Интервью с робертом стирлингом. Кто такой Роберт Стирлинг? Научная и техническая деятельность

Эта статья посвящена великому изобретателю Роберту Стирлингу и его детищу. Патент на изобретение двигателя Стирлинга, как ни странно, принадлежит шотландскому священнику Роберту Стирлингу.

- Роберт Стирлинг, расскажите нам о своей семье?

У нас большая и дружная семья, восемь детей. От отца я унаследовал интерес к конструированию техники, но изучаю богословие и стал священником Шотландской Церкви в местечке Лайф Кирк. Моя жена Джиной Рэнкин прекрасная женщина. У нас семеро детей, двое из них: Патрик и Джеймс стали инженерами по паровозостроению.

- Что послужило толчком для разработки нового двигателя?

Я был весьма обеспокоен травматизмом рабочих, работающих в моем приходе с паровыми двигателями. Эти двигатели часто взрывались из-за низкого качества железа, из которого они изготавливались. Более прочного материала в те годы не существовало. И я решил усовершенствовать конструкцию воздушного двигателя в надежде на то, что такой двигатель будет более безопасным.

- И вам это удалось.

В чем же принцип работы Вашего двигателя?

Мой двигатель работает за счет теплового расширения газа, за которым следует сжатие газа после его охлаждения. Он содержит некоторый постоянный объем рабочего газа, который перемещается между "холодной" частью и "горячей" частью, которая обычно разогревается за счет сжигания любого вида топлива. Нагрев производится снаружи, поэтому двигатель относится к двигателям внешнего сгорания.Одним из важных моих достижений является добавление очистителя, прозванный "экономом".

- Каковы преимущества Вашего двигателя перед другими?

У двигателя много преимуществ, к которым относят:

Его всеядность, поскольку он работает почти от любого вида перепада температур – разные в океане слои, солнце, изотопный или ядерный нагреватель, дровяная или угольная печь и т.д.

Простая конструкция. Конструкция двигателя не требует никаких дополнительных систем. Запускается двигатель самостоятельно.

Из-за простоты конструкции в нем отсутствуют многие нежные агрегаты. Это дает возможность в отличие от других двигателей обеспечить ресурс в сотни тыс. часов непрерывной работы.

Может дать КПД до 30% больше, чем тепловая машина на пару.

Бесшумная работа двигателя. Из-за отсутствия выхлопа нет и шума.

Любая часть двигателя не имеет ни одной частицы, которая хоть каким-то образом могла бы загрязнить окружающую среду. Также нет расхода рабочего тела. Отмечу и тот момент, что и источник тепла может быть экологичным. Также не стоит забывать и о том, что в двигателе внешнего сгорания обеспечить, чтобы топливо полностью сгорело, гораздо проще, чем в двигателях внутреннего сгорания.

- А чем Ваш двигатель отличается от двигателя внутреннего сгорания?

В цилиндры работающего двигателя внутреннего сгорания вместе с воздухом обязательно заносятся частицы пыли, вызывающие износ трущихся поверхностей. В моём двигателе такое исключено, поскольку он абсолютно герметичен. Кроме того, смазка не окисляется и требует замены значительно реже, чем в двигателях внутреннего сгорания. Плюсом является и то, что сгорание топлива происходит вне внутреннего объёма двигателя, что позволяет обеспечить равномерное горение топлива и полное его выжигание. В моём двигателе можно использовать любой источник тепловой энергии.

Наши предложения по усовершенствованию двигателя Стирлинга

Использование солнечной энергии: солнечный свет фокусируется вогнутыми зеркалами для разогрева двигателя (в качестве источника тепла). В роли охладителя может использоваться окружающий атмосферный воздух.

Если попробовать приводить двигатель Стирлинга в движение с помощью какого-либо внешнего источника (например, еще одного двигателя Стирлинга), то "горячий" цилиндр будет охлаждаться, а "холодный" - разогреваться. Если при этом разогревать "горячий" цилиндр (например, окружающим воздухом), то "холодный" цилиндр будет разогреваться до более высокой температуры. При этом внешняя энергия расходуется не непосредственно на разогрев, а на "перекачку" тепла из холодного места в более теплое, что гораздо эффективнее.

Использование в качестве топлива тепловую энергию, вырабатываемую атомным реактором в механическую, дает высокий КПД и надежность.

Arabic Bulgarian Chinese Croatian Czech Danish Dutch English Estonian Finnish French German Greek Hebrew Hindi Hungarian Icelandic Indonesian Italian Japanese Korean Latvian Lithuanian Malagasy Norwegian Persian Polish Portuguese Romanian Russian Serbian Slovak Slovenian Spanish Swedish Thai Turkish Vietnamese

definition - СТИРЛИНГ РОБЕРТ

Стирлинг, Роберт

Материал из Википедии - свободной энциклопедии

Роберт Стирлинг
Robert Stirling
Файл:Stirling.gif
Дата рождения:
Место рождения:
Дата смерти:
Гражданство:
Известен как:

Биография

Стирлинг родился в Клог Фарме недалеко от Метвена, Шотландия. Он был третьим ребёнком в семье, а всего детей было восемь. От отца он унаследовал интерес к конструированию техники, но изучал богословие и стал священником Шотландской Церкви в местечке Лайф Кирк в 1816 году.

В 1819 Стирлинг вступил в брак с Джиной Рэнкин. У них было семеро детей, двое из них: Патрик Стирлинг и Джеймс Стирлинг стали инженерами по паровозостроению.

Стирлинг умер в Галстоне, Шотландия в 2010 году.

Научная и техническая деятельность

Тепловой двигатель

Стирлинг был весьма обеспокоен травматизмом рабочих, работающих в его приходе с паровыми двигателями. Эти двигатели часто взрывались из-за низкого качества железа, из которого они изготавливались. Более прочного материала в те годы не существовало. Стирлинг решил усовершенствовать конструкцию воздушного двигателя в надежде на то, что такой двигатель будет более безопасным.

Стирлинг придумал устройство, которое он назвал «эконом тепла» (сейчас такое устройство называют регенератором или теплообменником). Это устройство служит для повышения тепловой эффективности различных процессов. Стирлинг получил патент на двигатель с «экономом тепла» в 1816 году. Двигатель Стирлинга не может взорваться, потому что работает при более низком давлении, чем паровая машина, и не может причинить ожоги паром. В 1818 он построил первый практичный вариант своего двигателя и использовал его в насосе для откачки воды из карьера.

