За счет чего работает турбина в автомобиле. Что такое турбина? Виды турбин. Устройство и принцип действия турбины. Регулятор давления наддува

Турбонаддув обязан свои появлением пресловутой немецкой рачительности и практичности во всём. Ещё Рудольфу Дизелю и Готлибу Даймлеру, в конце XIX века, не давал покоя такой вопрос. Как же так: выхлопные газы просто так выбрасываются в трубу, а энергия, которой они обладают, не приносит никакой пользы? Непорядок… В веке двадцать первом, двигатели, оснащённые турбиной, давно перестали быть экзотикой и используются повсеместно, на самой разной технике. Почему турбины получили распространение прежде всего на дизельных двигателях и каков принцип работы этих полезных агрегатов, разберём далее – в строго научно-популярной, но наглядной и понятной каждому форме.

Итак, идея «пустить в дело» энергию отработанных выхлопных газов появилась уже вскоре после изобретения и успешных опытов применения двигателей внутреннего сгорания. Немецкие инженеры и первопроходцы автомобиле- и тракторостроения, во главе с Дизелем и Даймлером, провели первые опыты по повышению мощности двигателя и снижению расхода топлива с помощью нагнетания сжатого воздуха от выхлопов.

Готдиб Даймлер выпускал вот такие автомобили, а уже задумывался о внедрении системы турбонаддува

Но первым, кто построил первый эффективно работающий турбокомпрессор, стали не они, а другой инженер – Альфред Бюхи. В 1911 году он получил патент на своё изобретение. Первые турбины были таковы, что использовать их было возможно и целесообразно только на крупных двигателях (например, судовых).

Далее турбокомпрессоры начали использоваться в авиационной промышленности. Начиная с 30-х годов ХХ века, в Соединённых Штатах регулярно запускались в «серию» военные самолёты (как истребители, так и бомбардировщики), бензиновые двигатели которых были оснащены турбонагнетателями. А первая в истории грузовая автомашина с турбированным дизельным мотором была сделана в 1938 году.

В 60-е годы корпорация «Дженерал Моторс» выпустила первые легковые «Шевроле» и «Олдсмобили» с бензиновыми карбюраторными двигателями, оснащёнными турбонаддувом. Надежность тех турбин была невелика, и они быстро исчезли с рынка.

Oldsmobile Jetfire 1962 года – первый серийный автомобиль с турбонаддувом

Мода на турбированные моторы вернулась на рубеже 70-х/80-х, когда турбонаддув начали широко использовать в создании спортивных и гоночных автомобилей. Приставка «турбо» стала чрезвычайно популярной и превратилась в своеобразный лейбл. В голливудских фильмах тех лет супергерои нажимали на панелях своих суперкаров «магические» кнопки «турбо», и машина уносилась вдаль. В реальной же действительности турбокомпрессоры тех лет ощутимо «тормозили», выдавая существенную задержку реакции. И, кстати, не только не способствовали экономии топлива, а наоборот, увеличивали его расход.

Труженик советских полей – с турбонаддувом

Первые действительно успешные попытки внедрения турбонаддува в производство автомобильных двигателей серийного производства осуществили в начале 80-х годов «SAAB» и «Mercedes». Этим передовым опытом не замедлили воспользоваться и другие мировые машиностроительные компании.

В Советском Союзе разработка и внедрение в «серию» турбированных двигателей была связана, прежде всего, с развитием производства тяжёлых промышленных и сельскохозяйственных тракторов – , «Кировец»; суперсамосвалов «БелАЗ» и т.п. мощной техники.

Почему в итоге турбины получили распространение именно на дизельных, а не бензиновых двигателях? Потому что дизельные моторы имеют гораздо большую степень сжатия воздуха, а их выхлопные газы – более низкую температуру. Соответственно, требования к жаропрочности турбины гораздо меньше, а её стоимость и эффективность использования – гораздо больше.

Система турбонаддува состоит из двух частей: из турбины и турбокомпрессора. Турбина служит для преобразования энергии отработанных газов, а компрессор – непосредственно для подачи многократно сжатого атмосферного воздуха в рабочие полости цилиндров. Главные детали системы – два лопастных колеса, турбинное и компрессорное (так называемые «крыльчатки»). Турбокомпрессор представляет собой технологичный насос для воздуха, приводимый в действие вращением ротора турбины. Единственная его задача – нагнетание сжатого воздуха в цилиндры под давлением.

