Что такое "шины с низким сопротивлением качению"


Но что же такое шины с низким сопротивлением качению и как их обнаружить в следующий раз, покупая "обувь" для своего автомобиля?

Прежде всего, давайте выучим определение. Шины с низким сопротивлением качению - именно то, какими вы их и считаете. Они образуют более слабое сопротивление (меньшее трение) во время качения сравнительно с другими шинами. Другими словами, как они могут котиться по дороге? Энергия постоянно тратится за счет тепла, которое образуется при контакте шины с поверхностью пути и шины, в самой шине и между шиной и ободом.

Имейте в виду, что сопротивление качению и сцепление, или управляемость - совсем разные вещи. Несмотря на то, что они действительно между собой связаны, они не являются взаимозависимыми. Значит, что шина не обязательно будет терять характеристики сцепления при уменьшении ее сопротивления качению.

Простое правило - чем более жесткая шина, тем меньшее ее сопротивление качению. Именно поэтому очень важно следить за надлежащим уровнем давления в шине. Независимо от того, какой тип шин вы используете, главное, что вы должны делать для экономии горючего, это проверять уровень давления в шинах и поддерживать его на правильном уровне.

На что влияет уровень сопротивления качению? Несмотря на то, что "писаного закона" нет, снижение сопротивления качения шины на 10% увеличит экономию горючего на 1-2%, хотя данная цифра будет зависеть от самой шины и автомобиля.

Как определяется сопротивление качению? Сообщество инженеров-автомобилистов разработало способ определения уровня сопротивления качения - по определению количества сил, необходимых для качения шины на динамометр при скорости 50 миль/час (тестирование SAE J1269). Результаты тестирования на разных скоростях будут разными, однако "золотым стандартом" является SAE J1269. Обычно сопротивление качению отличается от 20 до 30% даже у шин в одинаковых типоразмерах и одинакового типа.

Одним из главных требований, предъявляемым к шинам легковых автомобилей и связанным с топливной экономичностью, является наименьшее значение коэффициента сопротивления качению. Кроме того, шины должны обладать хорошей устойчивостью и управляемостью, не допускать заноса автомобиля при отклонениях колеса от направления движения.

Потеря контакта с поверхностью дороги наступает при наличии на ней значительного слоя воды. В этом случае возникает эффект жидкостного трения, подобного трению в подшипнике, и шина скользит по воде. При помощи соответствующего рисунка протектора можно обеспечить отвод воды в сторону, чтобы в контакте шины с поверхностью дороги не образовывался слой воды, на котором шина теряет управляемость и возникает опасный эффект "аквапланирования".

Шины с изношенным протектором намного опаснее с точки зрения вышеизложенного эффекта, чем новые. Зависимость коэффициента сцепления от скорости автомобиля и толщины слоя воды для новых и изношенных шин показана на рис. 8. При падении коэффициента сцепления ниже 0,05 автомобиль становится неуправляемым.

Рис. 8. Зависимость коэффициента сцепления φ сц от скорости автомобиля v и толщины слоя воды на поверхности дорожного покрытия: а - новая шина; б - изношенная шина без протектора

С точки зрения плавности хода автомобиля и устранения шума в кабине, шина должна поглощать небольшие неровности дороги и не передавать вызываемые ими вибрации на кузов. Это требует прежде всего увеличения податливости боковины шины, но лишь до такой степени, чтобы не допустить потери управляемости автомобиля. Жесткость боковины влияет на боковой увод колеса, возникающий при наличии осевой силы, действующей в плоскости, перпендикулярной оси вращения колеса.

Жесткость боковин шины определяет ее конструкция, и прежде всего способ наложения корда. На рис. 9 изображены различные типы шин: а диагональная с укладкой слоев корда под углом; б радиальная с укладкой слоев корда по радиусу шины с армирующими слоями под протектором; в диагональная улучшенного типа с армирующими слоями под протектором.

Прогресс в области шин направлен на создание все более низкопрофильных шин, имеющих меньшие потери на качение и лучшие показатели устойчивости и управляемости. Профиль шины оценивается процентным отношением его высоты к ширине. На рис. 10 показаны сечения шин серий "80"-"40". Наиболее широко применяется серия "70", а серия "40", например, предназначена уже только для гоночных автомобилей.


