Что умела делать машина лейбница. Готфрид лейбниц создатель арифметической машины и проекта двоичного вычислителя

Можно понять гордость Лейбница, писавшего тогда Томасу Бернету: “Мне посчастливилось построить такую арифметическую машину, которая совершенно отлична от машины Паскаля, поскольку дает возможность мгновенно выполнять умножение и деление над огромными числами”. Арифметическая машина Лейбница была первой в мире машиной, предназначенной для выполнения четырех действий арифметики.

Счетная машина, над которой Лейбниц начал работать в 70-е годы, представляла шаг в направлении поиска "универсального языка". Первое описание "арифметического инструмента" сделано Лейбницем в 1670 году. Через два года он составил новое эскизное описание, на основе которого был, по-видимому, изготовлен тот экземпляр, который ученый демонстрировал в феврале 1673 г. на заседании Лондонского Королевского общества. Лейбниц заявил, что новый арифметический инструмент придуман им с целью механически выполнять все арифметические действия надежно и быстро, особенно умножение. Под конец своего выступления он признал, что инструмент несовершенен, обещав его улучшить, как только вернется в Париж, где им нанят с этой целью мастер, которому он даст распоряжение изготовить полный инструмент для нужд Общества. Последнее поблагодарило его за такое проявление уважения и щедрости. Действительно, в 1674-1676 гг. Лейбниц внес существенные усовершенствования в машину, а в 1676 г., выполняя данное им Королевскому обществу обещание, привез в Лондон новый вариант счетной машины. Однако это была модель с малой разрядностью чисел, а не арифмометр, пригодный для практических вычислений. Такой арифмометр был построен под руководством Лейбница только в 1694 г. в Ганновере, где после возвращения из Парижа он прожил почти всю жизнь. Впоследствии Лейбниц еще несколько раз возвращался к своему изобретению; последний вариант был предложен им в 1710 г.

Хотя работа Лейбница над арифмометром была и длительной, но отнюдь не непрерывной, поскольку автор машины одновременно трудился в самых различных областях науки. "Уже свыше двадцати лет назад, - писал он в 1695 г., - французы и англичане видели мою счетную машину... с тех пор Ольденбург, Гюйгенс и Арно, сами или через своих друзей, побуждали меня издать описание этого искусного устройства, а я все откладывал это, потому что я сперва имел только маленькую модель этой машины, которая годится для демонстрации механику, но не для пользования. Теперь же с помощью собранных мною рабочих готова машина, позволяющая перемножать до двенадцати разрядов. Уже год, как я этого достиг, но рабочие еще при мне, чтобы можно было изготовить другие подобные машины, так как их требуют из разных мест" (стоит упомянуть, что по признанию самого Лейбница, работа над машиной обошлась ему в 24 000 талеров - огромную по тем временам сумму, если учесть, что годовая зарплата министра в немецком герцогстве или королевстве составляла 1000-2000 талеров.).

Интересно, что один из первых экземпляров "арифметического инструмента" конструкции 1694 г. Лейбниц намеревался подарить Петру I, но машина оказалась неисправной, а механик ученого не смог ее починить в короткий срок. Лейбница интересовал молодой царь далекой Московии, которого он считал выдающимся реформатором. Начиная с 1711 г. Лейбниц несколько раз встречался с Петром I, был принят на русскую службу в звании тайного советника юстиции и составил для русского правительства план организации Академии наук, а также ряд других проектов и докладных записок. "Я не принадлежу к числу тех, - писал Лейбниц Петру I, - которые питают страсть к своему отечеству или к какой-либо другой нации, мои помыслы направлены на благо всего человеческого рода... и мне приятнее сделать много добра у русских, чем мало у немцев..."

Лейбниц с полным основанием высоко отзывался о собственном изобретении. "Наконец я окончил свой арифметический прибор, - сообщал он в одном из писем Р. Вагнеру. - Подобного прибора до сих пор еще никто не видел, так как он чрезвычайно оригинален". Другому своему корреспонденту, Т. Бернету, он пишет: "Мне посчастливилось построить такую арифметическую машину, которая бесконечно отличается от машины Паскаля, так как моя машина дает возможность совершать умножение и деление над огромными числами мгновенно, притом не прибегая к последовательному сложению и вычитанию".

Упоминание машины Паскаля является не случайным, так как сначала Лейбниц пытался лишь улучшить машину великого француза, но понял, что для выполнения операций умножения и деления необходим совершенно новый принцип, который позволил бы:

    обойтись одной установкой множимого;

    вводить множимое в счетчик (т. е. получать кратные и их суммы) одним и тем же движением приводной ручки.

Лейбниц блестяще разрешил эту задачу, предложив использовать цилиндр, на боковой поверхности которого, параллельно образующей, расположено девять ступенек различной длины. Этот цилиндр впоследствии получил название "ступенчатого валика". Валик S насаживался на четырехгранную ось с нарезкой типа зубчатой рейки (рис. 1). Эта рейка входила в зацепление с десятизубым колесом E, по окружности которого были нанесены цифры 0, 1...9. Поворачивая это колесо так, чтобы в прорези крышки (не указанной на рисунке) появлялась та или другая цифра, перемещали ступенчатый валик параллельно оси зубчатого колеса F основного счетчика. Если теперь повернуть валик на 360 градусов, то в зацепление с колесом F войдут одна, две... наиболее длинные ступеньки, в зависимости от величины сдвига. Соответственно колесо F повернется на 0, 1...9 частей полного оборота; также повернется и связанный с ним цифровой диск или ролик R. Со следующим оборотом валика на счетчик вновь перенесется то же число.

