Детонационный двигатель принцип работы. Детонационный роторный двигатель внутреннего сгорания

1

Рассмотрена проблема разработки ротационных детонационных двигателей. Представлены основные типы таких двигателей: ротационный детонационный двигатель Николса, двигатель Войцеховского. Рассмотрены основные направления и тенденции развития конструкции детонационных двигателей. Показано, что современные концепции ротационного детонационного двигателя не могут в принципе привести к созданию работоспособной конструкции, превосходящей по своим характеристикам существующие воздушно-реактивные двигатели. Причиной является стремление конструкторов объединить в один механизм генерацию волны, горение топлива и эжекцию топлива и окислителя. В результате самоорганизации ударно-волновых структур детонационное горение осуществляется в минимальном, а не максимальном объеме. Реально достигнутый сегодня результат – детонационное горение в объеме, не превышающем 15 % объема камеры сгорания. Выход видится в ином подходе – сначала создается оптимальная конфигурация ударных волн, а уже затем в эту систему подаются компоненты топлива и организуется оптимальное детонационное горение в большом объеме.

детонационный двигатель

ротационный детонационный двигатель

двигатель Войцеховского

круговая детонация

спиновая детонация

импульсный детонационный двигатель

1. Войцеховский Б.В., Митрофанов В.В., Топчиян М.Е., Структура фронта детонации в газах. – Новосибирск: Изд-во СО АН СССР, 1963.

2. Усков В.Н., Булат П.В. О задаче проектирования идеального диффузора для сжатия сверхзвукового потока // Фундаментальные исследования. – 2012. – № 6 (ч. 1). – С. 178–184.

3. Усков В.Н., Булат П.В., Продан Н.В. История изучения нерегулярного отражения скачка уплотнения от оси симметрии сверхзвуковой струи с образованием диска Маха // Фундаментальные исследования. – 2012. – № 9 (ч. 2). – С. 414–420.

4. Усков В.Н., Булат П.В., Продан Н.В. Обоснование применения модели стационарной Маховской конфигурации к расчету диска Маха в сверхзвуковой струе // Фундаментальные исследования. – 2012. – № 11 (ч. 1). – С. 168–175.

5. Щелкин К.И. Неустойчивость горения и детонации газов // Успехи физических наук. – 1965. – Т. 87, вып. 2.– С. 273–302.

6. Nichols J.A., Wilkmson H.R., Morrison R.B. Intermittent Detonation as a Trust-Producing Mechanism // Jet Propulsion. – 1957. – № 21. – P. 534–541.

Ротационные детонационные двигатели

Все виды ротационных детонационных двигателей (RDE) роднит то, что система подачи топлива объединена с системой сжигания топлива в детонационной волне, но дальше все работает, как в обычном реактивом двигателе - жаровая труба и сопло. Именно этот факт и инициировал такую активность на ниве модернизации газотурбинных двигателей (ГТД). Представляется привлекательным заменить в ГТД только смесительную головку и систему розжига смеси. Для этого нужно обеспечить непрерывность детонационного горения, например, запустив волну детонации по кругу. Одним из первых такую схему предложил Николс в 1957 г. , а затем развил ее и в середине 60-х годов провел серию экспериментов с вращающейся детонационной волной (рис. 1).

Регулируя диаметр камеры и толщину кольцевого зазора, для каждого вида топливной смеси можно подобрать такую геометрию, что детонация будет устойчивой. На практике соотношения величины зазора и диаметра двигателя получаются неприемлемыми и регулировать скорость распространения волны приходится, управляя подачей топлива, о чем сказано ниже.

Так же как и в импульсных детонационных двигателях, круговая детонационная волна способна эжектировать окислитель, что позволяет использовать RDE при нулевых скоростях. Этот факт повлек за собой шквал экспериментальных и расчетных исследований RDE c кольцевой камерой сгорания и самопроизвольной эжекцией топливно-воздушной смеси, перечислять здесь которые не имеет никакого смысла. Все они построены примерно по одной схеме (рис. 2), напоминающей схему двигателя Николса (рис. 1).

Рис. 1. Схема организации непрерывной круговой детонации в кольцевом зазоре: 1 - детонационная волна; 2 - слой «свежей» топливной смеси; 3 - контактный разрыв; 4 - распространяющийся вниз по течению косой скачок уплотнения; D - направление движения детонационной волны

Рис. 2. Типичная схема RDE: V - скорость набегающего потока; V4 - скорость потока на выходе из сопла; а - свежая ТВС, b - фронт детонационной волны; c - присоединенный косой скачок уплотнения; d - продукты сгорания; p(r) - распределение давления на стенке канала

Разумной альтернативой схеме Николса могла бы стать установка множества топливно-окислительных форсунок, которые бы вспрыскивали топливно-воздушную сместь в область непосредственно перед детонационной волной по определенному закону с заданным давлением (рис. 3). Регулируя давление и скорость подачи топлива в область горения за детонационной волной, можно влиять на скорость ее распространения вверх по потоку. Данное направление является перспективным, но основная проблема в проектировании подобных RDE заключается в том, что повсеместно используемая упрощенная модель течения во фронте детонационного горения совершенно не соответствует реальности.

Рис. 3. RDE с регулируемой подачей топлива в область горения. Ротационный двигатель Войцеховского

Основные надежды в мире связываются с детонационными двигателями, работающими по схеме ротационного двигателя Войцеховского. В 1963 г. Б.В. Войцеховский по аналогии со спиновой детонацией разработал схему непрерывного сжигания газа за тройной конфигурацией ударных волн, циркулирующих в кольцевом канале (рис. 4).