Рис. 10. Сечения шин серий "80"-"40"

Поскольку передаточное отношение трансмиссий автомобиля рассчитывают с учетом диаметра колеса, то и при использовании низкопрофильной шины этот диаметр должен быть сохранен неизменным. Для этого шина должна монтироваться на обод большего диаметра. Это имеет свои положительные стороны: например, можно увеличить ширину и диаметр тормозов, что улучшит их охлаждение. Однако масса колеса увеличится, если не применить для его изготовления легкие сплавы.

В предыдущих главах для простоты изложения использовалось допущение, что коэффициент сопротивления качению не зависит от скорости движения. В действительности это не так, поскольку конструкция, технология изготовления или материал шин оказывают влияние на изменение этого коэффициента, особенно при больших скоростях движения. На рис. 11 приведены реальные значения коэффициента сопротивления качению, измеренные у шин итальянской фирмы "Пирелли" серий "80"-"50".

При высоких скоростях отчетливо проявляется преимущество низкопрофильных шин серий "60" и "50". Например, шина HR/60 на скорости 160 км/ч имеет сопротивление качению на 26 % меньше, чем шина SR/80.

Среднее удельное давление в площади контакта у шины с упругой боковиной приблизительно равно давлению воздуха в шине. Поэтому как широкая, так и узкая шины одинаково нагруженного колеса будут иметь равный размер площади контакта с поверхностью дороги. Однако формы поверхности контакта будут различными. На рис. 12 показаны два колеса с шинами различной ширины и их отпечатки. Площадь обоих отпечатков одинакова, но у более широкой шины он растянут по ширине, у менее широкой - по длине. Как изображено на боковой проекции колеса, деформация широкой шины h 0 меньше, чем узкой h u . Это является причиной меньшего погружения колеса в мягкое покрытие и, следовательно, меньшего коэффициента сопротивления качению. Данное правило действует и на твердом покрытии, так как изменяется угол наезда α, образуемый между касательной к окружности колеса и поверхностью дороги в месте контакта ее с колесом. Коэффициент сопротивления качению измеряется при качении колеса по ровному покрытию, имеющему большую жесткость, что моделирует качение эластичного колеса по жесткому покрытию и приблизительно соответствует условиям качения шины по дороге с асфальтовым или бетонным покрытием. В этом случае можно пренебречь влиянием деформации дорожного покрытия, и деформация колеса будет протекать таким образом, как показано на рис. 13. При статическом нагружении деформация симметрична, а равнодействующая сил проходит через центр тяжести отпечатка.

Колесо представляет собой пневматическую пружину с высокопрогрессивной характеристикой. Характеристику этой пружины можно получить путем нагружения колеса и измерения положения его центра тяжести в зависимости от величины нагрузки. При вращении шины каждую элементарную площадку на ее окружности можно считать самостоятельной, предварительно сжатой пружиной. Дополнительное сжатие этих парциальных пружин при контакте с дорогой требует затраты работы, которая увеличивает сопротивление качению шины. При выходе из контакта этих пружин после достижения максимального сжатия в среднем положении энергия, аккумулированная в них, высвобождается, и сила действует в направлении движения, уменьшая сопротивление качению. Для идеальной шины вложенная энергия была бы равна энергии высвобожденной, и колесо катилось бы без потерь.

Однако шина снабжена реальным протектором и, кроме того, в ней имеется внутреннее трение. При деформации протектора, помимо силы, необходимой для сжатия пневматической пружины, требуется сила для придания ускорения парциальной массе. Наличие внутреннего трения вызывает расход еще части энергии на разогрев шины. Следовательно, в первой половине цикла соприкосновения шины с дорогой должно быть развито усилие, достаточное для сжатия пружины, придания ускорения массе протектора и преодоления внутреннего трения. Однако во второй половине цикла вся сила сжатия пружины не высвободится, так как часть ее уйдет на придание обратного ускорения массе и на преодоление внутреннего трения. При вращении колеса на массу протектора воздействует также центробежная сила. Распределение удельных давлений по площади отпечатка будет поэтому неравномерным.