Рис. 1. "Ступенчатый" валик Лейбница

"Арифметический инструмент" состоит из двух частей - неподвижной (Pars immobilis) и подвижной (Pars mobbilis)(одвижная часть машины впоследствии получила название каретки и стала непременной принадлежностью каждого механического (и электромеханического) арифмометра). В неподвижной части помещаются 12-разрядный основной счетчик и ступенчатые валики устройства ввода. Установочная часть этого устройства, состоящая из 8 малых цифровых кругов, расположена в подвижной части машины (рис. 2).

Рис. 2. Принцип действия арифмометра Лейбница

В центре каждого круга есть ось, на которую под крышкой машины насажено зубчатое колесо (колесо Е на рис. 1), а поверх крышки установлена стрелка, которая вращается вместе с осью. Конец стрелки может быть установлен против любой цифры круга.

Вспомогательный счетчик в машине Лейбница выполнен следующим образом.

В подвижной части расположено большое колесо (Rota Majuscula), которое состоит из трех частей: наружной, неподвижной части в виде кольца с десятью цифрами от 0 до 9, средней, вращающейся части кольца с десятью отверстиями, и внутренней, неподвижной части, где цифры от 0 до 9 расположены в обратном, нежели во внешнем кольце, порядке; между цифрами 0 и 9 внешнего кольца имеется такой же, как в машине Паскаля, упор, обращенный к центру колеса.

При повороте главного приводного колеса (Маgna Rota) среднее кольцо большого колеса поворачивается на одно деление по часовой стрелке. Если предварительно вставить штифт в отверстие этого кольца против, скажем, цифры 5 на внешнем кольце, то после пяти оборотов приводного кольца этот штифт наткнется на неподвижный упор и тем самым остановит вращение приводного колеса.

Заметим, что внешнее кольцо большого колеса используется при выполнении операции сложения и умножения, а внутреннее - при выполнении вычитания и деления.

Для сдвига 8-разрядного множимого подвижная часть вращением рукоятки К может смещаться влево (на рис. 2 она смещена влево на два разряда).

Внешний вид "арифметического инструмента" показан на рис. 3.


Рис. 3. Внешний вид арифмометра Лейбница

Машина Лейбница, несмотря на все остроумие ее изобретателя, не получила широкого распространения по двум причинам. Первая и основная заключалась в том, что в конце XVII - начале XVIII века не существовало сколько-нибудь устойчивого спроса на столь сложную и заведомо дорогую машину. Другая причина заключалась в некоторой неточности конструкции, в результате которой передача десятков в арифмометре не всегда происходила удовлетворительно.

Но основная идея Лейбница - идея ступенчатого валика - осталась действительной и плодотворной не только в XVIII, но и в XIX и даже в XX столетиях. На принципе ступенчатого валика был построен и арифмометр Томаса - первая в мире счетная машина, которая изготовлялась промышленно. Ее автором был Карл Ксавье Томас (1785-1870), уроженец городка Кольмар в Эльзасе. Получив в 1820 г. патент на свое изобретение, Томас сумел организовать производство машин: за первые 50 лет было продано около 1500 арифмометров.

Впоследствии арифмометр Томаса был усовершенствован многими изобретателями, в частности немцем Бурхгардтом (1884) и англичанином С. Тейтом (1903). Счетные машины, основанные на принципе "ступенчатого валика", длительное время выпускались в России (например, автоматический арифмометр ВММ-2 курского завода "Счетмаш").

Готфрид Лейбниц

Создатель арифметической машины и проекта двоичного вычислителя

После Лейбница, быть может, уже не было человека, который бы полностью охватывал всю интеллектуальную жизнь своего времени.

Норберт Винер

Готфрид Лейбниц

Готфрид Вильгельм Лейбниц родился 21 июня 1646 года в Лейпциге, Германии, в семье профессора философии и морали Лейпцигского университета. С раннего возраста он уже имел неограниченный доступ к библиотеке своего отца, где мог много читать. Когда Готфриду исполнилось шесть лет, его отец умер, не успев передать молодому сыну своей страсти к хронологии. К десяти годам Лейбниц изучил книги Цицерона, Плиния, Геродота, Ксенофана и Платона. В более зрелом возрасте он подтвердил, что древние писатели оказали огромное влияние на его мировоззрение. Еще в детстве он установил для себя два правила: точность и ясность мысли и доведение начатого дела до конца. Эти два правила привели его к изучению логики - одной из страстей всей его жизни.

Занимаясь самообразованием, Лейбниц в возрасте 15 лет уже был готов поступить в университет Лейпцига. Изучая латинский язык с восьми лет и греческий с двенадцати, он понимает, что классическое обучение больше не удовлетворяет его, и обращается к логике.

Тогда Готфрид Лейбниц поступает в университет Лейпцига на факультет правоведения. Изучая право, он все же находит время для исследования записей таких философов, как Кеплер, Галилей, Декарт и Луллий. Заметив, что современная философия понятна только тем, кто знаком с математикой, Лейбниц все лето 1663 года проводит в университете Йены, налегая на математическую основу, которая, как он считает, должна привести его к более глубоким знаниям.