Чем больше воздуха поступит в камеру сгорания, тем большее количество солярки дизель сможет сжечь за конкретную единицу времени. Результат – существенное увеличение мощности мотора, без необходимости наращивания объёма его цилиндров.

Составные части устройства турбонаддува:

  • корпус компрессора;
  • компрессорное колесо;
  • вал ротора, или ось;
  • корпус турбины;
  • турбинное колесо;
  • корпус подшипников.

Основа системы турбонаддува – это ротор, закреплённый на специальной оси и заключённый в особый жаропрочный корпус. Беспрерывный контакт всех составных частей турбины с чрезвычайно раскалёнными газами определяет необходимость создания как ротора, так и корпуса турбины из специальных жаропрочных металлосплавов.

Крыльчатка и ось турбины вращаются с очень высокой частотой и в противоположных направлениях. Это обеспечивает плотный прижим одного элемента к другому. Поток отработанных газов проникает вначале в выпускной коллектор, откуда попадает в специальный канал, что расположен в корпусе турбо-нагнетателя. Форма его корпуса напоминает панцирь улитки. После прохождения этой «улитки» отработанные газы с разгоном подаются на ротор. Так и обеспечивается поступательное вращение турбины.

Ось турбонагнетателя закреплена на специальных подшипниках скольжения; смазка осуществляется подачей масла из системы смазки моторного отсека. Уплотнительные кольца и прокладки препятствуют утечкам масла, а также прорывам воздуха и отработанных газов, а также их смешиванию. Конечно, полностью исключить попадание выхлопа в сжатый атмосферный воздух не удаётся, но в этом и нет большой необходимости…

Мощность любого двигателя и производительность его работы зависит от целого ряда причин. А именно: от рабочего объёма цилиндров, от количества подаваемой воздушно-топливной смеси, от эффективности её сгорания, а также от энергетической части топлива. Мощность двигателя возрастает пропорционально росту количества сжигаемого в нём за определённую единицу времени горючего. Но для ускорения сгорания топлива необходимо увеличение запаса сжатого воздуха в рабочих полостях мотора.

То есть, чем больше за единицу времени сжигается горючего, тем большее количество воздуха потребуется «впихнуть» в мотор (не очень красивое слово «впихнуть» здесь, тем не менее, очень хорошо подходит, поскольку сам мотор не справится с забором избыточного количества сжатого воздуха, и фильтры нулевого сопротивления в этом ему не помогут).

В этом, повторимся, и состоит основное назначение турбонаддува – в наращивании подачи воздушно-топливной смеси в камеры сгорания. Это обеспечивается нагнетанием сжатого воздуха в цилиндры, которое происходит под постоянным давлением. Оно происходит вследствие преобразования энергии отработанных газов, проще говоря, из бросовой и утерянной – в полезную. Для этого, прежде чем выхлопные газы должны быть выведены в выхлопную трубу, а далее и, соответственно, в атмосферу, их поток направляется через систему турбокомпрессора.

Этот процесс обеспечивает раскручивание колеса турбины («крыльчатки»), снабжённого специальными лопастями, до 100-150ти тысяч оборотов в минуту. На одном валу с крыльчаткой закреплены и лопасти компрессора, которые нагнетают сжатый воздух в цилиндры двигателя. Полученная от преобразования энергии выхлопных газов сила используется для значительного увеличения давления воздуха. Благодаря чему и появляется возможность впрыскивания в рабочие полости цилиндров гораздо большего количества топлива за фиксированное время. Это даёт значительное увеличение как мощности, так и КПД дизеля.

Дизельная турбина в разрезе

Проще говоря, турбосистема содержит две лопастных «крыльчатки», закреплённых на одном общем валу. Но находящихся при этом в отдельных камерах, герметично отделённых друг от друга. Одна из крыльчаток вынуждена вращаться от постоянно поступающих на её лопасти выхлопных газов двигателя. Поскольку вторая крыльчатка с нею жёстко связана, то и она также начинает вращаться, захватывая при этом атмосферный воздух и подавая его в сжатом виде в цилиндры двигателя.

Не один десяток лет потребовался инженерам, чтобы создать действительно эффективно работающий турбокомпрессор. Ведь это только в теории всё выглядит гладко: от преобразования энергии отработанных газов можно «вернуть» утерянный процент КПД и значительно увеличить мощность двигателя (например, со ста до ста шестидесяти лошадиных сил). Но на практике подобного почему-то не получалось.