Равнодействующая всех сил расположена в первой половине отпечатка и удалена от оси колеса на расстояние s. За счет этого возникает момент сопротивления sG, который вызывает горизонтальное сопротивление H = G tg φ, где tg φ = s/R = f; G - нагрузка на шину.

В действительности, при передаче окружного усилия с шины на дорогу зависимости гораздо сложнее, но для наглядности объяснения приведенная выше упрощенная модель вполне пригодна. Так как центробежная сила и время сжатия зависят от окружной скорости у, то и сопротивление качению также частично зависит от нее. Эта зависимость выражается уравнением

Р = G (f 0 + cυ n).

Значение f 0 и в особенности показатель степени n, по мнению различных авторов, имеют весьма широкий диапазон. По Э. Эверлингу n = 1; В. Камм считает n = 2, Андро n = 3,7.

Для наших рассуждений о путях снижения сопротивления качению вполне пригодны реально измеренные значения коэффициента сопротивления f (см. рис. 11) и влияние на него давления в шине (рис. 14). Из графиков на рис. 14 видно, что малое давление значительно увеличивает сопротивление качению, особенно при больших скоростях движения.

Как показано на рис. 11, до скорости 60-80 км/ч сопротивление качению несколько падает, но при больших скоростях резко увеличивается. Сверхнизкопрофильная шина серии VR/50 сохраняет небольшую величину сопротивления качению вплоть до скорости 200 км/ч. Таким же свойством обладает и шина HR/60.

Весьма опасным для шин является резонанс протектора, возникающий на высоких скоростях. При достижении определенных оборотов колеса могут начаться колебания элементов слоя протектора на пневматической пружине под влиянием постоянных импульсов сжатия при каждом повороте колеса. На поверхности шины в момент выхода ее из контакта с дорогой появляются статические волны, которые могут распространиться по всей окружности колеса. Резонанс протектора является причиной больших выделений теплоты и поэтому недопустим. При его возникновении в течение нескольких десятков секунд слой протектора может отделиться и, таким образом, возникнет аварийная ситуация.

Резонанс протектора резко повышает сопротивление качению, а рост энергии, потребляемой для преодоления сопротивления, сильно разогревает шину. Границы резонанса можно сдвинуть в сторону больших частот вращения колеса повышением внутреннего давления в шине и уменьшением массы протектора. Максимально допустимая скорость для отдельных типов шин фирмы "Пирелли" ограничивается следующим образом: SR - 180 км/ч; HR - 210 км/ч; VR - более 210 км/ч.

Снижение сопротивления качению у низкопрофильных шин весьма значительно и поэтому способствует повышению топливной экономичности. Фирма "Пирелли" гарантирует, что использование нового типа шин Р8 вызывает уменьшение расхода топлива до 4 %, что соответствует снижению сопротивления качению на 20 %. Одновременно повышается срок службы шин. Шина Р8 относится к серии "65" и пригодна для использования на скоростях до 180 км/ч.

Низкопрофильные шины обладают большей жесткостью боковин, что проявляется в меньшей величине бокового увода. На рис. 15 показано влияние угла бокового увода на коэффициент сопротивления качению. Пунктирная кривая характеризует шины серии "80", сплошная - серии "60".

Одним из главных требований, предъявляемых к шинам, является обеспечение хорошего сцепления с поверхностью дороги. Оно обусловливается шириной профиля шины, рисунком протектора и качеством его материала. Для обеспечения максимального сцепления с поверхностью дороги у гоночных автомобилей применяются шины, изготовленные из особо мягкого материала с гладким протектором без рисунка. Мелкие углубления на поверхности протектора делаются лишь для контроля износа, который у этих шин при малых пробегах достигает значительных размеров. Сопротивление качению у таких гладких шин меньше, чем у тех, которые снабжены протектором с рисунком.