Теоретических основ работы двигателя Стирлинга - цикл Стирлинга - не существовало до тех пор, пока не появились работы Сади Карно . Карно разработал и опубликовал в 1825 году общую теорию работы тепловых двигателей - Цикл Карно , из которой цикл Стирлинга строится аналогичным образом.

В дальнейшем Стирлинг вместе со своим братом Джеймсом, получил ещё несколько патентов на усовершенствование воздушного двигателя. А в 1840 году Джеймс построил большой воздушный двигатель для привода всех механизмов в своей литейной компании.

Оптические инструменты

Проживая в Килмарноке, Стирлинг сотрудничал с другим изобретателем - Томасом Мортоном, который предоставлял Стирлингу всё своё оборудование и инструменты для проведения опытов. Они оба интересовались астрономией. У Мортона Стирлинг научился шлифовать линзы, после чего изобрел ряд оптических приборов.

Бессемеровский процесс

В письме от 1876 года Роберт Стирлинг признал важность нового изобретения Генри Бессемера - бессемеровский процесс производства стали, который сделал паровые двигатели безопаснее, а они, в свою очередь, угрожали сделать воздушный двигатель анахронизмом. Вместе с тем, он также выразил надежду, что новая сталь позволит повысить эффективность и его воздушных двигателей.

Двигатель Стирлинга может стать прекрасным украшением письменного стола

Достаточно зажечь спиртовку, и он почти бесшумно, с легким шелестом, раскручивается до рабочих оборотов

Молодой пастор отличался незаурядным инженерным талантом. Во время учебы в университете Роберт работал над альтернативой паровой машине. Легенда гласит, что его целью было уменьшить риск для рабочих: паровые машины часто взрывались из-за низкого качества деталей. Через неделю после назначения в Килмарнок Роберт подал заявку на получение патента на «Устройство для экономии тепла». Именно оно послужило сердцем машины, прославившей имя Стирлинга.

Хотя сила пара была известна уже более ста лет, теория тепловых машин находилась в зачаточном состоянии. Лишь в 1824 году Сади Карно опубликовал свой знаменитый труд «Размышления о движущей силе огня и о машинах, способных развивать эту силу», где сделал два важных вывода: во‑первых, движущая сила машин возникает не из поглощенного тепла, а из перекачанного от горячего тела к холодному, а во-вторых, мощность машин растет с увеличением разницы температуры между горячим и холодным телами. Эти выводы в форме второго начала термодинамики оказали огромное влияние на конструкцию тепловых машин.

Но в 1818 году, когда вместе со своим другом Томасом Мортоном и младшим братом Джеймсом Стирлинг построил для откачки воды из каменоломни первую машину, работающую без пара (с воздухом в качестве рабочего тела), работ Карно еще не существовало. Тем не менее Стирлинг совершенно интуитивно построил двигатель фактически с максимально возможной термодинамической эффективностью! В отличие от цикла Карно, рабочий цикл машины Стирлинга состоит из двух изотерм (линий постоянной температуры) и двух изохор (линий постоянного объема). В координатах T-S (температура-энтропия) он выглядит вовсе не прямоугольным. Тогда каким же образом удается достичь теоретического максимума эффективности? Все дело в том самом запатентованном «Устройстве для экономии тепла», или, как его принято называть в современной технике, регенераторе.

Машина Стирлинга — это двигатель внешнего сгорания, в нем нет клапанов, а рабочее тело остается газообразным и циркулирует в замкнутом объеме. Он может работать при очень малой разнице температур от любого источника тепла — от газовых горелок до солнечных концентраторов и даже тепла рук (последнее любят демонстрировать преподаватели физики во время лекций по термодинамике). Конструкция машин проста, газ находится внутри под невысоким давлением, поэтому они более безопасны, чем паровые машины. При низких температурах двигатель Стирлинга даже более эффективен (в отличие от ДВС, двигателя внутреннего сгорания). И он почти бесшумен, что может быть критично в некоторых случаях (например, при движении субмарин в подводном состоянии).

Есть у этих двигателей и недостатки. Во‑первых, даже при достаточно большом теоретическом и практическом КПД для реализации большой мощности двигатель должен рассеивать большое количество тепла, а это приводит к увеличению размеров и появлению громоздких радиаторов охлаждения. Для увеличения мощности приходится увеличивать разницу температур и давление рабочего тела, а это усложняет конструкцию. В отличие от ДВС, он не может «стартовать» сразу — для начала работы ему необходимо достичь достаточной разницы температур между горячей и холодной частями. Впрочем, это характерно для всех типов двигателей внешнего сгорания, а «стирлинг» стартует все же гораздо быстрее, чем, скажем, паровая машина. Мощность работающего двигателя Стирлинга весьма непросто оперативно изменить, разве что добавлением рабочего тела (такие решения существуют, но приводят к усложнению конструкции). Кстати, воздух далеко не самое эффективное рабочее тело. Водород благодаря своей высокой теплопроводности, теплоемкости и низкой вязкости гораздо более эффективен, но он имеет тенденцию просачиваться сквозь уплотнители и к тому же огнеопасен (также довольно часто в качестве рабочего тела используют гелий).

Таким образом, если нам не нужно часто запускать и останавливать машину, а также менять ее мощность и при этом у нас есть источник тепла, хорошее охлаждение и неограниченный размер — вряд ли существует что-то более подходящее, чем двигатель Стирлинга.

При жизни изобретателя двигатель не слишком успешно пытался конкурировать с паровыми машинами. Один из двигателей мощностью в полсотни лошадиных сил с КПД около 10% (что превышало аналогичный показатель паровых машин), построенный Робертом и его младшим братом Джеймсом, несколько лет проработал в литейном цехе в Данди в середине 1840-х. Затем горячий цилиндр лопнул: тогда не существовало жаропрочных сталей, поэтому создать надежные и долговечные детали машин из мягкого железа было проблематично. Впрочем, то же самое относилось и к паровым машинам. Возможно, поэтому Роберт Стирлинг в одном из своих писем 1876 года особо отмечал важность изобретения Генри Бессемера — процесса, который позволял получать не мягкое железо, а твердую и прочную сталь, делающую паровые машины значительно более безопасными. Стирлинг выражал надежду, что сталь даст новую жизнь и его «машинам на воздухе». Но увидеть этого он уже не успел — 6 июня 1878 года изобретатель умер в шотландском городке Галстон в Восточном Айршире.