Кроме того, при резком нажатии на акселератор приходилось ждать увеличения оборотов мотора. Оно происходило только через некоторую паузу. Рост давления выхлопных газов, раскрутка турбины и загонку сжатого воздуха происходили не сразу, а постепенно. Данное явление, именуемое «turbolag» («турбояма») никак не удавалось укротить. А справиться с ним получилось, применив два дополнительных клапана: один – для перепускания излишнего воздуха в компрессор через трубопровод из двигательного коллектора. А другой клапан – для отработанных газов. Да и в целом, современные турбины с изменяемой геометрией лопаток даже своей формой уже значительно отличаются от классических турбин второй половины ХХ века.

Дизельный турбокомпрессор «Бош»

Другая проблема, которую пришлось решать при развитии технологий дизельных турбин, состояла в избыточной детонации. Детонация эта возникала из-за резкого увеличения температуры в рабочих полостях цилиндров при нагнетании туда дополнительных масс сжатого воздуха, особенно на завершающей стадии такта. Решать данную проблему в системе призван промежуточный охладитель наддувочного воздуха (интеркулер).

Интеркулер – это не что иное, как радиатор для охлаждения наддувочного воздуха. Кроме снижения детонации, он снижает температуру воздуха ещё и для того, чтоб не снижать его плотность. А это неизбежно во время процесса нагрева от сжатия, и от этого эффективность всей системы в значительной степени падает.

Кроме того, современная система турбонаддува двигателя не обходится без:

  • регулировочного клапана (wastegate). Он служит для поддержания оптимального давления в системе, и для его сброса, при необходимости, в приёмную трубу;
  • перепускного клапана (bypass-valve). Его предназначение – отвод наддувочного воздуха назад во впускные патрубки до турбины, если нужно снизить мощность и дроссельная заслонка закрывается;
  • и/или «стравливающего» клапана (blow-off-valve). Который стравливает наддувочный воздух в атмосферу в том случае, если дроссель закрывается и датчик массового расхода воздуха отсутствует;
  • выпускного коллектора, совместимого с турбокомпрессором;
  • герметичных патрубков: воздушных для подачи воздуха во впуск, и масляных – для охлаждения и смазки турбокомпрессора.

На дворе двадцать первый век, и никто уже не гонится за тем, чтобы название его легкового автомобиля было с модной в веке ХХ-м приставкой «турбо». Никто и не верит более в «магическую силу турбины» для резкого ускорения автомобиля. Смысл применения и эффективность работы системы турбонаддува всё-таки не в этом.

Вот это «улитка»!

Разумеется, наиболее эффективен турбонаддув при его использовании на двигателях тракторов и тяжёлых грузовиков. Он позволяет добавить мощности и крутящего момента без возникновения перерасхода топлива, что очень важно для экономических показателей эксплуатации техники. Там он и используется. Нашли своё широкое применение турбосистемы также на тепловозных и судовых дизелях. И это наиболее мощные из созданных человеком турбин для дизельного двигателя.

Турбонаддув современной конструкции – это сложное в техническом плане устройство. Первые системы для наддува двигателей появились еще в начале XX века. Наибольшее же распространение получила конструкция наддува, компрессор которой приводится от турбины, раскручиваемой выхлопными газами авто до высоких оборотов.

Энергия выхлопных газов бесплатна, поэтому мощность мотора при использовании турбокомпрессора значительно поднимается без ухудшения экономичности, а зачастую, экономичность двигателя даже улучшается (советы как уменьшить расход топлива). Из-за использования в конструкции турбины, такой вид наддува двигателя имеет всем хорошо известное названиетурбонаддув .

Воздух при сжатии компрессором нагревается, плотность падает, и в цилиндры его помещается меньше, поэтому, довольно часто, после турбокомпрессора нагнетаемый воздух пропускают через специальный радиатор – интеркулер , в котором он охлаждается.

Частота вращения турбины и связанного с ней компрессора турбонаддува очень велика (больше ста тысяч оборотов в минуту), поэтому в них применяются подшипники скольжения с очень маленькими зазорами. Соответственно возрастает требовательность двигателя с турбонаддувом к качеству и чистоте масла. Конечно, стоимость этого агрегата тоже немаленькая.