Как видно из вышеизложенного, правильный выбор типа шины и соблюдение установленного внутреннего давления воздуха в них являются важными факторами, влияющими на уменьшение расхода топлива. Поскольку, однако, доля сопротивления качению в сумме общего сопротивления движению автомобиля значительно уменьшается с ростом скорости, то уменьшение этого вида сопротивления движению не означает пропорционального снижения расхода топлива. Так, уменьшение сопротивления качению шин на 10 % вызывает снижение потребления топлива лишь на 2%. Низкопрофильные шины обеспечивают лучшие условия движения, что может приводить к увеличению скорости, при котором экономия топлива, достигнутая снижением сопротивления качению, практически сведется к нулю. В этом случае необходимо принимать в расчет, какое снижение расхода достигается уменьшением сопротивления качению шин и насколько увеличивается этот расход из-за роста скорости движения.

При действии боковой силы коэффициент сопротивления качению шины растет. Боковая сила возникает чаще всего при движении на поворотах. Чтобы не допустить при этом снижения скорости автомобиля, необходимо увеличить мощность двигателя. Боковая сила растет с ростом скорости и соответственно увеличивается сопротивление качению. Поэтому при прохождении поворотов на большой скорости потребление топлива увеличивается.

Поворот можно проезжать и способом плавного скольжения всех колес (так называемый управляемый занос автомобиля), что весьма эффективно, но при этом требуется значительная мощность двигателя. Все колеса автомобиля в таком случае отклонены от направления движения. Умение экономично проезжать поворот на большой скорости заключается в прохождении его с наименьшим буксованием колес.

Давайте поговорим о выборе новой "обувки" для своей машины. Если автомобиль более-менее новый, то главным критерием для покупки обычно становится марка и модель покрышки, которой он был укомплектован на конвейере.

Качество современных автомобильных шин определяют такие параметры, как коэффициент сопротивления качению, управляемость авто на мокром и сухом покрытии, тормозные свойства, показатели аквапланирования новой покрышки и ее стойкость к износу, шумность, пробег, цена, комфорт...

Однако проблема в том, что для разных участников авторынка — автопроизводителей, продавцов шин и водителей, покупающих шины на вторичном рынке — эти параметры имеют разные приоритеты.

Кому что нравится

Не секрет, что каждый автопроизводитель предъявляет к покрышкам, предназначенным для первоначальной комплектации авто свои требования. При этом они отнюдь не являются универсальными — у разных компаний они могут существенно отличаться.

Например, один автопроизводитель выдвигает очень жесткие требования к коэффициенту сопротивления качению, прямо влияющему на экономичность авто, у другого они будут существенно мягче. Одна компания чрезвычайно требовательна к параметрам аквапланирования изношенной шины, а для другой они не критичны. При этом требования, предъявляемые к покрышке для вторичного рынка, также будут другими.

Объясняется это просто: автомобиль, прежде всего, нужно продать, поэтому характеристики всех его компонентов подчинены единой цели. Потребителю нужен автомобиль с низким расходом топлива — вот вам новые экономичные двигатели и шины с пониженным коэффициентом сопротивления качению. Важен комфорт — вот удобный салон, энергоемкая подвеска и малошумные шины. Таким образом, каждый элемент формирует представление об автомобиле как о едином целом.

А на вторичном рынке потребитель руководствуется какими-то своими предпочтениями, часто совершенно отличающимися от представлений автопроизводителей. Например, согласно маркетинговым исследованиям, для конечного потребителя очень важны цена и дизайн покрышки...

Одна во многих лицах

Таким образом, чтобы соответствовать различным требованиям, шины не могут иметь одни и те же параметры, а, следовательно, будут разными. То есть размеры, дизайн и название будут одинаковыми, но конструктивно, хоть и незначительно, шины будут отличаться. Например, иметь разную радиальную или диагональную жесткость, другой наполнитель протектора и, возможно, несколько измененный рисунок протектора. Скажем, немного смещенные блоки, увеличенное количество ламелей...

Однако, по мнению производителей, на ощущениях конечного пользователя эти изменения никак не скажутся. Ведь в любом случае это будут хорошие, качественные покрышки, хотя и с акцентом на какие-то "свои" параметры.

Впрочем, при поставках на конвейер важно выдержать заданные параметры на всем массиве шин. При этом вполне удовлетворительным считается, если у 10% произведенных шин характеристики не будут соответствовать всем требованиям автопроизводителей. Вот эти 10%, (это не брак!) и попадают на вторичный рынок.

