оборотах.

Теперь поговорим об основных датчиках, координирующих работу инжектора. Одним из них является датчик температуры охлаждающей жидкости. Он отвечает за коррекцию подачи топлива и управление электрическим вентилятором. В случае поломки датчик перестанет подавать данные в блок, а двигатель будет работать согласно запрограммированным данным. Они берутся из таблиц и полностью зависят от времени работы движка.
Далее рассмотрим датчик массового наполнения. Он регулирует цикловое наполнение цилиндра. Это устройство рассчитывает массовый расход воздуха и переводит это число в цикловое наполнение. При выходе датчика из строя, расчет наполнения будет проходить по аварийным таблицам, а данные датчика – игнорироваться.

Датчик кислорода вычисляет концентрацию кислорода в выхлопных газах. Эти сведения электронный блок употребляет для корректировки топливных объемов. Но не все системы оборудованы этим устройством. Датчик устанавливают в системы Евро 2 и Евро 3, в зависимости от норм токсичности.

Датчик дроссельной заслонки регулирует положение заслонки в зависимости от циклового наполнения и оборотов движка. Этот датчик уменьшает нагрузку на двигатель.

Датчик детонации контролирует детонацию. В его функции входит запуск автоматического гашения детонации и корректировка угла опережения зажигания.

Датчик коленвала – единственное устройство, при выходе из строя которого система не заработает, соответственно, машина не заведется. При выключении остальных датчиков автомобиль поедет, и можно добраться до СТО самостоятельно.

Конечно же, в этом списке не все датчики инжектора, но основные мы перечислили. К тому же, их количество и комплектация зависят от системы впрыска и основных норм токсичности.

История появления инжекторов

На дворе были 70-е и автомобилисты особо не задумывались о вопросах экологии и экономии. Бензин был дешевый, и многолитровые автомобили употребляли его в неограниченных количествах. Воздух был чище, а природные залежи нефти казались неистощимыми. Но ситуация менялась. Новые промышленные предприятия загрязняли окружающую среду, к этому добавлялись и выхлопные газы автомобиля. К тому же, неожиданно возник нефтяной кризис. И люди стали искать из этого выход.

Перед конструкторами встали два вопроса: как снизить расход бензина и как уменьшить выбросы в окружающую среду. Для того чтобы понять, что привело их к инжектору, рассмотрим устройство карбюратора. В ДВС сгорает рабочая смесь, состоящая из топлива и бензина. Для её полного сгорания соотношение веществ нужно привести к 14,7:1. Эта смесь является стехиометрической, то есть, нормальной. Если же в этой смеси уменьшить объем воздуха, то она станет называться богатой. В двигателе она сгорает не полностью, а её ядовитые остатки выбрасываются в атмосферу. Именно эта богатая смесь образуется в карбюраторах при разгоне и торможении машины, а так же при работе на холостом ходу. К тому же, в карбюраторных двигателях повышенный расход топлива: во время его пути из карбюратора в цилиндр на стенках впускного коллектора оседает около 30% рабочей смеси.

Зная эти минусы, конструкторы должны были разработать топливную систему с точной подачей топлива и полным его сгоранием. Но карбюратору это было не под силу, т.к. в его основе лежит механическое устройство. Поэтому нужно было изобретать новую систему, а не усовершенствовать старую. И тогда конструкторы пришли к идее о системе впрыска. Она обеспечивает точную подачу бензина, а чем меньше размер «капель», тем лучше они соединяются с воздухом. Рабочая смесь выходит однородной и лучше сгорает в двигателе. Для снижения выброса отходов, в топливную инжекторную систему стали устанавливать каталитический нейтрализатор. Но возникала новая проблема. Катализатор – система нежная и дорогая. Он устанавливался в выхлопной части системы, а из-за изменения параметров системы впрыска, связанных с износом, в катализатор попадало топливо. Там оно догорало и выводило катализатор из строя. Поэтому конструкторы установили в систему датчики, управляющие впрыском и составом топлива. Для того чтобы ими руководить, потребовался электронный блок управления. Такая система с интеллектуальным управлением появилась в 1973 году.

Инжекторного двигателя или, попросту говоря, впрыскивания - система топливной подачи, которая применяется для двигателей, работающих на бензине, и имеет преимущества по сравнению с карбюраторной.

Инжекторный двигатель производит легкий запуск автомобиля независимо от любых погодных условий. Такая система способна себя корректировать во время работы, гибко сдвигая параметры приготовления, воздушно-топливной смеси, основываясь на показаниях датчиков, информация с которых поступает на электронный блок управления (ЭБУ).