Рис. 4. Схема Войцеховского непрерывного сжигания газа за тройной конфигурацией ударных волн, циркулирующих в кольцевом канале: 1 - свежая смесь; 2 - дважды сжатая смесь за тройной конфигурацией ударных волн, область детонации

В данном случае стационарный гидродинамический процесс с горением газа за ударной волной отличается от схемы детонации Чепмена-Жуге и Зельдовича-Неймана. Такой процесс вполне устойчив, его длительность определяется запасом топливной смеси и в известных экспериментах составляет несколько десятков секунд.

Схема детонационного двигателя Войцеховского послужила прототипом многочисленных исследований ротационных и спиновых детонационных двигателей, инициированных в последние 5 лет. На эту схему приходится более 85 % всех исследований. Всем им присущ один органический недостаток - зона детонации занимает слишком маленькую часть общей зоны горения, обычно не более 15 %. В результате удельные показатели двигателей получаются хуже, чем у двигателей традиционной конструкции.

О причинах неудач с реализацией схемы Войцеховского

Большинство работ по двигателям с непрерывной детонацией связано с развитием концепции Войцеховского. Несмотря на более чем 40-летнюю историю исследований, результаты фактически остались на уровне 1964 г. Доля детонационного горения не превышает 15 % от объема камеры сгорания. Остальное - медленное горение в условиях, далеких от оптимальных.

Одной из причин такого положения дел является отсутствие работоспособной методики расчета. Поскольку течение является трехмерным, а при расчете учитываются только законы сохранения количества движения на ударной волне в перпендикулярном к модельному фронту детонации направлении, то результаты расчета наклона ударных волн к потоку продуктов сгорания отличаются от экспериментально наблюдаемых более чем на 30 %. Следствием является то, что, несмотря на многолетние исследования различных систем подачи топлива и эксперименты по изменению соотношения компонентов топлива, все, что удалось сделать, - это создать модели, в которых детонационное горение возникает и поддерживается в течение 10-15 с. Ни об увеличении КПД, ни о преимуществах по сравнению с существующими ЖРД и ГТД речи не идет.

Проведенный авторами проекта анализ имеющихся схем RDE показал, что все предлагающиеся сегодня схемы RDE неработоспособны в принципе. Детонационное горение возникает и успешно поддерживается, но только в ограниченном объеме. В остальном объеме мы имеем дело с обычным медленным горением, причем за неоптимальной системой ударных волн, что приводит к значительным потерям полного давления. Кроме того, давление оказывается также ниже в разы, чем необходимо для идеальных условий горения при стехиометрическом соотношении компонентов топливной смеси. В результате удельный расход топлива на единицу тяги оказывается на 30-40 % выше, чем у двигателей традиционных схем.

Но самой главной проблемой является сам принцип организации непрерывной детонации. Как показали исследования непрерывной круговой детонации, выполненные еще в 60-е годы , , фронт детонационного горения представляет собой сложную ударно-волновую структуру, состоящую как минимум из двух тройных конфигураций (о тройных конфигурациях ударных волн . Такая структура с присоединенной зоной детонации, как и любая термодинамическая система с обратной связью, оставленная в покое, стремится занять положение, соответствующее минимальному уровню энергии. В результате тройные конфигурации и область детонационного горения подстраиваются друг под друга так, чтобы фронт детонации перемещался по кольцевому зазору при минимально возможном для этого объеме детонационного горения. Это прямо противоположно той цели, которую ставят перед детонационным горением конструкторы двигателей.

Для создания эффективного двигателя RDE необходимо решить задачу создания оптимальной тройной конфигурации ударных волн и организации в ней зоны детонационного сжигания. Оптимальные ударно-волновые структуры необходимо уметь создавать в самых разных технических устройствах, например, в оптимальных диффузорах сверхзвуковых воздухозаборников . Основная задача - максимально возможное увеличение доли детонационного горения в объеме камеры сгорания с неприемлемых сегодняшних 15 % до хотя бы 85 %. Существующие проекты двигателей, основанные на схемах Николса и Войцеховского, не могут обеспечить выполнения данной задачи.

Рецензенты:

Усков В.Н., д.т.н., профессор кафедры гидроаэромеханики Санкт-Петербургского государственного университета, математико-механический факультет, г. Санкт-Петербург;

Емельянов В.Н., д.т.н., профессор, заведующий кафедрой плазмогазодинамики и теплотехники, БГТУ «ВОЕНМЕХ» им. Д.Ф. Устинова, г. Санкт-Петербург.

Работа поступила в редакцию 14.10.2013.

Библиографическая ссылка

Булат П.В., Продан Н.В. ОБЗОР ПРОЕКТОВ ДЕТОНАЦИОННЫХ ДВИГАТЕЛЕЙ. РОТАЦИОННЫЕ ДЕТОНАЦИОННЫЕ ДВИГАТЕЛИ // Фундаментальные исследования. – 2013. – № 10-8. – С. 1672-1675;
URL: http://fundamental-research.ru/ru/article/view?id=32642 (дата обращения: 04.03.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Что на самом деле стоит за сообщениями о первом в мире детонационном ракетном двигателе, испытанном в России?

В конце августа 2016 года мировые информационные агентства облетела новость: на одном из стендов НПО «Энергомаш» в подмосковных Химках заработал первый в мире полноразмерный жидкостный ракетный двигатель (ЖРД) с использованием детонационного горения топлива - . К этому событию отечественная наука и техника шла 70 лет. Идея детонационного двигателя была предложена советским физиком Я. Б. Зельдовичем в статье «Об энергетическом использовании детонационного сгорания», опубликованной в «Журнале технической физики» еще в 1940 году. С тех пор во всем мире шли исследования и эксперименты по практической реализации перспективной технологии. В этой гонке умов вперед вырывались то Германия, то США, то СССР. И вот важный приоритет в мировой истории техники закрепила за собой Россия. В последние годы чем-то подобным нашей стране удается похвастать не часто.