В возрасте 17 лет Лейбниц получает степень бакалавра. В 1666 году, будучи уже полностью готовым к получению степени доктора правоведения, он решает оставить университет. На факультете все недоумевали (ведь Лейбниц в 20 лет знал гораздо больше в области правоведения, чем все его преподаватели) и считали главной причиной его ухода - молодость.

А Лейбниц, оставив учебу в Лейпциге, уезжает в Нюрнберг, где в университете Альтдорфа уже в следующем году получает степень доктора за свой новый (исторический) метод обучения правоведению. Он не только получает ученую степень, но и признание общества, университет просит его занять должность профессора правоведения, от которой Лейбниц, по неизвестным причинам, отказывается.

Вскоре после получения ученой степени Лейбниц отправляется в путешествие, через Франкфурт и Майнц, в Голландию, где перед ним открывается огромный мир, великий ум пленяют философия и теология, дипломатия и политика, математика и алхимия.

Здесь Лейбниц поражает всех своим новым методом обучения правоведению, и после знакомства с бароном фон Бойнебургом ему поручаются различные дипломатические задания.

В 1672 году, в возрасте 26 лет, Лейбница приглашают в Париж - место встреч европейских ученых - для объяснения его нового метода. Здесь созревают его первые грандиозные идеи: сочинения по натурфилософии и теологии, дифференциальное и интегральное исчисление, созданные им под плодотворным влиянием той атмосферы, которая царила вокруг великого Гюйгенса. В этот период Лейбниц начинает интересоваться механическими приспособлениями. К парижскому времени относится и его общение со Спинозой, и он делает первые наброски «теодицеи».

Теодицея - термин, предложенный самим Лейбницем для обозначения философского учения, пытающегося объяснить, как совместить существование в мире зла с признанием «всеблагости» и «всемогущества» Бога. В 1710 году Лейбниц написал трактат под таким названием.

К парижскому времени относятся его первые размышления о двоичной системе счисления. Лейбниц сделал вклад в символическую логику, сформулировал принципиальные свойства логического сложения и логического умножения, отрицания, тождества. Но только через два столетия английский математик Джордж Буль пришел к выводу, что любые логические действия и преобразования относятся непосредственно к области алгебры. В значительной степени благодаря работам Лейбница и Буля сегодняшние компьютеры выполняют все логические операции.

Кроме символической логики, которая играет важную роль в современных вычислениях, Лейбниц также видел преимущество двоичной системы счисления в приведении требуемых арифметических действий к самой простой форме. Французский математик Пьер-Симон Лаплас напишет столетием позже: «Лейбниц видел в двоичной арифметике изображение создания, единица и ноль выражают все числа в системе счисления».

В 1676 году Лейбниц поступает на службу к курфюрсту Ганноверскому. В маленьком городке, резиденции курфюрста, изобретательный ум посвящает свой досуг самым разнообразным занятиям. Наряду с экспериментальным и теоретическим исследованием понятия кинетической энергии, Лейбниц занимается (1678 год) также работой над техническими проектами, в том числе потерпевшим неудачу проектом откачивания воды из рудников в Гарце при помощи ветряных мельниц. Построена, наконец, и арифметическая машина (1694 год), которая обошлась Лейбницу в 24 000 талеров.

Арифметическая машина Лейбница

Можно понять гордость Лейбница, писавшего тогда Томасу Бернету: «Мне посчастливилось построить такую арифметическую машину, которая совершенно отлична от машины Паскаля, поскольку дает возможность мгновенно выполнять умножение и деление над огромными числами». Арифметическая машина Лейбница была первой в мире машиной, предназначенной для выполнения четырех действий арифметики.

Над этой машиной он начал работать еще в 70-е годы. И первое описание «арифметического инструмента» сделано им в 1670 году: через два года он составил новое эскизное описание, на основе которого был, по-видимому, изготовлен тот экземпляр, который ученый продемонстрировал в феврале 1673 года на заседании лондонского Королевского общества. Лейбниц признал, что «инструмент» несовершенен, и обещал улучшить его, как только вернется в Париж. Действительно, в 1674–1676 годы он внес существенные усовершенствования в машину, но к ее окончательному варианту пришел лишь в 1694 году. Впоследствии Лейбниц еще несколько раз возвращался к своему изобретению; последний вариант был предложен им в 1710 году.

Лейбниц пытался сначала лишь улучшить машину Паскаля, но понял, что для выполнения операций умножения и деления необходим совершенно иной принцип, который позволил бы: обойтись одной установкой множимого; вводить множимое в счетчик (т. е. получать кратные и их суммы) одним и тем же движением приводной ручки. Лейбниц блестяще разрешил эту задачу, предложив использовать цилиндр, на параллельно образующей боковой поверхности которого расположено 9 ступенек различной длины. Этот цилиндр впоследствии получил название «ступенчатого валика».

Идея Лейбница - идея ступенчатого валика - нашла свое воплощение и в дальнейших разработках механических вычислителей, вплоть до XX столетия.