В начале XX века на сцену вышли двигатели внутреннего сгорания, и машины Стирлинга, казалось бы, навсегда остались в истории. Однако в 1950-х к ним вновь возник интерес благодаря голландской компании Philips, создавшей на базе конструкции Стирлинга эффективную криогенную машину (двигатель Стирлинга может работать как тепловой насос, преобразовывая механическую работу и перекачивая тепло от одного тела к другому). Сейчас и двигатели, и холодильные машины Стирлинга, реализованные на современном уровне, выпускаются многими крупными компаниями. Они позволяют использовать любое топливо (и вообще любые источники тепла) и при этом более эффективны (КПД может достигать почти 40−45%) и значительно более экологичны, тихи и надежны, чем ДВС.

- тепловая машина, в которой жидкое или газообразное рабочее тело движется в замкнутом объёме, разновидность двигателя внешнего сгорания. Основан на периодическом нагреве и охлаждении рабочего тела с извлечением энергии из возникающего при этом изменения объёма рабочего тела. Может работать не только от сжигания топлива, но и от любого источника тепла.

Хронологию событий, связанную с разработкой двигателей времен 18 века, вы можете наблюдать в интересной статье - "История изобретения паровых машин" . А эта статья посвящена великому изобретателю Роберту Стирлингу и его детищу.

История создания...

Патент на изобретение двигателя Стирлинга как ни странно принадлежит шотландскому священнику Роберту Стирлингу. Его он получил 27 сентября 1816 года. Первые «двигатели горячего воздуха» стали известны миру ещё в конце XVII века, задолго до Стирлинга. Одним из важных достижений Стирлинга является добавление очистителя, прозванный им же самим "экономом".


В современной же научной литературе этот очиститель имеет совсем другое название - «рекуператор». Благодаря ему производительность двигателя растет, поскольку очиститель удерживает тепло в тёплой части двигателя, а рабочее тело в то же время охлаждается. Благодаря этому процессу эффективность системы значительно возрастает. Рекуператор представляет из себя камеру, заполненную проволокой, гранулами, гофрированной фольгой (гофры идут вдоль направления потока газа). Газ, проходит через наполнитель рекуператора в одну сторону, отдаёт (или приобретает) тепло, а при движении в другую сторону отбирает (отдаёт) его. Рекуператор может быть и внешним по отношению к цилиндрам и может быть размещён на поршне-вытеснителе в бета- и гамма-конфигурациях. Габариты и вес машины в этом случае меньше. В коей мере роль рекуператора выполняется зазором между вытеснителем и стенками цилиндра (если цилиндр длинный, то надобности в таком устройстве нет вообще, однако появляются значительные потери из-за вязкости газа). В альфа-стирлинге рекуператор может быть только внешним. Он монтируется последовательно с теплообменником, в котором со стороны холодного поршня, происходит нагрев рабочего тела.

В 1843 году Джеймс Стирлинг использовал этот двигатель на заводе, где он в то время работал инженером. В 1938 году в мотор Стирлинга мощностью более двухсот лошадиных сил и отдачей более 30 % инвестировала фирма "Филипс". Поскольку двигатель Стирлинга имеет много преимуществ, то в эпоху паровых машин он был широко распространён.

Недостатки.

Материалоёмкость - основной недостаток двигателя. У двигателей внешнего сгорания вообще, и двигателя Стирлинга в частности, рабочее тело необходимо охлаждать, и это приводит к существенному увеличению массо-габаритных показателей силовой установки за счёт увеличенных радиаторов.

Для получения характеристик, сравнимых с характеристиками ДВС, приходится применять высокие давления (свыше 100 атм) и специальные виды рабочего тела - водород, гелий.

Тепло не подводится к рабочему телу непосредственно, а только через стенки теплообменников. Стенки имеют ограниченную теплопроводность, из-за чего КПД оказывается ниже, чем можно было ожидать. Горячий теплообменник работает в очень напряжённых условиях теплопередачи, и при очень высоких давлениях, что требует применения высококачественных и дорогих материалов. Создание теплообменника, который удовлетворял бы противоречивым требованиям, весьма трудно. Чем выше площадь теплообмена, тем меньше потери тепла. При этом растёт размер теплообменника и объём рабочего тела, не участвующий в работе. Поскольку источник тепла расположен снаружи, двигатель медленно реагирует на изменение теплового потока, подводимого к цилиндру, и не сразу может выдать нужную мощность при запуске.

Для быстрого изменения мощности двигателя используются методы, отличные от тех, которые применялись в двигателях внутреннего сгорания: буферная ёмкость изменяемого объёма, изменение среднего давления рабочего тела в камерах, изменение фазного угла между рабочим поршнем и вытеснителем. В последнем случае реакция двигателя на управляющее действие водителя является практически мгновенной.

Преимущества.

Тем не менее, двигатель Стирлинга имеет преимущества, которые вынуждают заниматься его разработкой.

«Всеядность» двигателя - как все двигатели внешнего сгорания (вернее - внешнего подвода тепла), двигатель Стирлинга может работать от почти любого перепада температур: например, между разными слоями в океане, от солнца, от ядерного или изотопного нагревателя, угольной или дровяной печи и т. д.

Простота конструкции - конструкция двигателя очень проста, он не требует дополнительных систем, таких как газораспределительный механизм. Он запускается самостоятельно и не нуждается в стартере. Его характеристики позволяют избавиться от коробки передач. Однако, как уже отмечалось выше, он обладает большей материалоёмкостью.

Увеличенный ресурс - простота конструкции, отсутствие многих «нежных» агрегатов позволяет стирлингу обеспечить небывалый для других двигателей ресурс в десятки и сотни тысяч часов непрерывной работы.

Экономичность - в случае преобразования в электричество солнечной энергии стирлинги иногда дают больший КПД (до 31,25 %), чем тепловые машины на пару.

Бесшумность двигателя - стирлинг не имеет выхлопа, а значит - не шумит. Бета-стирлинг с ромбическим механизмом является идеально сбалансированным устройством и, при достаточно высоком качестве изготовления, даже не имеет вибраций (амплитуда вибрации меньше 0,0038 мм).