На гребне волны

Испытание детонационного жидкостного ракетного двигателя


В чем же состоят преимущества детонационного двигателя? В традиционных ЖРД, как, впрочем, и в обычных поршневых или турбореактивных авиадвигателях, используется энергия, которая выделяется при сжигании топлива. В камере сгорания ЖРД при этом образуется стационарный фронт пламени, горение в котором происходит при неизменном давлении. Этот процесс обычного горения называется дефлаграцией. В результате взаимодействия горючего и окислителя температура газовой смеси резко возрастает и из сопла вырывается огненный столб продуктов сгорания, которые и образуют реактивную тягу.

Детонация - это тоже горение, но происходит оно в 100 раз быстрее, чем при обычном сжигании топлива. Этот процесс идет так быстро, что детонацию часто путают со взрывом, тем более что при этом выделяется столько энергии, что, к примеру, автомобильный мотор при возникновении этого явления в его цилиндрах и в самом деле может разрушиться. Однако детонация - это не взрыв, а вид горения столь стремительного, что продукты реакции даже не успевают расшириться, поэтому этот процесс, в отличие от дефлаграции, идет при постоянном объеме и резко возрастающем давлении.

На практике это выглядит следующим образом: вместо стационарного фронта пламени в топливной смеси внутри камеры сгорания формируется детонационная волна, которая движется со сверхзвуковой скоростью. В этой волне сжатия и происходит детонация смеси горючего и окислителя, а это процесс с термодинамической точки зрения куда более эффективный, чем обычное сжигание топлива. КПД детонационного сгорания на 25–30% больше, то есть при сжигании одинакового количества топлива получается больше тяги, а благодаря компактности зоны горения детонационный двигатель по мощности, снимаемой с единицы объема, теоретически на порядок превосходит обычные ЖРД.

Уже одного этого оказалось достаточно, чтобы привлечь самое пристальное внимание специалистов к этой идее. Ведь тот застой, который сейчас возник в развитии мировой космонавтики, на полвека застрявшей на околоземной орбите, в первую очередь связан с кризисом ракетного двигателестроения. В кризисе, кстати, находится и авиация, не способная перешагнуть порог трех скоростей звука. Этот кризис можно сравнить с ситуацией в поршневой авиации в конце 1930-х годов. Винт и двигатель внутреннего сгорания исчерпали свой потенциал, и только появление реактивных двигателей позволило выйти на качественно новый уровень высот, скоростей и дальности полетов.

Детонационный ракетный двигатель

Конструкции классических ЖРД за последние десятилетия были вылизаны до совершенства и практически подошли к пределу своих возможностей. Увеличить их удельные характеристики в будущем возможно лишь в очень незначительных пределах - на считаные проценты. Поэтому мировая космонавтика вынуждена идти по экстенсивному пути развития: для пилотируемых полетов на Луну приходится строить гигантские ракеты-носители, а это очень сложно и безумно дорого, во всяком случае для России. Попытка преодолеть кризис с помощью ядерных двигателей наткнулась на экологические проблемы. Появление детонационных ЖРД, быть может, и рано сравнивать с переходом авиации на реактивную тягу, но ускорить процесс освоения космоса они вполне способны. Тем более что у этого типа реактивных двигателей есть еще одно очень важное преимущество.

ГРЭС в миниатюре

Обычный ЖРД - это, в принципе, большая горелка. Для увеличения его тяги и удельных характеристик нужно поднимать давление в камере сгорания. При этом топливо, которое впрыскивается в камеру через форсунки, должно подаваться при большем давлении, чем реализуется в процессе сгорания, иначе струя топлива просто не сможет проникнуть в камеру. Поэтому самым сложным и дорогим агрегатом в ЖРД является вовсе не камера с соплом, которое у всех на виду, а топливный турбонасосный агрегат (ТНА), спрятанный в недрах ракеты среди хитросплетения трубопроводов.

К примеру, у самого мощного в мире ЖРД РД-170, созданного для первой ступени советской сверхтяжелой ракеты-носителя «Энергия» тем же НПО «Энергия», давление в камере сгорания составляет 250 атмосфер. Это очень много. Но давление на выходе из кислородного насоса, качающего окислитель в камеру сгорания, достигает величины 600 атм. Для привода этого насоса используется турбина мощностью 189 МВт! Только представьте себе это: колесо турбины диаметром 0,4 м развивает мощность, в четыре раза большую, чем атомный ледокол «Арктика» с двумя ядерными реакторами! При этом ТНА - это сложное механическое устройство, вал которого совершает 230 оборотов в секунду, а работать ему приходится в среде жидкого кислорода, где малейшая не искра даже, а песчинка в трубопроводе приводит к взрыву. Технологии создания такого ТНА и есть главное ноу-хау «Энергомаша», обладание которым позволяет российской компании и сегодня продавать свои двигатели для установки на американских ракетах-носителях Atlas V и Antares. Альтернативы российским двигателям в США пока нет.

Для детонационного двигателя такие сложности не нужны, поскольку давление для более эффективного сгорания обеспечивает сама детонация, которая и представляет собой бегущую в топливной смеси волну сжатия. При детонации давление увеличивается в 18–20 раз без всякого ТНА.

Чтобы получить в камере сгорания детонационного двигателя условия, эквивалентные, к примеру, условиям в камере сгорания ЖРД американского «Шаттла» (200 атм), достаточно подавать топливо под давлением… 10 атм. Агрегат, необходимый для этого, по сравнению с ТНА классического ЖРД - все равно что велосипедный насос рядом Саяно-Шушенской ГРЭС.