Интересно, что один из первых экземпляров «арифметического инструмента» Лейбниц намеревался подарить Петру I, но машина оказалась неисправной, а механик ученого не смог ее починить в короткий срок. Лейбница живо интересовал молодой царь далекой Московии, которого он считал выдающимся реформатором. Петр встречался и переписывался с Лейбницем, обсуждал с ним проект организации Академии наук в Петербурге и развертывания системы образования в России.

В период работы над арифметической машиной Лейбниц продолжает заниматься также двоичной системой счисления. В рукописи на латинском языке, подписанной 15 марта 1679 года, Лейбниц разъясняет, как выполнить вычисления в двоичной системе счисления, в частности умножение, а позже разрабатывает в общих чертах проект вычислительной машины, работающей в двоичной системе счисления. Вот что он пишет: «Вычисления такого рода можно было бы выполнять и на машине. Несомненно, очень просто и без особых затрат это можно сделать следующим образом: нужно проделать отверстия в банке так, чтобы их можно было открывать и закрывать. Открытыми будут те отверстия, которые соответствуют 1, а закрытыми - соответствующие 0. Через открытые отверстия в желоба будут падать маленькие кубики или шарики, а через закрытые отверстия ничего не выпадет. Банка будет перемещаться и сдвигаться от столбца к столбцу, как того требует умножение. Желоба будут представлять столбцы, причем ни один шарик не может попасть из одного желоба в какой-либо другой, пока машина не начнет работать…» В дальнейшем в многочисленных письмах и в трактате «Explication de I’Arithmetique Binairy» (1703 год) Лейбниц снова и снова возвращался к двоичной арифметике.

Впоследствии идею Лейбница об использовании двоичной системы счисления в вычислительных машинах забыли на 250 лет, и только в 1931 году цифровые шестеренки с восемью позициями (2 3 = 8) запатентует во Франции Р. Вальта. В 1936 году он покажет преимущества двоичных вычислительных устройств. Вслед за Вальта то же самое сделают Л. Куффиньяль во Франции и Э. Филлипс в Англии.

Как Лейбниц успел сделать так много в различных областях науки? Просто он имел способность работать в любом месте, в любое время и при любых условиях. Он много читал, записывал и постоянно думал. Он не имел фиксированного времени для приема пищи, но когда в ходе его занятий возникала удобная возможность, он отвлекался, чтобы поесть. Он бездействовал немного, часто проводил ночь в своем кресле, а иногда и в течение нескольких дней. Это позволяло ему совершать огромную работу, но это вело и к болезни.

Современников Лейбница поражали его фантастическая эрудиция, почти сверхъестественная память и удивительная работоспособность.

Но не эти качества определяли гениальность Лейбница. Главным было его умение в любой проблеме увидеть, схватить то, что составляло ее сущность, основу. Он, как никто другой, умел обобщать. Эта ненасытная потребность обобщения заставляла его всю жизнь искать универсальный метод научного познания.

После создания арифметической машины, в 1675 году, Лейбниц возвратился к изучению математики и посвятил все свое свободное время созданию основ дифференциального и интегрального исчисления.

Лейбниц стал служить в Немецком доме Брунсвик историком, библиотекарем и главным советником. В 1687–1690 годах исторические исследования привели его в Австрию и Италию. Во время своего пребывания в Италии Лейбниц посетил Рим и был приглашен Папой Римским на место библиотекаря в Ватикане. Так как эта должность требовала принятия католической веры, Лейбниц отклонил предложение Папы. Вместо этого он предпринял попытку воссоединения протестантских и католических церквей, которые раскололись ещё в начале столетия. Но после некоторых усилий Лейбниц был вынужден забыть об этом проекте.


Отец Лейбница очень рано заметил гениальность своего сына и старался развить в нём любознательность, часто рассказывая ему маленькие эпизоды из священной истории. Лейбницу не было и семи лет, когда он потерял отца; его отец умер, оставив после себя большую личную библиотеку. Кальвизия Лейбниц понял без труда, потому что у него была немецкая книга по всеобщей истории, где говорилось приблизительно то же самое, но при чтении Ливия он постоянно попадал в тупик. Лейбниц не имел понятия ни о жизни древних, ни об их манере писания; не привыкнув также к возвышенной риторике историографов, стоящей выше обыденного понимания, Лейбниц не понимал ни одной строки, но это издание было старинное, с гравюрами, поэтому он внимательно рассматривал гравюры, читал подписи и, мало заботясь о тёмных для него местах, попросту пропускал всё то, чего не мог понять. Он повторял это несколько раз и перелистывал всю книгу; забегая, таким образом, вперёд, Лейбниц стал немного лучше понимать прежнее. Библиотека отца позволила Лейбницу изучить широкий спектр передовых философских и теологических работ, к которым он мог бы иметь доступ только в студенческие годы


В 1661 году, в возрасте четырнадцати лет, Готфрид сам поступил Лейпцигский университет, где когда - то работал его отец. По уровню подготовки Лейбниц значительно превосходил многих студентов старшего возраста. В свою бытность студентом Готфрид Вильгельм познакомился с работами Кеплера, Галилея и других учёных. Спустя 2 года Лейбниц перешёл в Йенский университет, где изучал математику. Лейбниц слушал в Йене лекции математика Вейгеля. В 1667 году Лейбниц поступил на службу к Майнцскому курфюрсту, в ведомство его министра Бойнебурга, где оставался до 1676 года, занимаясь политической и публицистической деятельностью, которая оставляла достаточное количество свободного времени для философских и научных исследований. Опередив время на два века, 21- летний Лейбниц задумал проект математизации логики. Она включала все логические операции, свойства которых он ясно представлял. Идеалом для Лейбница было создание такого языка науки, который позволил бы заменить содержательные рассуждения исчислением на основе арифметики и алгебры. Лейбниц многократно возвращался к задаче « математизации » формальной логики, пробуя применять при этом арифметику, геометрию и комбинаторику область математики, основным создателем которой являлся он сам.