Экологичность - сам по себе стирлинг не имеет каких-то частей или процессов, которые могут способствовать загрязнению окружающей среды. Он не расходует рабочее тело. Экологичность двигателя обусловлена прежде всего экологичностью источника тепла. Стоит также отметить, что обеспечить полноту сгорания топлива в двигателе внешнего сгорания проще, чем в двигателе внутреннего сгорания.

Альтернатива паровым двигателям.

В 19 веке инженеры пытались создать безопасную альтернативу паровым двигателям того времени, из-за того что котлы уже изобретенных двигателей часто взрывались, не выдерживая высокого давления пара и материалов, которые совсем не подходили для их изготовления и постройки. Двигатель Стирлинга стал хорошей альтернативой, поскольку он мог преобразовывать в работу любую разницу температур. В этом и заключается основной принцип работы двигателя Стирлинга. Постоянное чередование нагревания и охлаждения рабочего тела в закрытом цилиндре приводит поршень в движение. Обычно в роли рабочего тела выступает воздух, но также используются водород и гелий. Но так же проводились опыты и с водой. Главная особенность двигателя Стирлинга с жидким рабочим телом является малые размеры,большие рабочие давления и высокая удельная мощность. Также существует Стирлинг с двухфазным рабочим телом. Удельная мощность и рабочее давление в нем тоже достаточно высоки.

Возможно, из курса физики вы помните, что при нагревании газа его объём увеличивается, а при охлаждении - уменьшается. Именно это свойство газов и заложено в основе работы двигателя Стирлинга. Двигатель Стирлинга использует цикл Стирлинга, который не уступает циклу Карно по термодинамической эффективности, и в некотором роде даже обладает преимуществом. Цикл Карно состоит из мало отличающихся между собой изотерм и адиабат. Практическая реализация такого цикла сложна и малоперспективна. Цикл Стирлинга позволил получить практически работающий двигатель в приемлемых габаритах.

Всего в цикле Стирлинга четыре фазы, разделённые двумя переходными фазами: нагрев, расширение, переход к источнику холода, охлаждение, сжатие и переход к источнику тепла. При переходе от тёплого источника к холодному источнику происходит расширение и сжатие газа, который находится в цилиндре. В ходе этого процесса изменяется давление из чего и можно получить полезную работу. Полезная работа производится только за счет процессов, проходящих с постоянной температурой, то есть зависит от разницы температур нагревателя и охладителя, как в цикле Карно.

Конфигурации.

Инженерами подразделяются двигатели Стирлинга на три различных типа:

Превью - увеличение по клику.

Содержит два раздельных силовых поршня в раздельных цилиндрах. Один поршень - горячий, другой - холодный. Цилиндр с горячим поршнем находится в теплообменнике с более высокой температурой, а цилиндр с холодным поршнем находится в более холодном теплообменнике. Отношение мощности к объёму достаточно велико, однако высокая температура «горячего» поршня создаёт определённые технические проблемы.

Бета-Стирлинг - цилиндр один, горячий с одного конца и холодный с другого. Внутри цилиндра движутся поршень (с которого снимается мощность) и «вытеснитель», изменяющий объем горячей полости. Газ перекачивается из холодной части цилиндра в горячую через регенератор. Регенератор может быть внешним, как часть теплообменника, или может быть совмещён с поршнем-вытеснителем.

Есть поршень и «вытеснитель», но при этом два цилиндра - один холодный (там движется поршень, с которого снимается мощность), а второй горячий с одного конца и холодный с другого (там движется «вытеснитель»). Регенератор может быть внешним, в этом случае он соединяет горячую часть второго цилиндра с холодной и одновременно с первым (холодным) цилиндром. Внутренний регенератор является частью вытеснителя.