То есть детонационный двигатель будет не только мощнее и экономичнее обычного ЖРД, но и на порядок проще и дешевле. Так почему же эта простота в течение 70 лет не давалась в руки конструкторам?

Пульс прогресса

Главная проблема, которая встала перед инженерами, - как совладать с детонационной волной. Дело ведь не только в том, чтобы сделать двигатель прочнее, чтобы он выдержал повышенные нагрузки. Детонация - это не просто взрывная волна, а кое-что похитрее. Взрывная волна распространяется со скоростью звука, а детонационная со сверхзвуковой скоростью - до 2500 м/с. Она не образует стабильного фронта пламени, поэтому работа такого двигателя носит пульсирующий характер: после каждой детонации необходимо обновить топливную смесь, после чего запустить в ней новую волну.

Попытки создать пульсирующий реактивный двигатель предпринимались задолго до идеи с детонацией. Именно в применении пульсирующих реактивных двигателей пытались найти альтернативу поршневым моторам в 1930-е годы. Привлекала опять же простота: в отличие от авиационной турбины для пульсирующего воздушно-реактивного двигателя (ПуВРД) не нужны были ни вращающийся со скоростью 40 000 оборотов в минуту компрессор для нагнетания воздуха в ненасытное чрево камеры сгорания, ни работающая при температуре газа свыше 1000˚С турбина. В ПуВРД давление в камере сгорания создавали пульсации в горении топлива.

Первые патенты на пульсирующий воздушно-реактивный двигатель были получены независимо друг от друга в 1865 году Шарлем де Луврье (Франция) и в 1867 году Николаем Афанасьевичем Телешовым (Россия). Первую работоспособную конструкцию ПуВРД запатентовал в 1906 году русский инженер В.В. Караводин, годом позже построивший модельную установку. Установка Караводина вследствие ряда недостатков не нашла применения на практике. Первым ПуВРД, работавшим на реальном летательном аппарате, стал немецкий Argus As 014, основанный на патенте 1931 года мюнхенского изобретателя Пауля Шмидта. Argus создавался для «оружия возмездия» - крылатой бомбы «Фау-1». Аналогичную разработку создал в 1942 году советский конструктор Владимир Челомей для первой советской крылатой ракеты 10Х.

Конечно, эти двигатели еще не были детонационными, поскольку в них использовались пульсации обычного горения. Частота этих пульсаций была невелика, что порождало характерный пулеметный звук при работе. Удельные характеристики ПуВРД из-за прерывистого режима работы в среднем были невысоки и после того, как конструкторы к концу 1940-х годов справились со сложностями создания компрессоров, насосов и турбин, турбореактивные двигатели и ЖРД стали королями неба, а ПуВРД остались на периферии технического прогресса.

Любопытно, что первые ПуВРД немецкие и советские конструкторы создали независимо друг от друга. Кстати, и идея детонационного двигателя в 1940 году пришла в голову не одному только Зельдовичу. Одновременно с ним те же мысли высказали Фон Нейман (США) и Вернер Деринг (Германия), так что в международной науке модель использования детонационного горения назвали ZND.

Идея объединить ПуВРД с детонационным горением была очень заманчивой. Но фронт обычного пламени распространяется со скоростью 60–100 м/с и частота его пульсаций в ПуВРД не превышает 250 в секунду. А детонационный фронт движется со скоростью 1500‒2500 м/с, таким образом частота пульсаций должна составлять тысячи в секунду. Реализовать такую скорость обновления смеси и инициации детонации на практике было затруднительно.

Тем не менее попытки создания работоспособных пульсирующих детонационных двигателей продолжались. Работа специалистов ВВС США в этом направлении увенчалась созданием двигателя-демонстратора, который 31 января 2008 года впервые поднялся в небо на экспериментальном самолете Long-EZ. В историческом полете двигатель проработал… 10 секунд на высоте 30 метров. Тем не менее приоритет в данном случае остался за Соединенными Штатами, а самолет по праву занял место в Национальном музее ВВС США.

Между тем уже давно была придумана другая, гораздо более перспективная схема детонационного двигателя.

Как белка в колесе

Мысль закольцевать детонационную волну и заставить ее бегать в камере сгорания как белка в колесе родилась у ученых в начале 1960-х годов. Явление спиновой (вращающейся) детонации теоретически предсказал советский физик из Новосибирска Б. В. Войцеховский в 1960 году. Почти одновременно с ним, в 1961 году, ту же идею высказал американец Дж. Николлс из Мичиганского университета.

Ротационный, или спиновый, детонационный двигатель конструктивно представляет собой кольцевую камеру сгорания, топливо в которую подается с помощью радиально расположенных форсунок. Детонационная волна внутри камеры движется не в осевом направлении, как в ПуВРД, а по кругу, сжимая и выжигая топливную смесь перед собой и в конце концов выталкивая продукты сгорания из сопла точно так же, как винт мясорубки выталкивает наружу фарш. Вместо частоты пульсаций мы получаем частоту вращения детонационной волны, которая может достигать нескольких тысяч в секунду, то есть практически двигатель работает не как пульсирующий, а как обычный ЖРД со стационарным горением, но куда более эффективно, поскольку на самом деле в нем происходит детонация топливной смеси.