Идея создания машины, выполняющей вычисления, появилась Готфрида Вильгельма Лейбница после его знакомства с голландским математиком и астрономом Христианом Гюйгенсом. Огромное количество вычислений, которое приходилось делать астроному, навело Лейбница на мысль о создании механического устройства, которое могло бы облегчить такие расчёты:« Поскольку это недостойно таких замечательных людей, подобно рабам, терять время на вычислительную работу, которую можно было бы доверить кому угодно при использовании машины ».


Первое описание своей машины Лейбниц сделал в 1670 году. Через два года ученый составил новое эскизное описание, на основе которого в 1673 году построил действующее арифметическое устройство Сложение чисел выполнялось при помощи связанных друг с другом колёс, так же как на вычислительной машине другого выдающегося учёного - изобретателя Блеза Паскаля « Паскалине ». Добавленная в конструкцию движущаяся часть и специальная рукоятка, позволявшая крутить ступенчатое колесо, позволяли ускорить повторяющиеся операции сложения, при помощи которых выполнялось деление и перемножение чисел. Описание калькулятора Лейбница ведется на основе одной из сохранившихся моделей, находящейся в музее в Ганновере. Она представляет собой ящик около метра длинной, 30 сантиметров шириной и около 25 сантиметров высотой.


Машина была продемонстрирована Лейбницем во Французской академии наук и Лондонском королевском обществе. Были построены два прототипа, до сегодняшнего дня только один сохранился в Национальной библиотеке в Германии. В годах Лейбниц провел большую работу по улучшению изобретения и привез в Лондон новый вариант калькулятора. Это была малоразрядная модель счетной машины, не пригодная для практического применения. И только в 1694 году Лейбниц сконструировал двенадцатиразрядную модель. Впоследствии калькулятор несколько раз дорабатывался. Последний вариант был создан в 1710 году.


Изначально, Лейбниц пытался лишь улучшить уже существующее устройство Паскаля, но вскоре он понял, что операция умножения и деления требуют принципиально нового решения, которое бы позволяло вводить множимое только один раз. О своей машине Лейбниц писал: « Мне посчастливилось построить такую арифметическую машину, которая бесконечно отличается от машины Паскаля, так как моя машина дает возможность совершать умножение и деление над огромными числами мгновенно, притом не прибегая к последовательному сложению и вычитанию ». Это стало возможно, благодаря разработанному Лейбницем цилиндру, на боковой поверхности которого, параллельно образующей, располагались зубья различной длины. Этот цилиндр получил название « Ступенчатый валик ». Таким образом, при выполнении операции умножения не требовалось многократно вводить множимое, а достаточно вести его один раз и повернуть ручку главного приводного колеса столько раз, на сколько необходимо произвести умножение. Однако, если множитель будет велик, то операция умножения займет длительное время. Для решения этой проблемы Лейбниц использовал сдвиг множимого, т. е. отдельно происходило умножение на единицы, десятки, сотни и так далее множителя. Таким образом, машина Лейбница была намного лучше машины Паскаля и намного проще.


Последние годы жизни Лейбница прошли печально и беспокойно. Георг - Людвиг не любил Лейбница. Их отношения охладели ещё сильнее, когда Георг - Людвиг под именем Георга I вступил на английский престол. Лейбниц хотел быть приглашённым к лондонскому двору, однако он встретил упорное сопротивление английских учёных, поскольку печально известный спор, который он вёл с Ньютоном, очень повредил ему во взгляде англичан Готфрид Вильгельм Лейбниц был окружён интригами придворных; его раздражали нападки ганноверского духовенства. Последние два года жизни в Ганновере были для Лейбница особенно тяжёлыми, он находился в постоянных физических страданиях; « Ганновер моя тюрьма », сказал он однажды. Лейбниц очень серьёзно заболел и перестал работать над своими проектами. В 1716 в начале августа Лейбницу стало лучше, и он решил наконец окончить брауншвейгскую историю. Однако он простудился, у него был приступ подагры и ревматические боли в плечах. Прибывший врач счёл положение настолько опасным, что сам отправился в аптеку за лекарством, но во время его отсутствия Готфрид Вильгельм умер.

Одним из величайших изобретений XVII века стало создание немецким математиком Готфридом Вильгельмом Лейбницем арифмометра (фото приводится в статье), способного совершать в десятичной системе все четыре основных математических действия. Именно этот вычислительный аппарат можно в полной мере назвать прообразом современного калькулятора.