На сегодняшний день инжекторный двигатель практически полностью исключил использование устаревшей карбюраторной системы. С его появлением существенно улучшилась динамика разгона, снизилось количество вредных веществ, выделяемых в атмосферу, уменьшился расход автомобильного топлива. Он моментально реагирует даже на минимальные изменения нагрузки.

Инжекторные системы классифицируют по положению и количеству форсунок. В настоящее время наиболее популярна таковая, имеющая устройство инжекторного двигателя с распределённым впрыском топлива, где предусмотрена индивидуальная форсунка для каждого цилиндра. Все форсунки соединены с рампой, в которой топливо находится под давлением. Оно создает электрический бензонасос. Количество топлива, впрыскиваемого в систему, зависит от времени открытия форсунки.

Сколько времени она будет открыта, регулирует ЭБУ (контроллер). Устройство инжекторного двигателя таково, что, основываясь на результате обработки показаний от различных датчиков, ЭБУ запускает инжекторный двигатель. применяется для расчетов цикла наполнения цилиндров. Объём расходуемого воздуха измеряется, затем происходит перерасчёт электронным в циклы цилиндрового наполнения. Мощность двигателя увеличивается до 10% из-за улучшения наполнения цилиндров, оптимального который соответствует режиму работающего двигателя. При поломке датчика проводится расчет по определённым таблицам.

Датчик положения заслонки дросселя используется для расчета нагрузки на двигатель. В случае изменения работы двигателя, циклов наполнения цилиндров изменяется угол поворота заслонки дросселя.

Для охлаждающей жидкости используется для определения корректировки подачи топлива по температурным параметрам и для управления электрическим вентилятором. При его поломке показания в расчёт не берутся, параметры, смотря сколько времени работает двигатель, берутся из аварийной таблицы.

Для того чтобы система работала синхронизировано, для определения оборотов двигателя, положения коленчатого вала в определенные моменты, применен полярный датчик, определяющий положение При неверном включении инжекторный двигатель просто не заведется. Если этот датчик сломается, система работать не будет. Он очень важен, и если при поломке других контроллеров машина ехать сможет, то без него автомобиль не заведется.

В системе впрыска имеется обратная связь - в выпускной системе, непосредственно перед катализатором, установлен датчик содержания кислорода в автомобиля (его ещё называют лямбда-зондом). Та информация, которую он выдает, используется системой для корректирования нужного количества топлива, подаваемого в инжекторную систему, точно выдерживая нужные параметры рабочей смеси, следовательно, расход топлива становится более экономичным, при этом уровень токсичности выхлопных газов снижается.

Здесь приведены основные необходимые для работы инжекторной системы датчики. Система питания инжекторного двигателя, в зависимости от того, какой двигатель установлен на вашем автомобиле, может быть укомплектована различными контроллерами.

Внутреннего сгорания (ДВС) основан на сгорании небольшого количества топлива в ограниченном объеме. При этом высвобождающаяся энергия преобразуется за счет движения поршней в механическую энергию. Дозированное количество топлива обеспечивается карбюратором или специальным устройством – инжектором. Двигатели с такими устройствами называются инжекторными. Рабочий принцип инжекторного двигателя прост – подача в нужный момент времени нужного количества топлива в нужное место.

Как работает ДВС

Чтобы ясно понимать различие между двумя типами силовых устройств, необходимо предварительно коснуться того, как вообще работает ДВС. Существует несколько отличающихся типов, из которых самыми распространенными будут:

  1. бензиновые;
  2. дизельные;
  3. газодизельные;
  4. газовые;
  5. роторные.

Принцип работы мотора лучше всего можно понять на примере бензинового двигателя. Самый популярный из них – четырехтактный. Это означает, что весь цикл преобразования энергии, образующейся при сгорании топлива, в механическую осуществляется за четыре такта.
Устройство двигателя таково, что последовательность выполнения тактов следующая:

  • впуск – заполнение цилиндров топливом:
  • сжатие – подготовка топлива к сгоранию;
  • рабочий ход – преобразование энергии сгорания в механическую;
  • выпуск – удаление продуктов сгорания топлива.

Для обеспечения работы двигателя у каждого из них своя задача. Во время первого такта поршень опускается из верхнего положения до крайнего нижнего, открывается клапан (впускной) и цилиндр начинает заполняться топливно-воздушной смесью . Во втором такте клапана закрыты, а движение поршня происходит от нижнего положения к верхнему, смесь в цилиндре сжимается. Когда он доходит до верхнего положения, на свече проскакивает искра и поджигается смесь.