Серьезным недостатком турбонаддува можно считать эффект так называемой ”турбоямы”. Он проявляется при резком нажатии на педаль акселератора – двигатель сперва ”задумывается” и только после этого начинает разгонять автомобиль.

Объясняется это тем, что турбине необходимо какое-то время для раскрутки до рабочих оборотов, и чтобы его уменьшить, на некоторых моделях турбокомпрессоров (как правило, предназначенных для легковых автомобилей) устанавливают специальный клапан, который перепускает часть воздуха с выхода компрессора обратно на его вход.

Таким образом, при закрытии дроссельной заслонки турбина продолжает вращаться с большой скоростью, а турбокомпрессор в это время работает “вхолостую”, перегоняя воздух по кругу. Нажатие на педаль газа закрывает этот клапан, и нагнетаемый воздух в полном объеме снова поступает во впускной коллектор. Обычно управление перепускным клапаном турбонаддува возлагают на электронику.

Другой разновидностью наддува является приводной компрессор , который, в отличии от турбонаддува, вращается коленчатым валом двигателя. Поскольку для его привода отбирается энергия у мотора, такие системы менее экономичны, чем аналогичные силовые агрегаты без компрессора или с турбонаддувом. Зато они надежнее, дешевле и не имеют ”турбоямы”, что очень важно для спортивных автомобилей, где при разгоне каждая доля секунды на счету.

Такие компрессоры часто используют западные тюнинговые компании для увеличения мощности моторов – это гораздо дешевле, чем увеличивать рабочий объем, организуя мелкосерийное производство поршней, коленвалов и других технологически сложных деталей. Их используют такие автомобильные “гранды” как Mercedes, General Motors, Ford, Jaguar, Mazda и другие автопроизводители.

На мощностные характеристики, которые демонстрирует автомобиль, непосредственно влияет показатель наполнения цилиндров воздушно-топливной смеси. В целях увеличения степени обогащения этой смеси компании-производители оборудуют транспортные средства турбокомпрессорами . Вместе с тем, далеко не каждая модель и модификация той или иной марки автомобиля имеет под капотом турбированный мотор. Это первая причина, по которой владельцы устанавливают турбину на авто. Кроме того, турбонагнетатель имеет свойство со временем изнашиваться. В этом случае нужна замена турбины.

В чем преимущества турбин на автомобиле?

Турбированный силовой агрегат приобретает все большую популярность, и для этого есть множество причин, поскольку перечень преимуществ турбонагнетателя весьма обширен. Привлекательность турбины состоит в следующем:

  • значительное увеличение мощности транспортного средства;
  • существенное снижение топливного расхода;
  • быстрая окупаемость турбины, что зависит от частоты использования автомобиля;
  • экономия, поскольку имеющийся в машине двигатель не требуется менять на более мощную версию, что достаточно дорого;
  • стабильность функционирования двигателя;
  • экологичность - у авто с турбированным двигателем наблюдается меньшая степень токсичности выхлопных газов.

Как правильно выбрать турбину?

Турбина и двигатель должны функционировать сбалансировано, и каждый тип мотора требует определенной турбины. Разумеется, лучше всего приобретать оригинальный турбонаддув , в этом случае производитель учитывает все особенности двигателей своих же автомобилей и выпускает турбины под конкретные силовые агрегаты, которые идеально им подходят. Поскольку такие турбины стоят недешево, стоит обратить внимание на неоригинальные модели, но выпускаемые известными изготовителями, имеющими лицензии на такое производство. В этом случае турбины на каждом этапе производства проходят тщательное тестирование.

Каковы критерии выбора?

При выборе турбины следует определиться с тремя основными факторами:

  1. как планируется эксплуатировать автомобиль - для гонок или простых повседневных поездок;
  2. каковы характеристики мотора - чем меньше рабочий объем двигателя, тем меньшая турбина требуется, и наоборот. Для двигателей с объемом 3 и более литра понадобится сдвоенная или большая турбина;
  3. какой тип мотора планируется оснащать ей - от этого зависит материал, из которого она изготовлена. Дизельные и бензиновые агрегаты работают в разном температурном режиме, и турбина должна обладать соответствующей жароустойчивостью.

Не следует переоценивать возможности автомобиля и «вешать» на него силовые нагрузки, к которыми он может не справиться. Чтобы не ошибиться в выборе, лучше проконсультироваться со специалистом.