УДК 62 ДВИГАТЕЛЬ СТИРЛИНГА – ДВИГАТЕЛЬ БУДУЩЕГО Кожухов Иван Валерьевич, Шипицын Леонид Владимирович Руководители: Иоакиманская Наталья Борисовна, учитель физики Иоакиманский Николай Николаевич, руководитель кружка технического творчества МБОУ Солонцовская СОШ Емельяновского района Красноярского края Цель проекта Наглядная демонстрация преобразования внутренней энергии газа в механическую энергию и в электрическую. Задачи: 1.Спроектировать и изготовить двигатель Стирлинга 2. Показать возможность двигателя Стирлинга для преобразования внутренней энергии топлива в механическую и электрическую. Что такое Двигатель Стирлинга? Можно ли получить энергию для зарядки мобильного телефона от тепла человеческого тела или кружки кипятка? Можно ли, используя разницу температур между колодезной водой и атмосферным воздухом, снабдить электричеством загородный дом? Ответ на все эти вопросы один ДА! МОЖНО! машины"_или,_как_их_еще_называют_-_двигатели_Стирлинга. Это могут "стирлинг- Мы хотим рассказать о самом необычном, на наш взгляд, преобразователе тепловой и механической энергии. Данный тип двигателей изобретен в девятнадцатом веке не физиком и не механиком, а священником! История Стирлинг-машин невероятна. Они прошли стадию подъема, затем были забыты, однако пережили паровые двигатели, двигатели внутреннего сгорания и снова возродились в двадцатом веке. Сегодня над их созданием трудятся многие инженеры и любители.Стоит отметить, что универсальной методики расчета Стирлинг-машин не существует до сих пор, хотя с момента их изобретения прошло почти два века! Львиная доля технических решений и методик расчета при создании опытных образцов двигателей Стирлинга автоматически становится "ноу-хау" компаний-разработчиков и тщательно скрывается. Двигатели Стирлинга не встретишь в свободной продаже, как газонокосилки или автономные генераторы. При этом "Стирлинги" используются в качестве энергоустановок на космических спутниках, применяются как маршевые двигатели на современных подводных лодках Стирлингмашины с одинаковым успехом можно "вмонтировать" и в триммер для стрижки газонов, и в марсоход. В конструкции двигателя нет клапанов, распределительных валов, отсутствует система зажигания в ее привычной форме, нет стартера! Некоторые конструкции обладают эффектом самозапуска. Для работы годится любой источник тепла: энергия солнца, навоз, сено, дрова, уголь, нефть, газ, ядерный реактор - подойдет все! И при данной "всеядности" коэффициент полезного действия "Стирлингов" не уступает показателям двигателей внутреннего сгорания. Но и это не все. Стирлинг-машины обратимы. Т.е. подводя тепловую энергию, получаем механическую, раскручивая маховик двигателя вырабатываем холод. В общем чудес и загадок вокруг стирлинг-машин полным-полно. Интересно, не правда ли? Если хотите узнать о "Стирлингах" больше - оставайтесь с нами Кто такой Роберт Стирлинг? Роберт Стирлинг родился на родине килта и виски – в Шотландии, в 1790 году. Еще во время учебы в университете молодой пастор проявил немалую склонность к инженерным наукам, и свободное время посвящал разработке «безопасного» двигателя. В то время паровые машины уже активно эксплуатировались, но обладали одной неприятной особенностью – из-за низкой прочности стали у них часто взрывались котлы. Стирлинг искал решение данной проблемы. Поскольку выбор материалов для котлов оказался невелик, преподобный Роберт просто отказался от пара и придумал новый тип двигателя на воздухе, но главное – ввел в цикл работы двигателя регенерацию тепла. 19 сентября 1816 года Стирлинга назначают священником церкви Лэй-Кири в Килмарноке, а уже 21 сентября того же года в Эдинбурге (Шотландия) он патентует устройство называемое «экономайзер» или устройство для экономии тепла (английский патент №4081). Сегодня это устройство называется регенератор или теплообменник. Регенератор - сердце всех современных Стирлинг-машин. Позднее еще дважды: в 1827 и в 1840 годах Стирлинг патентует усовершенствованные образцы своей машины. Он упорно движется к цели – созданию «безопасного двигателя». И в 1845 году, не без помощи младшего брата Джеймса и друга Томаса Мортона, Стирлинг достигает результата. Машина в 50 индикаторных лошадиных сил изготавливается на литейном заводе в Дании. Аппарат использовали на шахте для откачки воды. Он успешно проработал три года, но был разобран по причине частого выхода из строя. Дело было не в конструкции – она идеальна, и перекочевала в современные типы Стирлинг-машин без особых изменений. Проблему создавали материалы, не имеющие достаточной прочности. Металл рабочего цилиндра не выдерживал постоянного перепада температур и давления. На склоне лет, Роберт Стирлинг в одном из своих писем 1876 года особо отмечал важность изобретения Генри Бессемера – получение высокопрочной стали. Стирлинг выражал надежду, что данная сталь откроет перспективы и его «машинам на воздухе». На протяжении всей жизни, в своей домашней мастерской Стирлинг конструировал и изготавливал модели тепловых машин. Позднее, одну из этих моделей использовал лорд Кельвин для университетских лекций. Не смотря на бурную изобретательскую деятельность, Роберт Стирлинг оставался пастором и продолжал вести службы. Умер изобретатель-священник 6 июня 1878 года в шотландском городке Галстон, в Восточном Айршире. Каким образом Стирлингу удалось изобрести двигатель с максимально возможной термодинамической эффективностью – остается загадкой. Но, то, что этот неуемный шотландец за свои 88 лет сумел прожить две жизни – жизнь талантливого инженера-конструктора и священника - бесспорный факт. Стирлин опередил свое время более чем на сто лет. Его выдающееся изобретение послужило толчком к значительному усовершенствованию паровых машин, пережило многие технические новинки двигателестроения и возрождается заново в наши дни. Двигатель Стирлинга сегодня Двигатель, предложенный самим Робертом Стирлингом, имел значительные массо-габаритные характеристики и низкий КПД. Из-за сложности процессов в таком двигателе, связанных с непрерывным движением поршней, первый упрощенный математический аппарат разработан только в 1871 году пражским профессором Г. Шмидтом. Предложенный им метод расчета основывался на идеальной модели цикла Стирлинга и позволял создавать двигатели с КПД не превышающем 15%. Лишь к 1953 году голландской фирмой «Филипс» разработаны первые высокоэффективные двигатели Стирлинга, превосходящие по характеристикам двигатели внутреннего сгорания. Мировой интерес к этому типу двигателей с того времени продвинулся из области теоретических построений в плоскость практической реализации в самых разных сферах. За рубежом уже начато производство двигателей Стирлинга, технические характеристики которых уже сейчас превосходят ДВС и газотурбинные установки. Так, двигатели Стирлинга фирм Philips, STM Inc., Daimler Benz, Solo, United Stirling мощностью от 5 до 1 200 кВт имеют эффективный КПД более 42 %, ресурс более 40 