В СССР, как и в США, работы над ротационным детонационным двигателем шли с начала 1960-х годов, но опять же при кажущейся простоте идеи ее реализация потребовала решения головоломных теоретических вопросов. Как организовать процесс так, чтобы волна не затухала? Необходимо было понимание сложнейших физико-химических процессов, происходящих в газовой среде. Тут расчет велся уже не на молекулярном, а на атомарном уровне, на стыке химии и квантовой физики. Процессы эти более сложны, чем те, что происходят при генерации луча лазера. Именно поэтому лазер уже давно работает, а детонационный двигатель - нет. Для понимания этих процессов потребовалось создать новую фундаментальную науку - физико-химическую кинетику, которой 50 лет назад еще не существовало. А для практического расчета условий, при которых детонационная волна не будет затухать, а станет самоподдерживающейся, потребовались мощные ЭВМ, появившиеся лишь в последние годы. Вот какой фундамент необходимо было положить в основание практических успехов по укрощению детонации.

Активные работы в этом направлении ведутся в Соединенных Штатах. Этими исследованиями занимаются Pratt & Whitney, General Electric, NASA. К примеру, в научно-исследовательской лаборатории ВМФ США разрабатываются спиновые детонационные газотурбинные установки для флота. В ВМФ США используется 430 газотурбинных установок на 129 кораблях, в год они потребляют топлива на три миллиарда долларов. Внедрение более экономных детонационных газотурбинных двигателей (ГТД) позволит сберечь гигантские средства.

В России над детонационными двигателями работали и продолжают работать десятки НИИ и КБ. В их числе и НПО «Энергомаш» - ведущая двигателестроительная компания российской космической промышленности, со многим предприятиями которой сотрудничает банк ВТБ. Разработка детонационного ЖРД велась не один год, но для того чтобы вершина айсберга этой работы засверкала под солнцем в виде успешного испытания, потребовалось организационное и финансовое участие небезызвестного Фонда перспективных исследований (ФПИ). Именно ФПИ выделил необходимые средства для создания в 2014 году специализированной лаборатории «Детонационные ЖРД». Ведь несмотря на 70 лет исследований, эта технология до сих пор остается в России «слишком перспективной», чтобы ее финансировали заказчики вроде Министерства обороны, которым нужен, как правило, гарантированный практический результат. А до него еще очень далеко.

Укрощение строптивой

Хочется верить, что после всего сказанного выше становится понятна та титаническая работа, которая проглядывает между строк краткого сообщения об испытаниях, прошедших на «Энергомаше» в Химках в июле - августе 2016 года: «Впервые в мире был зарегистрирован установившийся режим непрерывной спиновой детонации поперечных детонационных волн частотой около 20 кГц (частота вращения волны - 8 тысяч оборотов в секунду) на топливной паре „кислород - керосин“. Удалось добиться получения нескольких детонационных волн, уравновешивавших вибрационные и ударные нагрузки друг друга. Специально разработанные в центре имени М. В. Келдыша теплозащитные покрытия помогли справиться с высокими температурными нагрузками. Двигатель выдержал несколько пусков в условиях экстремальных вибронагрузок и сверхвысоких температур при отсутствии охлаждения пристеночного слоя. Особую роль в этом успехе сыграло создание математических моделей и топливных форсунок, позволявших получать смесь необходимой для возникновения детонации консистенции».

Разумеется, не стоит преувеличивать значение достигнутого успеха. Создан лишь двигатель-демонстратор, который проработал относительно недолго, и о его реальных характеристиках ничего не сообщается. По информации НПО «Энергомаш», детонационный ЖРД позволит поднять тягу на 10% при сжигании того же количества топлива, что и в обычном двигателе, а удельный импульс тяги должен увеличиться на 10–15%.

Создание первого в мире полноразмерного детонационного ЖРД закрепило за Россией важный приоритет в мировой истории науки и техники.

Но главный результат состоит в том, что практически подтверждена возможность организации детонационного горения в ЖРД. Однако путь до использования этой технологии в составе реальных летательных аппаратов предстоит еще долгий. Другой важный аспект заключается в том, что еще один мировой приоритет в области высоких технологий отныне закреплен за нашей страной: впервые в мире полноразмерный детонационный ЖРД заработал именно в России, и этот факт останется в истории науки и техники.

Для практической реализации идеи детонационного ЖРД потребовалось 70 лет напряженного труда ученых и конструкторов.

Фото: Фонд перспективных исследований

Общая оценка материала: 5

АНАЛОГИЧНЫЕ МАТЕРИАЛЫ (ПО МЕТКАМ):

Графен прозрачный, магнитный и фильтрующий воду Отец видеозаписи Александр Понятов и AMPEX

Освоение космического пространства невольно ассоциируется с космическими кораблями. Сердцем любой ракеты-носителя является ее двигатель. Он должен развить первую космическую скорость - около 7,9 км/с, чтобы доставить космонавтов на орбиту, и вторую космическую, чтобы преодолеть поле тяготения планеты.

Добиться этого непросто, но ученые постоянно ищут новые пути решения этой задачи. Конструкторы из России шагнули еще дальше и сумели разработать детонационный ракетный двигатель, испытания которого завершились успехом. Это достижение можно назвать настоящим прорывом в области космического машиностроения.

Новые возможности

Почему на детонационные двигатели возлагают большие надежды? По расчетам ученых, их мощность будет в 10 тыс. раз больше, чем мощность существующих ракетных двигателей. При этом они будут потреблять гораздо меньше топлива, а их производство отличится низкой стоимостью и рентабельностью. С чем это связано?

Все дело в реакции окисления горючего. Если в современных ракетах используется процесс дефлаграции - медленное (дозвуковое) горение топлива при постоянном давлении, то детонационный ракетный двигатель функционирует за счет взрыва, детонации горючей смеси. Она сгорает со сверхзвуковой скоростью с выделением огромного количества тепловой энергии одновременно с распространением ударной волны.

Разработкой и испытанием российского варианта детонационного двигателя занималась специализированная лаборатория «Детонационные ЖРД» в составе производственного комплекса «Энергомаш».