Юный гений

Будущий изобретатель родился 1 июля 1646 года в Лейпциге и уже в возрасте 14 лет поступил в университет родного города, где изучал гуманитарные науки - историю, философию и юриспруденцию. Вспоминая об этом периоде своей жизни, ученый всегда подчеркивал, что знакомство с трудами выдающихся мыслителей прошлого развило в нем способность творчески подходить к решению сугубо технических проблем, избегая при этом повторения путей, пройденных ранее иными исследователями.

Математикой Лейбниц серьезно занялся лишь двумя годами позже, покинув Лейпциг и став студентом Йенского университета. Посещая лекции своего выдающегося современника - немецкого математика Эрхарда Вайгеля - он, тем не менее, продолжал занятия юриспруденцией и в 17-летнем возрасте опубликовал несколько собственноручно написанных трактатов.

На пути к изобретению

Толчком к созданию Готфридом Лейбницем арифмометра послужила его встреча с голландским астрономом Христианом Гюйгенсом, которому по роду его занятий, постоянно приходилось выполнять громоздкие и весьма сложные математические вычисления. Желая помочь своему новому знакомому, гениальный немец и задался целью изобрести некое механическое устройство, способное взять на себя этот рутинный труд.

Создавая механический арифмометр, Лейбниц имел возможность опираться на опыт своего предшественника - французского ученого Блеза Паскаля, который к тому времени уже изобрел весьма примитивную счетную машину и даже пытался, хотя и безуспешно, наладить ее коммерческое производство. Заметим попутно, что француза побудило к этому желание помочь своему отцу, занимавшемуся сбором налогов и постоянно обремененному множеством вычислений.

Презентация нового арифмометра

Во многом переработав и усовершенствовав счетный аппарат Паскаля, немецкий математик в 1673 году представил общественности Германии совершенно новую модель арифметического устройства, заявив при этом, что намерен и далее продолжать работу над ней. В отличие от своего французского коллеги, конструируя арифмометр, Лейбниц использовал в нем особое ступенчатое колесо, позволяющее упростить и во многом ускорить многократные сложения чисел, необходимые для выполнения операций, связанных с умножением и делением. Были внесены также и некоторые другие усовершенствования, позволявшие автоматически совершать этот процесс.

В последующий период изобретатель вел упорную работу по модернизации своего детища, после чего организовал его презентацию перед членами Лондонского королевского научного общества. Она состоялась в марте 1676 года. Создание арифмометра Лейбница - усовершенствованного и позволявшего без особого труда совершать сложные математические вычисления - стало событием, интерес к которому уже тогда был проявлен во многих европейских странах.

Завершение работы над изобретением

Не останавливаясь на достигнутом и продолжая совершенствовать свой арифмометр, Готфрид Лейбниц в середине 90-х годов представил публике его обновленную модель, которая и стала классическим образцом, вошедшим впоследствии во все справочники мира и получившим имя своего создателя.

Любопытно, что одна из созданных им счетных машин позже была привезена в Россию и попала к Петру I, являвшемуся, как известно, большим любителем и ценителем разных диковинок. Однако на берегах Невы она долго не задержалась и была передана государем в дар китайскому императору как свидетельство необычайного технического прогресса, достигнутого Европой.

Дальнейшие же работы по усовершенствованию своего изобретения ученый вел вплоть до 1710 года, после чего вынужден был прервать их из-за крайне высоких накладных расходов. Достаточно сказать, что в те времена, когда Лейбниц изобрел арифмометр, годовой оклад министра не превышал 2 тыс. талеров, тогда как математик вложил в свое детище сумму в 12 раз большую. Окончательная модель была создана им в двух экземплярах, из которых до настоящего времени сохранился лишь один, представленный в экспозиции Мюнхенского национального музея.

Особенности новой конструкции

Как упоминалось выше, кардинальным отличием созданного Лейбницем арифмометра от разработок, сделанных Паскалем, является наличие в нем ступенчатого вала − особого цилиндра, снабженного по бокам зубцами различного размера. Это приспособление избавляло от необходимости при умножении многократно набирать множимое число. Для получения ответа достаточно было лишь повернуть рукоять, приводящую цилиндр в движение, нужное количество раз. Даже если приходилось умножать большие числа и производимая операция занимала много времени, то и в этом случае преимущество перед арифмометром Паскаля не вызывало сомнения. В конструкцию были введены также и иные элементы, позволяющие упростить и ускорить вычислительный процесс.

Этапы научной деятельности

Рассказывая об арифмометре Лейбница, нельзя не упомянуть и об остальных заслугах этого гениального ученого, осуществившего на рубеже XVII и XVIII веков мощный прорыв в самых различных областях математики. Так, начав в 1667 году службу при дворе Мейнцкого курфюрста, он посвятил много времени созданию основ математического анализа, осуществлявшегося им на иных принципах, чем те, что были сформулированы Ньютоном. Тогда же Лейбницем был написан и капитальный научный труд, в котором он изложил разработанные им основы дифференциального исчисления.

Настоящей революцией в математике стала введенная Лейбницем в середине 80-х годов классификация вещественных чисел, при которых они подразделялись на трансцендентные и алгебраические. То же ему удалось проделать и при изучении кривых линий. Кроме того, в число наиболее значимых достижений ученого вошло введение им в математику такого понятия, как интеграл, которым он обозначил операцию, противоположную дифференцированию.