При ее сгорании образуется повышенное давление, которое заставляет двигаться поршень от верхнего положения к нижнему. После его достижения под действием инерции вращения коленвала поршень начинает двигаться опять вверх, при этом срабатывает выпускной клапан, продукты сгорания топлива выводятся наружу из цилиндра. Когда поршень дойдет до верхнего положения, закрывается выпускной, но зато открывается впускной клапан и весь цикл работы повторяется.

Все описанное выше можно увидеть на видео

О карбюраторе, его достоинствах и недостатках

Здесь необходимо сделать небольшое дополнение. Раз мы рассматриваем бензиновый мотор, то в нем подача бензина в цилиндры двигателя возможна различными способами. Исторически первой была разработана подача и дозировка бензина при помощи карбюратора. Это специальное устройство, которое обеспечивает необходимое количество топливно-воздушной смеси (ТВС) в цилиндрах.


Топливно-воздушной называется смесь воздуха и паров бензина. Она приготавливается в карбюраторе, специальном устройстве, для их смешивания в нужной пропорции, зависящей от режима работы двигателя. Будучи достаточно простым по своему устройству, карбюратор длительное время успешно работал с бензиновым мотором.
Однако по мере развития автомобиля выявились недостатки, с которыми в сложившихся к тому времени условиях уже было трудно мириться разработчикам двигателя. В первую очередь это касалось:

  • топливной экономичности. Карбюратор не обеспечивал экономного расходования бензина при внезапном изменении режима движения машины;
  • экологической безопасности. Содержание в отработанных газах токсичных веществ было достаточно высоким;
  • недостаточной мощности двигателя из-за несоответствия ТВС режиму движения автомобиля и его текущему состоянию.

Чтобы избавиться от отмеченных недостатков был реализован иной принцип подачи топлива в мотор – с помощью инжектора.

Про инжекторные моторы

У них есть еще одно название – впрысковые двигатели что, в общем-то, никоим образом не изменяет сути происходящих явлений. По выполняемой работе впрыск напоминает принцип, реализуемый в работе дизеля. В двигатель в нужный момент через форсунки инжектора впрыскивается строго дозированное количество топлива, и оно поджигается искрой со свечи, хотя при работе дизеля свеча не используется.


Весь цикл четырехтактного ДВС, рассмотренный ранее, остается неизменным. Основное отличие в том, что карбюратор готовит ТВС за пределами двигателя, и она потом поступает в цилиндры, а у инжекторного двигателя последних моделей бензин впрыскивается непосредственно в цилиндр.

Как это происходит, можно в деталях увидеть на видео

Подобное устройство мотора позволяет решить те проблемы, которые возникают при работе карбюратора. Использование инжектора обеспечивает по сравнению с карбюраторным вариантом следующие преимущества мотору:

  • повышение мощности на 7-10%;
  • улучшение показателей топливной экономичности;
  • снижение уровня токсичных веществ в составе выхлопных газов;
  • обеспечение оптимального количества топлива, зависящее от режима движения автомашины.

Это только основные достоинства, которые позволяет получить инжекторный двигатель. Однако у каждого достоинства есть и свои недостатки. Если карбюраторный мотор чисто механический и его можно отремонтировать практически в любых условиях, то для управления инжекторным требуется сложная электроника и целая система датчиков, из-за чего работы (регламентные и ремонтные) необходимо проводить в условиях сервисного центра.

Устройство впрыска

Если посмотреть, как выглядит устройство ДВС с впрыском вместо карбюратора, то можно выделить:

  • контроллер впрыска – электронное устройство, содержащее программу для работы всех составных узлов системы;
  • форсунки. Их может быть как несколько, так и одна, в зависимости от используемой системы впрыска;
  • датчик расхода воздуха, определяющий наполнение цилиндров в зависимости от такта. Сначала определяется общее потребление, а потом программно пересчитывается необходимое количество для каждого цилиндра;
  • датчик дроссельной заслонки (ее положения), устанавливающий текущее состояние движения и нагрузку на двигатель;
  • датчик температуры, контролирующий степень нагрева охлаждающей жидкости, по его данным корректируется работа двигателя и при необходимости начинается работа вентилятора обдува;
  • датчик фактического нахождения коленчатого вала обеспечивающий синхронизацию работы всех составных узлов системы;
  • датчик кислорода, определяющий его содержание в выхлопных газах;
  • датчик детонации контролирующий возникновение последней, для ее устранения по его сигналам меняется значение опережения зажигания.