Превосходство новых двигателей

Изучением и разработкой детонационных двигателей занимаются ведущие мировые ученые на протяжении 70 лет. Основной причиной, препятствующей созданию этого типа двигателей, является неконтролируемое самовозгорание топлива. Кроме того, на повестке дня стояли задачи по эффективному смешиванию горючего и окислителя, а также интеграции сопла и воздухозаборника.

Решив эти задачи, удастся создать детонационный ракетный двигатель, который по своим техническим характеристикам обгонит время. При этом ученые называют такие его преимущества:

  1. Способность развивать скорости в дозвуковом и гиперзвуковом диапазонах.
  2. Исключение из конструкции многих движущихся частей.
  3. Более низкая масса и стоимость силовой установки.
  4. Высокая термодинамическая эффективность.

Серийно данный тип двигатель не производился. Впервые был испытан на низколетящих самолетах в 2008 году. Детонационный двигатель для ракет-носителей был впервые испытан российскими учеными. Именно поэтому данному событию отводится столь большое значение.

Принцип работы: импульсный и непрерывный

В настоящее время ученые ведут разработку установок с импульсным и непрерывным рабочим процессом. Принцип работы детонационного ракетного двигателя с импульсной схемой работы основан на циклическом заполнении камеры сгорания горючей смесью, последовательном ее воспламенении и выбросе продуктов сгорания в окружающую среду.

Соответственно, при непрерывном рабочем процессе топливо подается в камеру сгорания непрерывно, горючее сгорает в одной или нескольких детонационных волнах, которые непрерывно циркулируют поперек потока. Преимуществами таких двигателей являются:

  1. Однократное зажигание топлива.
  2. Относительно простая конструкция.
  3. Небольшие габариты и масса установок.
  4. Более эффективное использование горючей смеси.
  5. Низкий уровень производимого шума, вибрации и вредных выбросов.

В перспективе, используя данные преимущества, детонационный жидкостный ракетный двигатель непрерывной схемы работы вытеснит все существующие установки благодаря своим массо-габаритным и стоимостным характеристикам.

Испытания детонационного двигателя

Первые испытания отечественной детонационной установки прошли в рамках проекта, учрежденного Министерством образования и науки. В качестве опытного образца был представлен небольшой двигатель с камерой сгорания диаметром 100 мм и шириной кольцевого канала в 5 мм. Испытания проводились на специальном стенде, фиксировались показатели при работе на различных видах горючей смеси - водород-кислород, природный газ-кислород, пропан-бутан-кислород.

Испытания детонационного ракетного двигателя на кислородно-водородном топливе доказали, что термодинамический цикл этих установок на 7 % эффективнее, чем при работе других установок. Кроме того, было экспериментально подтверждено, что с увеличением количества подаваемого горючего увеличивается и тяга, а также количество детонационных волн и частота вращения.

Аналоги в других странах

Разработкой детонационных двигателей занимаются ученые ведущих стран мира. Наибольших успехов в этом направлении достигли конструкторы из США. В своих моделях они реализовали непрерывный способ работы, или ротационный. Американские военные планируют использовать данные установки для оснащения надводных кораблей. Благодаря меньшей массе и небольшим размерам при высокой выдаваемой мощности они помогут увеличить эффективность боевых катеров.

Стехиометрическую смесь водорода и кислорода использует для своей работы американский детонационный ракетный двигатель. Преимущества такого источника энергии в первую очередь экономические - кислорода сгорает ровно столько, сколько того требуется для окисления водорода. Сейчас для обеспечения военных кораблей углеродным топливом правительство США тратит несколько миллиардов долларов. Стехиометрическое горючее снизит расходы в несколько раз.

Дальнейшие направления разработки и перспективы

Новые данные, полученные в результате испытаний детонационных двигателей, определили применение принципиально новых методов построения схемы работы на жидком топливе. Но для функционирования такие двигатели должны иметь высокую жаропрочность ввиду большого количества выделяемой тепловой энергии. В настоящий момент ведется разработка особого покрытия, которое обеспечит работоспособность камеры сгорания под высокотемпературным воздействием.

Особое место в дальнейших исследованиях занимает создание смесительных головок, с помощью которых можно будет получить капли горючего материала заданного размера, концентрации и состава. По решению данных вопросов будет создан новый детонационный жидкостный ракетный двигатель, который станет основой нового класса ракет-носителей.

Детонационными называются двигатели в штатном режиме которых используются детонационное сгорание топлива. Сам двигатель может быть (теоретически) любым, - двс, реактивным, да хоть паровым. Теоретически. Однако, до настоящего времени все известные коммерчески приемлемые двигатели таких режимов сгорания топлива, в простонародье именуемого "взрывом", не использовали в силу их... м-м-м.... коммерческой неприемлемости..

Источник:

Что дает применение детонационного сгорания в двигателях? Сильно упрощая и обобщая, примерно следующее:

Преимущества

1.Замена обычного горения детонационным за счет особенностей газодинамики фронта ударной волны, увеличивает теоретическую предельно достижимую полноту сгорания смеси, что позволяет повысить КПД двигателя, и снизить расход, примерно на 5-20%. Это актуально для всех типов двигателей, как ДВС, так и реактивных.

2. Скорость сгорания порции топливной смеси увеличивается примерно в 10-100 раз, значит теоретически можно для ДВС увеличить литровую мощность (или удельную тягу на килограмм массы для реактивных двигателей) примерно в такое же количество раз. Этот фактор актуален тоже для всех типов двигателей.