В то же время, если вторичный рынок требует большего, то производится дополнительное количество шин, чтобы удовлетворить спрос. Для вторичного рынка производится спецификация максимально приближенная к требованиям рынка.

Мечта каждого автолюбителя и производителя автомобилей, чтобы машина двигалась как можно легче и с наименьшим расходом топлива.

При перемещении предмета (автомобиля) из пункта А в пункт В необходимо затратить определённое количество энергии (топлива). Использование колеса значительно сокращает требуемые затраты энергии, но на колесо в этот момент действуют различные силы противодействия – это трение, сопротивление воздуха и другие силы. Вследствие этих процессов вырабатываемая двигателем энергия переходит из движущей в тепловую.

По законам физики для создания наименьшего коэффициента сопротивления необходимо изготовить идеально круглое колесо и катить его по идеально ровной поверхности. В реальной жизни изготовление идеально круглого колеса возможно, но создать идеально ровную дорогу нельзя, поэтому автопокрышка колеса изготавливается из резины и заполняется воздухом. Такой способ передвижения позволяет сглаживать неровности дороги.

Мягкая резина поглощает все незначительные препятствия на дорожном полотне и тем самым уменьшает силы противодействия, что снижает расход топлива. Неровности дорожного покрытия и неравномерность деформации покрышки при их преодолении приводят к нагреву шины, и, следовательно, увеличивается расход топлива.

Экспериментируя с разными составами ингредиентов, входящих в состав автопокрышки, количеством слоёв резины и корда при производстве автошин, был достигнут определённый положительный результат , уменьшающий коэффициент сопротивления. Но автомобиль должен не только легко (без сопротивления) двигаться, но и уверенно поворачивать (маневрировать) и тормозить при необходимости.

В результате существуют два противоречащих друг другу условия . При движении требуется минимальное сопротивление, а в момент торможения, наоборот, необходимо максимальное сопротивление качению, трение и сцепление с поверхностью дороги.

Конструкторские бюро и химические лаборатории мировых лидеров в производстве автопокрышек смогли создать шину, совмещающую в себе оптимально оба требования. В состав резиновой смеси были добавлены сложные полимеры (пластификаторы), которые привели к изменению в лучшую сторону механических свойств шины, что значительно помогло снизить количество слоёв протектора.

Корд покрышки (каркас, брекер, и боковина) стал сложносоставным. Брекер изготовлен из арамидного моноволокна, основа каркаса из сверхлёгкого полиэфирного волокна, а во внутренней структуре протектора и боковой поверхности размещены звукопоглощающие смеси. (В традиционной шине весь корд изготавливается из стальной проволоки и химический состав резины при производстве одинаков для всей структуры шины.)

Такая сложносоставная конструкция позволила уменьшить коэффициент сопротивления качению. Но при торможении, когда начинается большая в количественном выражении деформация и смещение частиц покрышки по отношению друг к другу, содержащиеся полимеры изменяют свои механические показатели , что приводит к увеличению коэффициента трения, сцепления с дорожным покрытием, и показатель сопротивления качению увеличивается.

За многие годы мировые лидеры по производству автопокрышек (Goodyear, Bridgestone, Michelin, Continental, Dunlop) накопили большой практический и теоретический опыт, позволяющий успешно проводить разработки конструктивно новых шин, в которых эксплуатационные характеристики отвечают самым последним требованиям автомобильных концернов и потребителей и сочетают в себе безопасность, надёжность и длительный срок эксплуатации.

По мнению экспертов и автолюбителей лучшие результаты достигнуты компаниями Bridgestone , Michelin .

Экономичные шины: можно ли снизить расход топлива за счет покрышек

В рекламных материалах производителей шин наряду со словами "долговечность", "хорошее сцепление", "быстрое торможение" обязательно присутствуют заверения об "экономичности", то есть заметном сокращении расхода топлива. Объясняется подобный эффект более низким сопротивлением качению.