тыс. ч, удельную массу_от_1,2_до_3,8_кг/кВт. В США стартовал проект создания солнечной электростанции с использованием двигателя Стирлинга в качестве прямого преобразователя теповой энергии в механическую. На фото Чак Андрака (Chuck Andraka, слева) и глава Stirling Energy Systems Боб Лиден (Bob Liden) на фоне первой установки в испытательном центре Сандия (фото с сайта sandia.gov). Теоретически КПД Стирлинга может совпадать с физическим пределом, определяемым разностью температур нагревателя и холодильника, да и на практике можно получить от стирлингов КПД порядка 70%. По расчётам авторов проекта, в теории одна ферма солнечных стирлингов, под которую отвели бы территорию 160 х 160 километров на юге США, полностью покрыла бы всю потребность страны в электроэнергии. На сегодняшний день прототипы успешно проходят испытания, но стоимость каждого еще слишком высока (более 150 тысяч долларов США), что тормозит массовое внедрение. Подобными разработками интересуются и в Швеции. На сайте компании "Cleanergy" вниманию посетителей представлен новый концепт солнечной миниэлектростанции для получения электроэнергии. Создан как полномасштабный образец с гелиоконцентратором на подвижной с закрепленным в фокусе стирлингом, так и отдельный когенерационный агрегат для получения электроэнергии и тепла общей мощностью 9 кВт (однако, стоит отметить, что из 9 кВт только 2кВт - электроэнергия, остальные 7кВт - тепло для обогрева помещений). Наиболее бурное развитие двигателей Стирлинга происходит в сфере военных технологий. Быстрыми темпами создаются опытные и серийные образцы Стирлинг-установок для неатомных подводных лодок. Вот выдержка из статьи заслуженного изобретателя Российской Федерации, академика Академии военных наук, д.т.н. Кириллова Н.Г., посвященной данному вопросу: «…наибольших результатов в разработке анаэробных установок достиг шведский концерн Kockums Submarin Systems, построивший три ПЛ класса "Gotland" типа А19 на основе двигателей Стирлинга. На ПЛ устанавливается два двигателя V4-275R по мщностью по 75 кВт. Три подводные лодки типа «Gotland» были построены фирмой Kokums в 1992 – 1996 годах. Длина субмарин – 60,4 метра, подводное водоизмещение – 1599 тонн. Экипаж – 27 человек, в том числе 5 офицеров. Вооружение: 4 Х 533-мм и 2 Х 400-мм торпедных аппарата. Скорость полного подводного хода – 20 узлов. При использовании двигателя Стирлинга лодки могут находиться под водой без подзарядки аккумуляторных батарей до 20 суток! Самый многообещающий проект шведов связан с перспективной подводной лодкой «Викинг». Это название выбрано не случайно. В реализации проекта должны участвовать еще две скандинавские страны - Норвегия и Дания. «Кокумс», норвежская компания «Конгсберг» и датская «Оденсе столшипсваерфт» образовали консорциум для практической работы над проектом. Всего планировалось построить 12 субмарин нового поколения. По мнению ведущих специалистов, эта была бы лучшая подводная лодка XXI века. На ней планировалось установить единый двигатель Стирлинга большой мощности (ориентировочно 800 кВт). Первыми, после шведов, перспективность анаэробных установок на основе двигателей Стирлинга поняли японцы… Для отработки технологии применения двигателей Стирлинга в 2000-2001 годах на кораблестроительной верфи «Кобе» фирмой «Мицубиси дзюкоге» были проведены работы по оснащению ПЛ «Асасио» энергетической установкой замкнутого цикла с двигателем Стирлинга.… Ходовые испытания прошли на «отлично». Поэтому уже с 2003 года японские ПЛ типа «Оясио» начали строиться с анаэробными установками на основе двигателей Стирлинга… Японцы ввели новое словосочетание «стирлинг-подводные лодки»… Именно для новой ПЛ с единым двигателем фирмой “Mitsubichi” создан и прошел успешные стендовые испытания двигатель Стирлинга мощностью более 600 кВт. В качестве рабочего тела двигателя используется азот. И наконец, последними из мировых держав, окончательный выбор по типу анаэробной установки сделали американцы. Их решение однозначное – двигателиСтирлинга.Для этого в 2005 году ВМС США взяли в лизинг шведскую подводную лодку типа «Gotland», оснащенную вспомогательной воздухонезависимой установкой Стирлинга...» Как можно видеть все развитые страны ударными темпами разрабатывают и внедряют Стирлинги в серийное производство. И не удивительно, при сопоставимой с ДВС мощности Стирлинг-двигатели имеют высокий крутящий момент почти на всех режимах работы, малошумны, «всеядны» в плане топлива и могут работать в любых условиях. Специалистами NASA (Национального Аэрокосмического Агентства США) были проделаны предварительные проработки проекта создания обитаемой базы на Луне. В качестве основного источника энергии для работы в условиях лунной поверхности был выбран атомный реактор SP100 с тепловой мощностью 2500 кВт и 8 электрических генераторов, работающих от двигателей Стирлинга. В проекте приводится подробное техническое описание реакторной установки, конструкции и теплового подсоединения двигателей Стирлинга, систем отвода тепла и распределениямощности. К Стирлингам интерес проявляли и в России. В 1996 году на ОАО “Машиностроительный завод “АРСЕНАЛ”, в рамках договора с ГП ГОКБ “Прожектор” были начаты работы по теме “Исследование и разработка электроагрегатов на базе многотопливных двигателей Стирлинга”. Но, к сожалению, работы в данном направлении были приостановлены из-за отсутствия дальнейшего финансирования проекта. В настоящее время в России накоплен достаточный научный потенциал для создания высокоэффективных двигателей Стирлинга. Значительные результаты были достигнуты в ООО «Инновационно-исследовательский центр «Стирлинг-технологии». Специалистами были проведены теоретико-экспериментальные исследования для разработки новых методов расчета высокоэффективных двигателей Стирлинга. Основные направления работ связаны с применением двигателей Стирлинга в когенерационных установках и системах использования теплоты отработанных газов, например в мини-ТЭЦ. В результате были созданы методики разработки и опытные образцы двигателей мощностью 3 кВт. Не менее мощное развитие получили Стирлинг-машины в области криогенной техники. Поскольку Стирлинги обратимы, на их базе создано множество холодильных машин без фреона – газа, используемого в обычных холодильных комперссорах. Данное преимущество позволило уменьшить габариты системы охлаждения и повысить ее производительность. Холодильные машины, работающие по обратному циклу Стирлинга, наиболее эффективны в диапазоне криогенных температур (очень низкие температуры), в более высоком диапазоне температур (низкие температуры, используемые в промышленности и в быту) в настоящее время главным образом работают фреоновые парокомпрессионные холодильные машины. Криогенные стирлинг -машины находят все большее применение в радиоэлектронных системах, где требуется мощное охлаждение, но отсутствуют условия для применения стандартных способов охлаждения (например термопарами). Некоторые фирмы, в том числе такие, как «Малакер и Хьюз эйркрафт», США (Malakar Labs Inc., Hughes Aircraft Co.) выпускают для продажи небольшие (или даже миниатюрные) криогенные машины. Эти компании совместно с Северо-Американским отделением фирмы Филипс (North American Philips Inc.), специализирующиеся на производстве миниатюрных охладителей, считают своей основной целью производство небольших криогенных машин для электронной промышленности, где они используются в основном для мощного охлаждения инфракрасных детекторов, применяемых в различных военных и гражданских целях.