3. Фактор актуальный только для реактивных двигателей всех типов: так как процессы горения идут в камере сгорания на сверхзвуковых скоростях, а температуры и давления в камере сгорания возрастают в разы, то появляется отличная теоретическая возможность многократно увеличить и скорость истечения реактивной струи из сопла. Что в свою очередь ведет к пропорциональному росту тяги, удельного импульса, экономичности, и/или снижению массы двигателя и требуемого топлива.

Все эти три фактора очень важны, но носят не революционный, а так сказать эволюционный характер. Революционным является четвертый и пятый фактор, и относится он только к реактивным двигателям:

4. Только применение детонационных технологий позволяет создать прямоточный (а значит, - на атмосферном окислителе!) универсальный реактивный двигатель приемлемой массы, размеров и тяги, для практического и широкомасштабной освоения диапазона до-, сверх-, и гиперзвуковых скоростей 0-20Мах.

5.Только детонационные технологии позволяют выжать из химических ракетных двигателей (на паре топливо-окислитель) скоростные параметры требуемые для их широкого применения в межпланетных перелетах.

П.4 и 5. теоретически открывают нам а) дешевую дорогу в ближний космос, и б)дорогу к пилотируемым пускам к ближайшим планетам, без необходимости делать монструозные сверхтяжелые ракетоносители массой over3500tonnes.

Недостатки детонационных двигателей вытекают из их достоинств:

Источник:

1. Скорость горения настолько высока, что чаще всего эти двигатели удается заставить работают лишь циклически: впуск-горение-выпуск. Что как минимум втрое снижает максимально достижимую литровую мощность и/или тягу, иногда лишая смысла саму затею.

2. Температуры, давления, и скорости их нарастания в камере сгорания детонационных двигателей таковы, что исключают прямое применение большинства известных нам материалов. Все они слишком слабы для построения простого, дешевого и эффективного двигателя. Требуется либо целое семейство принципиально новых материалов, либо применение пока неотработанных конструкторских ухищрений. Материалов у нас нет, а усложнение конструкции опять таки часто лишает смысла всю затею.

Однако есть область в которой без детонационных двигателей не обойтись. Это экономически оправданнй атмосферный гиперзвук с диапазоном скоростей 2-20 Max. Поэтому битва идет по трем направлениям:

1. Создание схемы двигателя с непрерывной детонацией в камере сгорания. Что требует суперкомпьютеров и нетривиальных теоретических подходов для расчета их гемодинамики. В этой области проклятые ватники как всегда вырвались вперед, и впервые в мире теоретически показали, что непрерывная делегация вообще возможна. Изобретение, открытие, патент, - все дела. И приступили к изготовлению практической конструкции из ржавых труб и керосина.

2. Создание конструктивных решений делающих возможными применение классических материалов. Проклятие ватники с пьяными медведями и тут первыми придумали и сделали лабораторный многокамерный двигатель, который уже работает сколь угодно долго. Тяга как у двигателя Су27, а вес такой, что его в руках держит 1 (один!) дедушка. Но так как водка была паленая, то двигатель получился пока пульсирующий. Зато, сволочь работает настолько чисто, что его можно включать даже на кухне (где ватники его собственно и запилили в промежутках между водкой и балалайкой)

3. Создание суперматериалов для будущих двигателей. Эта область наиболее тугая и наиболее секретная. Об прорывах в ней информации я не имею.

Исходя из вышеозвученного рассмотрим перспективы детонационного, поршневого ДВС. Как известно, нарастание давления в камере сгорания классических размеров, при детонации в ДВС происходит быстрее скорости звука. Оставаясь в том же конструктиве, не существует способа заставить механический поршень, да ещё со значительными связанными массами, двигаться в цилиндре с примерно такими же скоростями. ГРМ классической компоновки тоже не может работать на таких скоростях. Поэтому прямая переделка классического ДВС на детонационный с практической точки зрения безсмысленна. Нужно заново разработать двигатель. Но как только мы этим начинаем заниматься, то оказывается что поршень в этой конструкции просто лишняя деталь. Поэтому ИМХО, поршневой детонационный ДВС это анахронизм.

В России прошли успешные испытания детонационных ракетных двигателей. О том, можно ли на их базе создать гиперзвуковое оружие, в интервью "РГ" рассказал главный конструктор "НПО Энергомаш им. академика В.П. Глушко" Петр Левочкин 19 Январь 2018, 10:48

Прошли успешные испытания так называемых детонационных ракетных двигателей, давшие очень интересные результаты. Опытно-конструкторские работы в этом направлении будут продолжены.

Детонация - это взрыв. Можно ли ее сделать управляемой? Можно ли на базе таких двигателей создать гиперзвуковое оружие? Какие ракетные двигатели будут выводить необитаемые и пилотируемые аппараты в ближний космос? Об этом наш разговор с заместителем гендиректора - главным конструктором "НПО Энергомаш им. академика В.П. Глушко" Петром Левочкиным.

Петр Сергеевич, какие возможности открывают новые двигатели?

Петр Левочкин: Если говорить о ближайшей перспективе, то сегодня мы работаем над двигателями для таких ракет, как "Ангара А5В" и "Союз-5", а также другими, которые находятся на предпроектной стадии и неизвестны широкой публике. Вообще наши двигатели предназначены для отрыва ракеты от поверхности небесного тела. И она может быть любой - земной, лунной, марсианской. Так что, если будут реализовываться лунная или марсианская программы, мы обязательно примем в них участие.

Какова эффективность современных ракетных двигателей и есть ли пути их совершенствования?

Петр Левочкин: Если говорить об энергетических и термодинамических параметрах двигателей, то можно сказать, что наши, как, впрочем, и лучшие зарубежные химические ракетные двигатели на сегодняшний день достигли определенного совершенства. Например, полнота сгорания топлива достигает 98,5 процента. То есть практически вся химическая энергия топлива в двигателе преобразуется в тепловую энергию истекающей струи газа из сопла.