Разумеется, на то, с какой скоростью указатель уровня горючего в баке стремится к нулю, влияет множество факторов: от стиля вождения до массы пассажиров. Также не приходится говорить о "бережливости" зимних шин, поскольку при их эксплуатации на первое место выходят совсем другие качества, несовместимые с легкостью качения. Поэтому сегодня мы познакомимся с наиболее распространенными на российском рынке летними экономичными (или энергоэффективными) покрышками и узнаем, стоит ли рассчитывать на серьезную экономию бюджета при их использовании.

Немного теории

У новичков-автолюбителей, впервые узнавших о шинах с низким сопротивлением качению, возникает закономерный вопрос: что чему сопротивляется и как это связано с расходом топлива? Дело в том, что наружная (она же беговая) часть шины, соприкасаясь с дорожным покрытием, несколько деформируется - из округлой становится уплощенной - и образует так называемое пятно контакта. Когда же автомобиль начинает двигаться, процесс деформации становится непрерывным, "пятно" перемещается по покрышке и обеспечивает сцепление с дорогой. Таким образом, чем меньше энергии требуется для того, чтобы преодолевать изменение формы шины, и чем легче пятно контакта выходит из зацепления с покрытием, тем ниже величина сопротивления качению.

Лучше всего деформацию и пятно контакта демонстрирует полуспущенная шина

Основными конструктивными характеристиками шины, влияющими на то, насколько легко она катится по дороге, являются упругость материалов беговой части и боковин, а также "прилипчивость" материала протектора к дороге.

Среди шин одного диаметра увеличенное сопротивление качению имеют более широкие покрышки, обладающие большим пятном контакта. Не отличаются экономичностью и спортивные шины, предназначенные для езды на больших скоростях, так как состав материала, из которого их делают, должен обеспечивать максимальное сцепление с покрытием дороги.

Кстати, самый простой способ снизить сопротивление качению - подкачать шины. Тут и деформация снижается, и пятно контакта становится меньше. Вот только перекачивать колеса выше рекомендованных значений не стоит, так как при этом заметно увеличивается тормозной путь, автомобиль легче срывается в занос, да и комфортность езды заметно страдает, особенно на неровных дорогах.

Поскольку в обычном легковом автомобиле на преодоление сопротивления покрышек приходится примерно 20% всего расхода топлива, то неудивительно, что производители шин стараются повысить привлекательность своей продукции за счет этого показателя. В среднем снижение сопротивления на 10% позволяет сэкономить около 1-2% горючего.

Что нам обещают производители

Посмотрим, за счет чего компании-изготовители стараются уменьшить этот "вредный" показатель, насколько эффективно нововведения проявляют себя в реальных условиях и, самое главное, как подобные изменения сказываются на таких важных свойствах шин, как устойчивость на дороге в различных условиях и скорость торможения.

В тестах летних шин, проводимых по заказу авторитетных отечественных и зарубежных автомобильных журналов, характеристику "низкое сопротивление качению" чаще всего имеет продукция компаний , и . Разумеется, подобную резину сегодня предлагают практически все производители, но мы ограничимся названными выше популярными в России марками.

Флагманом энергоэффективной продукции компании Nokian Tyres являются шины . Как заявлено на сайте концерна, сопротивление качению этих покрышек снижено на 15% по сравнению с предшествующей моделью - . Если же брать "обычные" шины, то снижение достигает 40%.


Попытки понять, за счет чего достигнуты столь впечатляющие результаты, заканчиваются дежурными фразами пресс-релизов о "специально спроектированном протекторе и уникальной композиции резиновой смеси". Единственная подробность, которую озвучили маркетологи Nokian, - в состав покрышек входит масло финской сосны.

Другой известный производитель шин также имеет в своем арсенале "бережливую" покрышку - . Впрочем, и здесь о технологии и конструкции говорят крайне скупо. Компания Michelin гордится тем, что первой стала добавлять кремний (или, как его еще называют, силику) в состав резиновой смеси. Впрочем, сегодня этот минерал стал неотъемлемой частью авторезины любого производителя. А по существу вопроса информации практически нет: "Сниженная масса, уникальный состав, инновационная конструкция..."» Покупателям шин обещана экономия восьмидесяти литров топлива за весь срок пробега комплекта покрышек, который, в свою очередь, будет дольше на десять тысяч километров. Все это, разумеется, в среднем и по сравнению все с теми же "обычными" шинами.