Параллельно с разработкой арифмометра, Лейбниц занимался и вопросами, входящими в круг линейной алгебры. Однако результаты его работ были по достоинству оценены лишь спустя полвека. Исследуя линейные системы, он ввел в науку неизвестное до той поры понятие «определителя», которое тогда прошло незамеченным в научных кругах, но со временем умножило его славу. Как бы это ни показалось удивительным, но Готфриду Лейбницу принадлежит вклад и в создание современной компьютерной техники. Именно он, оперируя значениями нуля и единицы, разработал широко используемую сегодня двоичную систему исчисления.

Роль Лейбница в истории Германии

Достижения ученого, ушедшего из жизни в 1716 году, во многом помогли Германии не только сделать значительный шаг в своем техническом развитии, но и преодолеть тот экономический и политический упадок, в котором она находилась после поражения в Тридцатилетней войне, охватившей Европу в период 1618-1648 гг.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение

высшего профессионального образования

«АЛТАЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Отделение связей с общественностью

Кафедра связей с общественностью

СЧЕТНАЯ МАШИНА ЛЕЙБНИЦА ГОТФРИДА ВИЛЬГЕЛЬМА

(реферат по «Информатике»)

Барнаул 2011


Введение

1. Биография Лейбница Готфрида Вильгельма

2. Научная деятельность Лейбница Готфрида Вильгельма

3. Счетная машина

Заключение

Список используемой литературы


Введение

Много бед принесла Германии первая половина XVII столетия. Тридцатилетняя война опустошила множество деревень и городов, привела в упадок торговлю и ремесла; население страны уменьшилось с 16 до 6 миллионов человек. Когда наступил долгожданный мир, "Германия оказалась поверженной - беспомощной, растоптанной, растерзанной, истекающей кровью..."

Но - парадокс! - именно эта несчастная страна, которая в научном отношении тогда представляла собой глухую провинцию (она имела лишь одного ученого мирового класса - Иоанна Кеплера), подарила человечеству Готфрида Вильгельма Лейбница, чей универсальный гений оказал громадное влияние на развитие не только немецкой, но и всей европейской науки.

Лейбниц Готфрид Вильгельм является немецким философом, математиком-физиком, юристом, дипломатом, экономистом, лингвистом, археологом и историографом. Его заслуги велики. Он является одной из центральных фигур в развитии логики. Его логическое наследие - поразительный феномен в истории мысли. А его ориентация на математизацию, алгебраизацию и аксиоматизацию логики опередила время минимум на полтора столетия. Поэтому логические идеи пронизывают практически все интеллектуальное наследие Лейбница, так или иначе, затрагиваются во всех его работах от ранней диссертации до «Монадологии» и «Новых опытов о человеческом разуме».

Готфрид Вильгельм изобрел счетную машину, которая стала открытием XVIIвека. Я хочу более подробно рассмотреть механизм и последовательность работы данного изобретения.

лейбниц счетный калькулятор


1. Биография Готфрида Вильгельма Лейбница (1646-1716)

Готфрид Вильгельм фон Лейбниц (нем. GottfriedWilhelmvonLeibniz) родился 21 июня1646 в г. Лейпциге (Германия), в семье профессора философии морали (этики) лейпцигского университета Фридриха Лейбнюца (нем. FriedrichLeibnütz) и Катерины Шмук (нем. CatherinaSchmuck).

Когда мальчику было 8 лет, его отец умер, оставив после себя большую личную библиотеку. Свободный доступ к книгам и врождённый талант позволили молодому Лейбницу уже к 12 годам самостоятельно изучить латынь и взяться за изучение греческого языка.

В 15-летнем возрасте (1661) Готфрид Вильгельм сам поступил в тот же Лейпцигский университет, где когда-то работал его отец. В свою бытность студентом он познакомился с работами Кеплера, Галилея и других учёных. Спустя 2 года переходит в Йенский университет, где изучает математику. Затем возвращается в Лейпциг изучать право, но получить докторскую степень там не удалось. Расстроенный отказом, Лейбниц отправился в Нюрнбергский университет в Альтдорфе, где успешно защищает диссертацию на соискание степени доктора права. Диссертация была посвящена разбору вопроса о запутанных юридических случаях. Защита состоялась 5 ноября 1666 года; эрудиция, ясность изложения и ораторский талант Лейбница вызывают всеобщее восхищение.

В этом же году он написал первое из своих многочисленных сочинений: «О комбинаторном искусстве». Опередив время на два века, 20-летний Лейбниц задумал проект математизации логики. Будущую теорию (которую он так и не завершил) он называет «всеобщая характеристика». Она включала все логические операции, свойства которых он ясно представлял.

Закончив обучение, он устраивается советником курфюрста Майнцского по юридическим и торговым делам (1670). Работа требовала постоянных разъездов по всей Европе; в ходе этих путешествий он подружился с Гюйгенсом, который согласился обучать его математике. Служба, однако, продолжалась недолго, в начале 1672 года Лейбниц с важной дипломатической миссией покинул Майнц, а спустя год курфюрст умер.

Затем с 1676 года и до конца жизни Лейбниц в течение сорока лет находился на службе при Браун-Люнебургском герцогском дворе.

В это время Лейбниц изобретает собственную конструкцию арифмометра, гораздо лучше паскалевской - он умел выполнять умножение, деление и извлечение корней. Предложенные им ступенчатый валик и подвижная каретка легли в основу всех последующих арифмометров.