По материалам статьи д.т.н. Кириллова Н.Г. и книги Г.Уокера "Машины, работающие по циклу Стирлинга" ПРИНЦИП ДЕЙСТВИЯ СТИРЛИНГОВ Цикл Стирлинга В двигателях внутреннего сгорания (ДВС) распыленное топливо соединяется с окислителем, как правило воздухом, до фазы сжатия или после этой фазы, и образовавшаяся горючая смесь отдает свою энергию во время кратковременной фазы горения. В двигателе Стирлингаа энергия поступает в двигатель и отводится от него через стенки цилиндра или теплообменник. Еще одним существенным различием между двигателем внутреннего сгорания и двигателем Стирлинга является отсутствие в последнем клапанов клапанов, поскольку рабочее тело (газ) постоянно находится в полостях двигателя. Цикл Стирлинга основан на последовательном нагревании и охлаждении газа (его называют рабочим телом) в замкнутом объеме. объеме Рабочее тело нагревается в горячей части двигателя, расширяется и производит полезную работу, после чего перегоняется в холодную часть двигателя где охлаждается, сжимается и снова подается в горячую часть двигателя. Цикл повторяется. Количество рабочего тела остается неизменным неизменным, меняется его температура, давление и объем. Весь цикл условно разделен на четыре такта такта. Условность заключается в том, что четкоге разделение на такты в цикле отсутствует, процессы переходят один в другой. Это обусловлено отсутствием в конструкции двигателей Стирлинга клапанного механизма (стирлинг-двигатели с клаппаным механизмом называются двигателями Эриксона). С одной стороны данный факт резко упрощает конструкцию, с другой стороны вносит сложность в теорию расчета. Но об этом позже. Рассмотрим принцип работы на примере гама-стирлинга. Этот тип наиболее часто применяют в моделировании. Двигатель состоит из двух цилиндров. Большой цилиндр - теплообменный. Его задача поочередно разогревать и охлаждать рабочее тело. Для этого один торец цилиндра разогревают (на схеме он закрашен розовым цветом), другой торец - охлаждают (на схеме он закрашен синим цветом цветом). Большой поршень выполненный из теплоизоляционного материала, свободно перемещается в теплообменном цилиндре (зазор между стенками цилиндра и поршня составляет 1-2 мм) и выполняет роль теплового клапана, пегегоняющего рабочее тело то к холодному, то к горячему торцу. Малый цилиндр является рабочим. рабочим Поршень плотно подогнан к цилиндру. цилиндру Гамма стирлинг. Первый такт Первый такт - такт сжатия при постоянной температуре рабочего тела: Поршень теплообменного цилиндра находится вблизи нижней мертвой точки (НМТ) и остается условно неподвижным неподвижным. Газ сжимается рабочим поршнем малого цилиндра. цилиндра Давление газа возрастает, а температура остается постоянной, так как теплота сжатия отводится через холодный торец теплообменного цилиндра в окружающую среду ОБРАТИТЕ ВНИМАНИЕ:Под условной неподвижностью подразумевают малую высоту перемещения поршня при прохождении коленвалом расстояния вблизи верхней или нижней мертвой точки. Гамма стирлинг. Второй такт Второй такт – такт нагревания при постоянном объеме: рабочий поршень рабочего цилиндра находится вблизи НМТ и полностью перемещает холодный сжатый газ в теплообменный цилиндр, поршень которого движется к верхней мертвой точки (ВМТ) и вытесняет газ в горячую полость. Так как при этом суммарный внутренний объем цилиндров двигателя остается постоянным, рабочее тело разогревается давление повышается и достигает максимального значения. Это в теории. На практике прирост давления идет паралельно с выталкиванием рабочего поршня. В результате давление не достигает теоретически расчитанного максимума. Данный факт также объясняет хороший к.п.д. на малых оборотах двигателя. Рабочее тело прогревается лучше и прирост давления приближается к максимуму. Гамма стирлинг. Третий такт Третий такт - такт расширения при постоянной температуре газа: поршень теплообменного цилиндра находится вблизи верхней мертвой точки (ВМТ) и остается условно неподвижным. Поршень рабочего цилиндра под действием давления газа движется к верхней мертвой точке. Происходит расширение горячего газа в полости рабочего цилиндра. Полезная работа, совершаемая поршнем рабочего цилиндра, через кривошипно-шатунный механизм передается на вал двигателя. Давление в цилиндрах двигателя при этом падает, а температура газа в горячей полости остается постоянной, так как к нему подводится тепло от источника тепла через горячую стенку цилиндра. В моделях двигателей Стирлинга, где теплообменный цилиндр не имеет качественного нагревателя рабочее тело разогревается не полностью, но поскольку давление в газах распространяется равномерно во все стороны его изменение оказывает действие и на рабочий поршень, заставляя его двигаться и совершать работу. Гама стирлинг. Четвертый такт Четвертый такт - такт охлаждения при неизменном объеме: поршень рабочего цилиндра находится вблизи ВМТ и остается условно неподвижным. Поршень теплообменного цилиндра движется к НМТ и перемещает газ, оставшийся в горячей части в холодную часть цилиндра. Так как при этом суммарный внутренний объем цилиндров двигателя остается постоянным, давление газа в них продолжает падать и достигает минимального_значения. В моделях, содержащих рабочее тело при атмосферном давлении четвертый такт также является рабочим, поскольку давление падает резко и возникает кратковременное разряжение. В результате рабочий поршень с усилием втягивается в цилиндр, совершая дополнительную работу. Из четырех тактов два - рабочие! "Школьная технология" для стирлингов Все, что можно изготовить без особых усилий в кабинете физики "школьная технология". Но не думайте, что данный уровень "ниже плинтуса". Все зависит от имеющегося инструмента. Базовый набор выглядит примерно так: шило, острый нож или лезвие, ножницы из хорошей стали, отвертка, плоскогубцы, минитиски, набор надфилей, паяльник, электродрель и набор сверел по металлу от 1 мм до 5 мм. На первый взгляд - не богато. Ошибаетесь. Перечислим, что можно изготовить имея все это. Проволочный или сложный составной коленвал, подшипники скольжения, стойки и шатуны поршней, цилиндры и поршни к ним диаметром до 25-30 мм., герметичные сальники и штоки под них. Сейчас в больших магазинах бытового инструмента можно приобрести устройство для гравировки с массой насадок. Многие применяют его, как минифрезерный станок. Если в Ваших краях нет такой штуки - можно смастерить или купить тиски для сверления с двумя степенями подвижности по горизонтали. В купе с вертикальной струбциной для дрели получаете фрезерный станок... В конечном итоге не важно, какой набор инструментов имеется. Главное, чтобы было желание. И все получится! Рис.1 Наш первый гамма- Стирлинг Рис. 2 Гамма- Стирлинг из консервной банки Рис. 3 Высокотемпературный Стирлинг Рис. 4 Высокотемпературный Стирлинг с генератором Рис.5 Разогрев Стирлинга Рис. 6 Генератор, который раскручивается Стирлингом. Ротор генератора состоит из двух дисков. На каждом диске по 12 ниодимовых магнитов, которые вращаются вокруг 9 катушек, соединённых «звездой» Рис. 7 На максимальных оборотах генератор выдаёт до 10 V постоянного тока. Переменный трёхфазный ток, который выдаёт генератор выпрямляется диодным мостом (виден справа от вольтметра) Стирлинги, изготовленные в кабинете физики Солонцовской средней школы. Термодинамика Стирлинга. В XIX веке инженеры хотели создать безопасную альтернативу паровым двигателям того времени, котлы которых часто взрывались из-за высоких давлений пара и неподходящих материалов для их постройки. Хорошая альтернатива паровым машинам появилась с созданием двигателей Стирлинга Стирлинга, который мог преобразовывать в работу любую разницу температур. Основной принцип работы двигателя Стирлинга заключается в постоянно чередуемых нагревании и охлаждении рабочего тела в закрытом цилиндре. е Обычно в роли рабочего тела выступает воздух, но также используются водород и гелий. В ряде экспериментальных образцов испытывались фреоны фреоны, двуокись азота, сжиженный пропан-бутан бутан и вода. вода В последнем случае вода остаётся в жидком состоянии на всех участках термодинамического цикла. Особенностью стирлинга с жидким рабочим телом является малые размеры, высокая удельная мощность и большие рабочие давления давления. Существует также стирлинг с двухфазным рабочим телом. Он тоже характеризуется высокой удельной мощностью, высоким рабочим давлением. давлением Из термодинамики известно, что давление, температура и объём идеального газа взаимосвязаны и следуют закону, где: P - давление газа; V - объём газа; n - количество молей газа; газа R - универсальная газовая константа; Т - температура газа в кельвинах. кельвинах Это означает, что при нагревании газа его объём увеличивается, а при охлаждении хлаждении - уменьшается. Это свойство газов и лежит в основе работы двигателя Стирлинга. Стирлинга Двигатель Стирлинга использует цикл Стирлинга, который по термодинамической эффективности не уступает циклу Карно, и даже обладает преимуществом. преимуществом Дело в том, что цикл Карно состоит из мало отличающихся между собой изотерм и адиабат. Практическая реализация этого цикла малоперспективна. малоперспективна Цикл Стирлинга позволил получить практически работающий двигатель в приемлемых габаритах габаритах. Диаграмма «давление-объём» объём» идеализированного идеализированн цикла Стирлинга Цикл Стирлинга состоит из четырёх фаз и разделён двумя переходными фазами: нагрев, расширение, переход к источнику холода, охлаждение, сжатие и переход к источнику тепла. Таким образом, при переходе от тёплого источника к холодному источнику происходит расширение и сжатие газа газа, находящегося в цилиндре. При этом изменяется давление, за счёт чего можно получить полезную работу. работу Нагрев и охлаждение рабочего тела (участки 4 и 2) производится рекуператором. В идеале количество тепла тепла, отдаваемое отда и отбираемое рекуператором, одинаково одинаково. Полезная работа производится только за счёт изотерм, то есть зависит от разницы температур нагревателя и охладителя. Плюсы стирлингов - КПД двигателя Стирлинга может достигать 65-70% КПД от цикла Карно при современном уровне проектирования и технологии изготовления. Кроме того крутящий момент двигателя почти не зависит от скорости вращения коленвала. В двигателях внутреннего сгорания напротив максимальный крутящий момент достигается в узком диапазоне частот вращения. В конструкции двигателя отсутствует система высоковольтного зажигания, клапанная система и, соответственно, распредвал. Грамотно спроектированный и технологично изготовленный двигатель Стирлинга не требует регулировки и настройки в процессе всего срока эксплуатации. - В ДВС сгорание топливо-воздушной смеси в цилиндре двигателя является, по сути, взрывом со скоростью распространения взрывной волны 5-7 км/сек. Этот процесс дает чудовищные пиковые нагрузки на шатуны, коленчатый вал и подшипники. Стирлинги лишены этого недостатка. - Двигатель не будет "капризничать" из-за потери искры, засорившегося карбюратора или низкого заряда аккумулятора, поскольку не имеет этих агрегатов. Понятие "двигатель заглох" не имеет смысла для Стирлингов. Стирлинг может остановиться, если нагрузка превышает расчетную. Повторно запуск осуществляется однократным проворотом маховика коленчатого вала. Простота конструкции позволяет длительно эксплуатировать Стирлинг в автономном режиме. - Двигатель Стирлинга может использовать любой источник тепловой энергии, начиная с дров и заканчивая ядерным топливом! - Сгорание топлива происходит вне внутреннего объема двигателя (в отличии от ДВС), что позволяет обеспечить равномерное горение топлива и полное его дожигание (т.е. отбор максимума содержащейся в топливе энергии и минимизация выброса токсичных компонентов). Минусы стирлингов - Поскольку сгорание топлива происходит вне двигателя, а отвод тепла осуществляется через стенки радиатора (напомним, что Стирлинги имеют замкнутый объем) габариты двигателя увеличиваются. - Еще один минус - материалоемкость. Для производства компактных и мощных Стирлингмашин требуются жаропрочные стали, выдерживающие высокое рабочее давление и в то же время, обладающие низкой теплопроводностью. Обычная смазка для Стирлингов не годится коксуется при высокой температуре, поэтому необходимы материалы с низким коэффициентом_трения. - Для получения высокой удельной мощности в качестве рабочего тела в Стирлингах используют водород или гелий. Водород взрывоопасен, при высоких температурах растворяется в металлах, образуя металлогидриды - т.е. разрушает цилиндры двигателя. К тому же водород, как и гелий обладает высокой проникающей способностью и просачивается через уплотнения подвижных частей двигателя, снижая рабочее давление. Используемая литература 1. Ридер Г., Хупер Ч. Двигатели Стирлинга: Пер.с англ. – М.: Мир, 1986. 2. Уокер Г. Машины, работающие по циклу Стирлинга:Пер. с англ. М.: Энергия,19 3. Уокер Г. Двигатели Стирлинга: Пер.с англ. – М.: Машиностроение,1985. 4. Бреусов В. Стирлинги уже давно работают в космосе. – Журнал «Колеса»(статья). 5. Двигатели Стирлинга. Пер.с англ. Под ред.В.М.Бродянского. М.: Мир,1975 6. Двигатели Стирлинга / [В.Н. Даниличев,С.И. Ефимов, В.А. Звонок и др.];под ред. М.Г.Круглова. – М.:«Машиностроение», 1977. 7. «Двигатель с внешним подводом теплоты». Патент №2105156 от23 июня 1995 г., РФ