Впрочем, наивно было бы ожидать, что производители шин начнут щедро делиться разработками инженеров и технологическими секретами. Вот и сообщает компания Pirelli об "инновационных материалах" и "ELRR (Extra Low Rolling Resistance)" - системе сверхнизкого сопротивления качению, использованной в шинах .

Чуть более многословны представители GoodYear, рассказывающие, что шина EfficientGrip имеет "улучшенный каркас с использованием специальных материалов, облегчающих вес продукта; усовершенствованный процесс разработки и производства резиновой смеси с новым составом, который обеспечивает превосходные показатели пробега, торможения на мокрой поверхности и сопротивления качению". Также утверждается, что расход топлива будет ниже на 1,9% "по сравнению с четырьмя ведущими конкурентами". О том, что это за конкуренты, правда, не сообщается.

Преимуществами экономичной покрышки должны стать "новый кремниевый состав материала беговой дорожки, доработанный контур и асимметричная форма протектора". Сопротивление качению у этой шины на 12% ниже, чем у предшествующей модели ContiEcoContact EP.

Обобщив разрозненные сведения, можно сделать вывод, что в последние годы основные усилия конструкторов направлены на снижение массы шины за счет уменьшения количества слоев корда и толщины протектора, а также на использование в составе резиновой смеси синтетических материалов, обладающих минимальными потерями энергии при деформации.

Практика - критерий истины

Что ж, пора от красивых обещаний изготовителей автомобильной "обувки" перейти к практическим результатам и посмотреть, что получает и что теряет автовладелец, купивший экономичные покрышки.

Главный вопрос всех тестов: можно ли при значимом снижении сопротивления качению сохранить на высоком уровне такие качества шины, как управляемость и сцепные свойства на сухой и мокрой дороге, устойчивость к аквапланированию, хорошее торможение и т. п.? И тут протоколы испытаний неумолимы: идеального сочетания экономичности и безопасности ни одному производителю пока достичь не удалось.

Да, все принимавшие участие в тестах "экономные" покрышки демонстрируют достоверное снижение сопротивления качению и более низкий расход топлива, но это всегда приводит к пусть и не фатальному, но все же заметному ухудшению других характеристик. Так, "зеленая шина" Hokian демонстрирует посредственные сцепные свойства и управляемость на сухом покрытии. Автомобиль с шинами будет иметь не самую лучшую управляемость на мокром асфальте и при аквапланировании. Система сверхнизкого сопротивления качению в покрышках от Pirelli приводит к заметному увеличению тормозного пути, особенно на влажном покрытии. Владельцам Goodyear EfficientGrip стоит быть максимально собранными во время дождя, особенно если на пути глубокие лужи. Шины держат водителя в напряжении на мокром асфальте и дают заметное увеличение тормозного пути на сухом.

Справедливости ради отметим, что все перечисленные недостатки более-менее заметны в тестах, проводимых в экстремальных условиях специализированных полигонов. При обычной езде по городу и загородным трассам вероятность серьезного влияния "минусов" экономичных шин на безопасность и комфорт вождения крайне невелика.

Наиболее полно недостатки покрышек можно выявить только на полигоне

Таким образом, при прочих равных условиях энергоэффективные шины действительно оправдывают свое название и способны снизить потребление топлива. Другое дело, что даже максимальные результаты, достигаемые в идеальных условиях тестов, измеряются 100-200 граммами на 100 километров пробега или экономией нескольких десятков литров в год. Соответственно, при ежедневных (включая выходные) поездках на 100 километров затраты на бензин сократятся на 100-150 рублей в месяц. В реальности же снижение расходов будет еще меньше.

Вот и получается, что, выбирая обновку для своего «железного коня», обращать внимание прежде всего следует на условия, в которых она будет эксплуатироваться, управляемость и хорошее сцепление с дорогой. А если к этому еще и экономичность (пусть и небольшая) прилагается - замечательно, приятный бонус еще никому не помешал.