Вот примерно так выглядит в общих чертах система, обеспечивающая впрыск топлива, принцип работы должен быть вполне понятен из ее состава и назначения отдельных элементов.

Виды впрысковых систем

Несмотря на достаточно простое описание работы инжекторного мотора, приведенное ранее, существует несколько разновидностей, осуществляющий подобный принцип работы.

Одноточечный впрыск

Это самый простой вариант реализации принципа впрыска. Он практически совместим с любым карбюраторным двигателем, разница заключается в применении впрыска вместо карбюратора. Если карбюратор во впускной коллектор подает ТВС, то при одноточечном впрыске во впускной коллектор впрыскивается через форсунку бензин.

Как и в случае с карбюраторным мотором, при такте впуск двигатель всасывает готовую топливно-воздушную смесь, и его работа практически не отличается от работы обычного двигателя. Преимуществом такого мотора будет лучшая экономичность.

Многоточечный впрыск

Представляет дальнейший этап совершенствования инжекторных моторов. Топливо по сигналам от контроллера подается к каждому цилиндру, но тоже во впускной коллектор, т.е. ТВС готовится вне цилиндра и уже в готовом виде поступает в цилиндр.
В таком варианте реализации принципа инжекторного двигателя возможно обеспечить многие из преимуществ, присущие впрысковому двигателю и отмеченные ранее.

Непосредственный впрыск

Является следующим этапом развития инжекторных двигателей. Впрыск топлива выполняется прямо в камеру сгорания, чем обеспечивается наилучшая эффективность работы ДВС. Итогом такого подхода является получение максимальной мощности, минимального расхода топлива и наилучших показателей экологической безопасности.

Инжекторный ДВС является следующим этапом в развитии бензинового мотора, значительно улучшающий его показатели. В моторах, использующих систему впрыска топлива, возрастает мощность, а также экономическая эффективность их работы, они отличаются значительно меньшим отрицательным влиянием на окружающую среду.

Рассмотрим инжектор двигателя (его устройство и принцип работы) взяв в качестве примера электронную систему распределенного впрыска.

Впрысковые инжекторные двигатели , которые производятся в настоящее время, оснащаются индивидуальными форсунками для каждого цилиндра. Форсунки соединены с топливной рампой, в которой под давлением находится топливо, подаваемое электрическим бензонасосом. В зависимости от времени в течении которого форсунки находятся в открытом положении, меняется количество впрыскиваемого топлива. Электронный блок управления (так называемые контроллер) регулирует открытие форсунок, основываясь на информации, полученной от различных датчиков.

Датчик массового расхода воздуха необходим для расчета циклового наполнения цилиндров. С помощью этого датчика происходит измерение массового расхода воздуха. Затем полученная информация пересчитывается программой в цилиндровое цикловое наполнение. В случае поломки датчика его показания системой не учитываются, и расчет производится по аварийным таблицам.

Датчик положения дроссельной заслонки рассчитывает фактор нагрузки на двигатель инжектор, а также его изменения в зависимости от оборотов двигателя, угла открытия дроссельной заслонки и циклового наполнения.

Датчик температуры охлаждающей жидкости необходим для определения коррекции топливоподачи и зажигания в зависимости от температуры, а также для управления вентилятором. В случае неисправности данного датчика его показания системой не учитываются, а показания температуры берутся в соответствии с таблицей в зависимости от времени работы двигателя инжектора.

Датчик определения положения коленчатого вала выполняет общую синхронизацию системы, расчета оборотов двигателя и положения коленвала в определенные моменты времени. ДПКВ является полярным датчиком. Если датчик включен не правильно, то инжекторный двигатель не будет заводится. В случае поломки датчика система не будет работать. Датчик определения положения коленчатого вала является единственным датчиком в системе , в случае поломки которого автомобиль не тронется с места. Неполадки в работе остальных датчиков не являются критическими и без них возможно своим ходом добраться до автосервиса.

Датчик кислорода определяет концентрацию кислорода в отработавших газах. Датчик посылает информацию в электронный блок управления для дельнейшей коррекции количества подаваемого топлива. Этот датчик используется исключительно в системах с каталитическим нейтрализатором под нормы токсичности Евро-2 и Евро-3. Причем для Евро-3 применяются два датчика кислорода, один устанавливается до катализатора, а второй после него.

Датчик детонации необходим для контроля за возможной детонацией. В случае обнаружения возможной угрозы детонации ЭБУ запускает алгоритм гашения детонации, при этом система корректирует угол опережения зажигания.