Читая описания новых спортивных моделей от того или иного автопроизводителя, часто встречаешь термин "турбонаддув". Турбокомпрессоры, динамика, скоростные качества - это одна из самых будоражащих тем для каждого автолюбителя. Можно много говорить о респектабельности и комфорте, но классный спорткар просто притягивает к себе взгляды.

Давайте рассмотрим, в чём заключается главная особенность и как работает турбонаддув?

Различные производители постоянно внедряют новые технологии, направленные на повышение производительности двигательных агрегатов. И надо признать, что есть определённый прогресс, так как появляется всё больше и больше новых технологий. Хотя при этом многие признают, что суть остаётся та же.

Технология "наддува"

Термин "наддув" обозначает процесс повышения свежего заряда топлива в двигателе внутреннего сгорания, благодаря искусственному повышению давления. Данная технология предназначается в первую очередь для повышения мощности. При самых удачных раскладах, показатель улучшается до 45%.

Наиболее распространённым является так называемый агрегатный наддув, известный в широких кругах как "турбонаддув". И ключевым элементом в данном случае является турбокомпрессор.

Правда механический компрессор постепенно уходит в прошлое, вместо него производители применяют турбину.

Он основывается на более продуманной утилизации отработанных газов. Их энергия за счёт нагнетания давления используется для повышения мощности. В итоге удаётся заметно повысить производительность.

При работе в двигателе сгорает топливо, за счёт чего вырабатывается энергия для движения. Однако выхлопные газы после этого просто выходят наружу. Турбонаддув позволяет использовать их для повышения мощности.

Для этого используется турбина.

    Газы попадают на крыльчатку, приводя её в движение.

    На одном валу с ней располагается компрессор, который непосредственно нагнетает давление в цилиндрах.

В обычной системе воздух попадает естественным путём, за счёт разрежения при открытии поршня.

Искусственное нагнетания приводит к тому, что внутрь цилиндра попадает больше воздушно-топливной смеси. А это в свою очередь приводит к выработке большей мощности при сгорании. Именно так работает турбонаддув в машине.

Агрегатный турбонаддув предназначается исключительно для того, чтобы повысить мощность двигателя и его КПД.

Технология применяется в тех случаях, когда требуется сделать мотор более мощным, сохраняя при этом его габариты и размеры. Главное достоинство заключается в том, что повышается мощность без повышения оборотов двигателя.

Компрессор позволяет искусственно нагнетать давление в системе, за счёт чего увеличивается объём сгораемого топлива, и соответственно повышается мощность. Автомобиль начинает на тех же оборотах двигаться гораздо быстрее.

Недостатки турбонаддува

У турбокомпрессора есть и свои минусы. За скорость необходимо платить. В первую очередь, конечно, это выражается в расходе топлива. В зависимости от регулировки наддува и особенностей той или иной модели расход топлива может значительно возрастать.

Повышенная мощность и увеличенный объём сгораемого топлива приводит к тому, что температура при такте сжатия повышается в разы. Это в свою очередь создаёт опасность возникновения детонации. И чтобы избежать этого требуется установка дополнительных элементов - промежуточных охладителей, регуляторы степени сжатия и т.д.

Система включает в себя несколько элементов:

    Турбокомпрессор;

    Интеркулер;

    Регулировочный клапан (поддерживающий заданное давление);

    Перепускной клапан;

    Выпускной коллектор.

Также современные системы турбонаддува оснащаются многочисленными датчиками, позволяющими лучше контролировать весь процесс.

Многие производители сейчас устанавливают свои собственные версии турбонаддува, в том числе и на дизельные версии. В целом они демонстрируют довольно неплохие результаты. Автомобилисты при покупке получают возможность выбрать ту версию, которая им подходит больше всего. Это касается не только наличия дополнительных опций, но и двигателя. Производители же постоянно работают над повышением эффективности - снижение расхода топлива и одновременное улучшение динамических характеристик автомобиля.

Видео

Подробнее о работе турбины смотрите следующий видеоматериал:

Турбокомпрессор является решением, которое устанавливается как на бензиновый, так и практический на каждый современный дизельный двигатель автомобиля. в обиходе называются турбодизелями. Указанный компрессор представляет собой своеобразный насос для воздуха, который приводится в действие турбиной. Турбину дизельного двигателя вращает энергия выхлопных газов.