Но в его жизни было и немало безрадостного. Окруженный недоверием, презрением и недоброй славой полуатеиста, великий философ и ученый доживал последние годы, оказываясь иногда без жалования и терпя крайнюю нужду. Для англичан он был ненавистен как противник Ньютона в спорах о научном приоритете, для немцев он был чужд и опасен как человек, перетолковывающий все общепринятое по-своему. Горьким был и личный итог жизни и деятельности Лейбница: непонятый и презираемый, притесняемый и гонимый невежественной придворной кликой, он пережил крушение лучших своих надежд. Пренебрежение и вражда власть имущих и церковников к великому мыслителю преследовали его и после смерти.

Но сейчас всеми признано, что Лейбницу были свойственны исключительно широкий кругозор и диапазон деятельности, одновременное усмотрение разнообразных связей разбираемых им проблем и целеустремленное исследование внутреннего их существа. Лейбниц обладал поразительной сжатостью и точностью стиля, творческой энергией и умением подметить самые различные следствия, вытекающие из выдвинутых им положений.


2. Научная деятельность Готфрида Вильгельма Лейбница

Лейбниц - один из важнейших представителей новоевропейской метафизики, в центре внимания которой - вопрос о том, что такое субстанция. Лейбниц развивает систему, получившую название субстанциальный плюрализм или монадология.

Важнейшими научными достижениями Лейбница являются то, что Лейбниц, независимо от Ньютона, создал математический анализ - дифференциальное и интегральное исчисление и в 1684 публикует первую в мире крупную работу по дифференциальному исчислению: «Новый метод максимумов и минимумов». В этой работе Лейбница излагаются основы дифференциального исчисления, правила дифференцирования выражений. Используя геометрическое истолкование отношения dy/dx, он кратко разъясняет признаки возрастания и убывания, максимума и минимума, выпуклости и вогнутости (следовательно, и достаточные условия экстремума для простейшего случая), а также точки перегиба. Попутно без каких-либо пояснений вводятся «разности разностей» (кратные дифференциалы), обозначаемые ddv.

Также создал комбинаторику как науку; только он во всей истории математики одинаково свободно работал как с непрерывным, так и с дискретным. Готфрид Вильгельм обосновал необходимость регулярно измерять у больных температуру тела. Задолго до Зигмунда Фрейда привёл доказательства существования подсознания человека.

В 1686 Лейбниц даёт подразделение вещественных чисел на алгебраические и трансцендентные; ещё раньше он аналогично классифицировал кривые линии. Впервые в печати вводит символ интеграла и указывает, что эта операция обратна дифференцированию. А в 1692 вводит общее понятие огибающей однопараметрического семейства кривых, выводит её уравнение.

Затем Лейбниц рассматривает вопрос о разрешимости линейных систем; его результат фактически вводит понятие определителя. Но это открытие не вызвало тогда интереса, и линейная алгебра возникла только спустя полвека.

В 1695 Лейбниц вводит показательную функцию в самом общем виде: uv. Чуть позже, в 1702 совместно с Иоганном Бернулли открыл приём разложения рациональных дробей на сумму простейших. Это решает многие вопросы интегрирования рациональных функций.

Лейбниц также описал двоичную систему счисления с цифрами 0 и 1, на которой основана современная компьютерная техника.

В физике Лейбниц ввёл понятие «живой силы», позднее получившей название кинетической энергии.

3. Счетная машина

Первая счетная машина, позволявшая производить умножение и деление также легко, как сложение и вычитание, была изобретена в Германии в 1673 году Готфридом Вильгельмом Лейбницем и называлась «Калькулятор Лейбница».

Идея создать такую машину у Вильгельма Лейбница появилась после знакомства с голландским астрономом и математиком Христианом Гюйгенсом. Видя нескончаемые вычисления, которые астроному приходилось производить, обрабатывая свои наблюдения, Лейбниц решил создать устройство, которое ускорило и облегчило бы эту работу.

Первое описание своей машины Лейбниц сделал в 1670 году. Через два года ученый составил новое эскизное описание, на основе которого в 1673 году построил действующее арифметическое устройство и продемонстрировал его в феврале 1673 года на заседании Лондонского Королевского общества. В заключение своего выступления он признал, что устройство не совершенно, и пообещал его улучшить.

В 1674 – 1676 годах Лейбниц провел большую работу по улучшению изобретения и привез в Лондон новый вариант калькулятора. Это была малоразрядная модель счетной машины, не пригодная для практического применения. И только в 1694 году Лейбниц сконструировал двенадцатиразрядную модель. Впоследствии калькулятор несколько раз дорабатывался. Последний вариант был создан в 1710 году. По образцу двенадцатиразрядной счетной машины Лейбница в 1708 году профессор Вагнер и мастер Левин создали шестнадцатиразрядную счетную машину.Работа над калькулятором Лейбницу обошлась в 24 000 талеров. Для сравнения, годовая зарплата министра по тем временам составляла 1 – 2 тысячи талеров.

Описание калькулятора Лейбница ведется на основе одной из сохранившихся моделей, находящейся в музее в Ганновере. Она представляет собой ящик около метра длинной, 30 сантиметров шириной и около 25 сантиметров высотой.