Существует еще ряд различных датчиков, которые необходимы для нормальной работы системы. Для различных моделей автомобилей подбирается определенная комбинация датчиков в зависимости от норм токсичности, системы впрыска и так далее.

Программа ЭБУ на основании произведенных опросов установленных датчиков в программе, осуществляет управление различными исполнительными механизмами. К ним относятся: модуль зажигания, бензонасос, форсунки, регулятор холостого хода, вентилятор системы охлаждения, клапан адсорбера системы улавливания паров бензина и прочие, в зависимости от модели автомобиля.

Если о большинстве названных устройств имеется хотя бы малейшее представление, то об адсорбере не специалист редко слышал. Адсорбер - элемент замкнутой цепи рециркуляции паров бензина. Согласно нормам Евро-2, контакт вентиляции бензобака с атмосферой запрещен, а бензиновые пары должны адсорбироваться (то есть собираться) и в процессе продувки направляться в цилиндры для дальнейшего дожига. При выключенном двигателе бензиновые пары из бака и впускного коллектора попадают в адсорбер, где они поглощаются. Во время запуска двигателя, по команде ЭБУ, адсорбер начинает продуваться потоком воздуха, который всасывается двигателем. Под действием воздушного потока, пары увлекаются в камеру сгорания и там дожигаются.

Виды инжекторных двигателей.

Системы впрыска зависят от места подачи топлива и количества форсунок. Они бывают трех типов:

  • одноточечная (моновпрыск). Одна форсунка устанавливается на впускной коллектор на все цилиндры.
  • многоточечный (распределенный). При таком типе двигателя, каждый цилиндр оснащается своей форсункой, подающей топливо в коллектор)
  • непосредственный. В этом случае топливо подается непосредственно в цилиндры с помощью форсунок. Примером могут служить дизельные инжекторные двигатели .

Системы впрыска инжекторных двигателей.

Моновпрыск является самым простым видом. В нем небольшое количество управляющей электроники. Недостатком является его небольшая эффективность, поскольку управляющая электроника позволяет контролировать поступающую информацию с датчиков и, в случае необходимости, влиять на параметры впрыска. Достоинством одноточечного прыска является тот факт, что под него можно легко адаптировать карбюраторные двигатели обойдясь практически без существенных переделок конструкции или технологических изменений при производстве. Также монопрыск обладает по сравнению с карбюратором позволяет сэкономить топливо, является более экологически чистотым и является относительно стабильным и надежным по своим параметрам. Однако одноточечный впрыск уступает приёмистости инжекторного двигателя . Кроме того, в результате работы моновпрыска около 30% бензина остается в качестве осадка на стенках коллектора.

Безусловно, система моновпрыска является большим прорывом в сравнении с карбюраторной системой питания, однако в настоящее время уже не в состоянии удовлетворять современные требования.

Многоточечный впрыск является более совершенной системой подачи топлива, при которой оно подается отдельно к каждому цилиндру. Данная система подачи топлива значительно мощнее, экономичнее, но при этом и сложнее. Многоточечный впрыск позволяет увеличить мощность инжекторного двигателя примерно на 7-10 процентов. Основными достоинствами распределенного впрыска можно считать:

  • можно автоматически настроить подачу топлива при различных оборотах и в результате, улучшить наполнение цилиндров. Как следствие, это позволит при одинаковой мощности автомобиля разогнаться быстрее.
  • поскольку впрыск топлива происходит в непосредственной близости от впускного клапана, значительно уменьшается его количество, которое оседает на стенках впускного коллектора. В результате появляется возможность более точной регулировки подачи топлива.

Является более эффективным средством в оптимизации сгорания смеси и повышения КПД бензинового инжекторного двигателя . Его работа основывается на простых принципах:

  • топливо тщательнее распыляется, а значит лучше перемешивается с воздухом и более грамотно распоряжается готовой смесью на разных режимах работы двигателя. В результате, инжекторный двигатель с непосредственным впрыском потребляет меньший объем топлива, чем обычные «впрысковые» моторы. Это становится особенно заметно при спокойной езде на небольшой скорости;
  • при равных рабочих объемах двигателей, позволяет разгоняться значительно быстрее;
  • является более экологичным;
  • в результате большей степени сжатия и одновременного эффекта охлаждения воздуха при испарении топлива в цилиндрах, гарантируется более высокая литровая мощность.

Необходимо учитывать, что данный вид инжекторного двигателя требует качественный бензин с низким уровнем содержания серы и прочих механических примесей. Это является обязательным условием для обеспечения нормальной работы топливной системы.