Совершенствовать двигатели можно по разным направлениям. Это и применение более энергоемких компонентов топлива, введение новых схемных решений, увеличение давления в камере сгорания. Другим направлением является применение новых, в том числе аддитивных, технологий с целью снижения трудоемкости и, как следствие, снижение стоимости ракетного двигателя. Все это ведет к снижению стоимости выводимой полезной нагрузки.

Однако при более детальном рассмотрении становится ясно, что повышение энергетических характеристик двигателей традиционным способом малоэффективно.

Использование управляемого взрыва топлива может дать ракете скорость в восемь раз выше скорости звука


Почему?

Петр Левочкин: Увеличение давления и расхода топлива в камере сгорания, естественно, увеличит тягу двигателя. Но это потребует увеличение толщины стенок камеры и насосов. В результате сложность конструкции и ее масса возрастают, энергетический выигрыш оказывается не таким уж и большим. Овчинка выделки стоить не будет.

То есть ракетные двигатели исчерпали ресурс своего развития?

Петр Левочкин: Не совсем так. Выражаясь техническим языком, их можно совершенствовать через повышение эффективности внутридвигательных процессов. Существуют циклы термодинамического преобразования химической энергии в энергию истекающей струи, которые гораздо эффективнее классического горения ракетного топлива. Это цикл детонационного горения и близкий к нему цикл Хамфри.

Сам эффект топливной детонации открыл наш соотечественник - впоследствии академик Яков Борисович Зельдович еще в 1940 году. Реализация этого эффекта на практике сулила очень большие перспективы в ракетостроении. Неудивительно, что немцы в те же годы активно исследовали детонационный процесс горения. Но дальше не совсем удачных экспериментов дело у них не продвинулось.

Теоретические расчеты показали, что детонационное горение на 25 процентов эффективней, чем изобарический цикл, соответстветствующий сгоранию топлива при постоянном давлении, который реализован в камерах современных жидкостно-рактивных двигателей.

А чем обеспечиваются преимущества детонационного горения по сравнению с классическим?

Петр Левочкин: Классический процесс горения - дозвуковой. Детонационный - сверхзвуковой. Быстрота протекания реакции в малом объеме приводит к огромному тепловыделению - оно в несколько тысяч раз выше, чем при дозвуковом горении, реализованному в классических ракетных двигателях при одной и той же массе горящего топлива. А для нас, двигателистов, это означает, что при значительно меньших габаритах детонационного двигателя и при малой массе топлива можно получить ту же тягу, что и в огромных современных жидкостных ракетных двигателях.

Не секрет, что двигатели с детонационным горением топлива разрабатывают и за рубежом. Каковы наши позиции? Уступаем, идем на их уровне или лидируем?

Петр Левочкин: Не уступаем - это точно. Но и сказать, что лидируем, не могу. Тема достаточно закрыта. Один из главных технологических секретов состоит в том, как добиться того, чтобы горючее и окислитель ракетного двигателя не горели, а взрывались, при этом не разрушая камеру сгорания. То есть фактически сделать настоящий взрыв контролируемым и управляемым. Для справки: детонационным называют горение топлива во фронте сверхзвуковой ударной волны. Различают импульсную детонацию, когда ударная волна движется вдоль оси камеры и одна сменяет другую, а также непрерывную (спиновую) детонацию, когда ударные волны в камере движутся по кругу.

Насколько известно, с участием ваших специалистов проведены экспериментальные исследования детонационного горения. Какие результаты были получены?

Петр Левочкин: Были выполнены работы по созданию модельной камеры жидкостного детонационного ракетного двигателя. Над проектом под патронажем Фонда перспективных исследований работала большая кооперация ведущих научных центров России. В их числе Институт гидродинамики им. М.А. Лаврентьева, МАИ, "Центр Келдыша", Центральный институт авиационного моторостроения им. П.И. Баранова, Механико-математический факультет МГУ. В качестве горючего мы предложили использовать керосин, а окислителя - газообразный кислород. В процессе теоретических и экспериментальных исследований была подтверждена возможность создания детонационного ракетного двигателя на таких компонентах. На основе полученных данных мы разработали, изготовили и успешно испытали детонационную модельную камеру с тягой в 2 тонны и давлением в камере сгорания около 40 атм.

Данная задача решалась впервые не только в России, но и мире. Поэтому, конечно, проблемы были. Во-первых, связанные с обеспечением устойчивой детонации кислорода с керосином, во-вторых, с обеспечением надежного охлаждения огневой стенки камеры без завесного охлаждения и массой других проблем, суть которых понятна лишь специалистам.

Можно ли использовать детонационный двигатель в гиперзвуковых ракетах?

Петр Левочкин: И можно, и нужно. Хотя бы потому, что горение топлива в нем сверхзвуковое. А в тех двигателях, на которых сейчас пытаются создать управляемые гиперзвуковые летательные аппараты, горение дозвуковое. И это создает массу проблем. Ведь если горение в двигателе дозвуковое, а двигатель летит, допустим, со скоростью пять махов (один мах равен скорости звука), надо встречный поток воздуха затормозить до звукового режима. Соответственно, вся энергия этого торможения переходит в тепло, которое ведет к дополнительному перегреву конструкции.

А в детонационном двигателе процесс горения идет при скорости как минимум в два с половиной раза выше звуковой. И, соответственно, на эту величину мы можем увеличить скорость летательного аппарата. То есть уже речь идет не о пяти, а о восьми махах. Это реально достижимая на сегодняшний день скорость летательных аппаратов с гиперзвуковыми двигателями, в которых будет использоваться принцип детонационного горения.