Главной задачей устройства является нагнетание воздуха в цилиндры дизельного под давлением. Чем больше воздуха поступит в камеру сгорания, тем большее количество солярки дизель сможет сжечь. Результатом становится значительное увеличение мощности двигателя без необходимости физически увеличивать объем цилиндров.

Читайте в этой статье

Принцип работы и конструкция дизельного турбонагнетателя

Турбокомпрессор дизельного двигателя состоит из двух колес: турбинного и компрессорного. Данные колеса еще могут называться крыльчаткой. Крыльчатка турбины напрямую и жестко соединена с компрессорным колесом посредством оси. Устройство нагнетателя можно разделить на главные составные части:

  • корпус компрессора (1);
  • компрессорное колесо (2);
  • вал ротора или ось (3);
  • корпус турбины (4),
  • турбинное колесо(5);
  • корпус подшипников;

Турбина имеет в основе ротор (крыльчатку), который закреплен на оси и заключен в специальный корпус. Постоянный контакт всех элементов турбины с раскаленными газами обуславливает необходимость изготовления ротора и корпуса турбины из особых жаропрочных материалов.

Крыльчатка и ось вращаются в противоположных направлениях с высокой частотой, в результате чего осуществляется плотный прижим одного элемента к другому. Поток отработавших газов проникает в выпускной коллектор, после чего оказывается в специальном канале. Данный канал находится в корпусе турбонагнетателя. Корпус имеет своеобразную форму-улитку. После прохождения улитки, отработавшие газы разгоняются и подаются на ротор. Так осуществляется вращение турбины.

Конструкция устройства может отличаться на разных типах дизельных двигателей. Главным отличием выступает разное количество каналов для движения выхлопных газов в корпусе. Также могут дополнительно присутствовать решения, которые позволяют управлять потоком отработавших газов внутри корпуса (турбина с изменяемой геометрией) и т.п.

Устройство компрессора

Компрессор имеет корпус и колесо (ротор). Корпус компрессора алюминиевый. Ротор крепится на оси турбины аналогично крыльчатке. Колесо компрессора имеет лопасти, материалом изготовления которых также является алюминий. Задачей компрессорного колеса становится забор воздуха, который проходит через его центр.

Форма лопастей заставляет воздух отбрасываться к стенкам корпуса компрессора, благодаря чему происходит его сжатие. Далее поток сжатого воздуха подается во впускной коллектор двигателя.

Ось турбокомпрессора

Ось является центральной частью турбонагнетателя и закреплена внутри корпуса на подшипниках скольжения. Смазка оси реализована при помощи подачи . С обеих сторон устанавливаются специальные уплотнительные кольца и прокладки.

Данные элементы препятствуют обильным утечкам масла, чтобы смазка не попадала в область нахождения компрессора и турбины. Сами масляные уплотнения не обеспечивают полной герметичности. Данные решения являются уплотнителями, которые функционируют благодаря разнице давлений, которые возникают в процессе работы турбокомпрессора.

Также уплотнения минимизируют прорыв воздуха из компрессора и газов из турбины в корпус оси. Стоит отметить, что полностью исключить попадание выхлопа и сжатого компрессором воздуха не удается. Излишки удаляются по сливному маслопроводу вместе с маслом и оказываются в картере дизельного двигателя.

Турбояма и турбоподхват

Крыльчатка турбины и компрессорное колесо закреплены на одной общей оси. По этой причине наблюдается определенная зависимость, которая заключается в увеличении подачи воздуха компрессором только с ростом оборотов турбины. Специалисты выделяют понятие турбоямы (турболаг), что означает задержку прироста мощности дизеля при резком нажатии на акселератор.

Турбояма возникает в результате инерционности всей системы турбонаддува. Дело в том, что для раскручивания турбинного колеса поступающими на крыльчатку выхлопными газами нужно определенное время. Турбоподхват является резким увеличением оборотов ДВС, который возникает следом за турбоямой.

Крыльчатка турбины раскручивается выхлопными газами для создания эффективного давление наддува турбокомпрессором. При определенных условиях турбина может вращаться с очень большой частотой, что зависит от конструктивных особенностей корпуса устройства и интенсивности потока отработавших газов.

Читайте также

Самостоятельная проверка турбокомпрессора дизельного двигателя. Проверка нагнетателя без снятия. Наличие масла в корпусе турбины, люфт вала, крыльчатка.

  • Когда и почему возникает необходимость настроить актуатор турбокомпрессора. Принцип работы устройства, особенности и доступные способы настройки вестгейта.