Конструкция червячных колес. Материалы и конструкции червяков и червячных колес

Червяки для силовых передач изготовляют из углеродистых или легированных сталей с соответствующей термообработкой, обеспечивающей высокую твердость рабочих поверхностей. Червяки из сталей 15Х, 20Х, 12ХН2, 18ХГТ, 20ХФ и т. д. подвергают цементации и закалке до твердости HRC58...63 , а из сталей Ст6, 40, 45, 40Х, 40ХН закаляют до HRC45...55 . Червяки из улучшенных и нормализованных сталей применяют в тихоходных и малонагруженных передачах, а также при отсутствии оборудования для их шлифовки, В передачах с колесами большого диаметра червяк изготовляют из бронзы, а колесо - из чугуна (для экономии бронзы). В большинстве случаев червяк выполняют как целое с валом (см. рис. 1; 2), реже насадным, т. е. изготовленным отдельно от вала и затем закрепленным на нем.

Рис. 1

Выбор материала червячного колеса в основном зависит от скорости скольжения витков резьбы червяка по зубьям колеса (рис. 3, д)

где v 1 - окружная скорость червяка; γ - делительный угол подъема резьбы червяка. В связи со склонностью червячной передачи к заеданию и неблагоприятными условиями ее смазки венцы червячных колес изготовляют из бронзы. Реже их выполняют из чугуна и пластмасс. Для экономии бронзы из нее изготовляют лишь зубчатый венец (обод с зубьями), а центр колеса, т, е. ту часть его, которая находится внутри венца, выполняют из чугуна или углеродистой стали (см. рис. 1; 2). При скоростях скольжения v ск =5...30 м/с и длительной работе без перерыва венцы червячных колес изготовляют из бронз БрОФ10-1 , БрОНФ с высокими антифрикционными и противозадирными свойствами. При v ск ≤6 м/с зубчатые венцы выполняют из менее дорогих безоловянных бронз БрАЖ9-4Л, БрАЖН10-4-4Л и т. п.; при этом червяк должен иметь твердость HRC≥45 .



Рис. 2

Рис. 3

В червячном колесе небольшого диаметра, не подвергающегося сильному нагреву, бронзовый венец обычно насаживают на центр с натягом (см. рис. 1; 2) и для надежности соединения скрепляют с ним винтами . В колесах больших и средних диаметров бронзовый венец скрепляют с центром винтами (рис. 4, а). При серийном производстве червячные колеса изготовляют биметаллическими (рис. 4, б), т. е. бронзовый венец отливают центробежным способом в форме, в которую помещают чугунный центр. При скоростях скольжения v ск ≤2 м/с червячные колеса для удешевления можно изготовлять целиком из чугуна СЧ15, СЧ18 и СЧ20 . Для амортизации ударов при работе червячной передачи , глушения механической вибрации и максимального снижения износа зубьев червячных колес их иногда изготовляют из пластмасс. Пластмассовые червячные колеса применяют в небольших силовых передачах и приборах; материалом для них служат древеснослоистые пластики (ДСП), текстолит и полиамиды (капрон и нейлон). На (рис. 4, в) показано пластмассовое червячное колесо из текстолитовых или древопластиковых пластин, насаженных на металлическую втулку и соединенных болтами между стальными дисками. В остальном конструкция червячного колеса такая же, как и зубчатого колеса .



Рис. 4

Из 12 степеней точности изготовления червячных передач, регламентируемых ГОСТ 13675-68 (СТ СЭВ 311-76), для силовых передач предусмотрены 5, 6, 7, 8 и 9-я степени точности. В общем машиностроении чаще всего пользуются 7, 8 и 9-й степенями точности. Выбор степени точности червячной передачи в зависимости от окружной скорости колеса v 2 , обработки червяка и колеса и области применения передачи можно производить по табл.

Конструкция червячных колес

Червячные колеса по условиям работы изготавливаютсоставными : центр колеса - из стали, реже из серого чугуна, а зубчатый венец - (бандаж) - из антифрикционного материала (рис. 38). Бронзовый ве­нец

Риc. 38. Конструкции червячных колес со штампованной или кованой ступицей: а - бронзовый венец запрессован на сту­пицу и закреплен винтами; б - бронзо­вый венец залит на ступицу, на ободе которой есть углуб­ления

установлен на центр с натягом по посадке: H7/p6; H7/r6; H7/s6.Эту конструкцию рекомендуется применять для передач с относитель­но невысоким тепловыделением, так как при значительной разнице в коэффициенте линейного расширения у бронзы и стали или чугуна при высокой температуре натяг уменьшается и надежность соединения сни­жается. Для предотвращения осевого взаимного смещения венца и сту­пицы червячного колеса в стыкуемые поверхности ввертывают винты с последующим срезанием головок (см. рис. 38,а).

В серийном и массовом производстве применяют биметаллическую конструкцию червячного колеса, бронзовый венец которой отлит в форму с предварительно вставленным в него центром. Для гарантии от смещения венца на заливаемой поверхности центра выполняют пазы различной формы (см. рис. 38,б).

4.1.3. Конструкция червяков

червячных передач

Червяк в большинстве случаев делают за одно целое с валом. Витки червяка могут быть нарезаны на токарном станке, если (рис. 39,а,б) или получены фрезерованием, если (рис.39,в).

Рис.39. Конструирование червячного вала: а) ; б) ;

Одним из основных требований является конструктивное обеспе­чение высокой жесткости червяка. С этой целью расстояние между опорами стараются сделать как можно меньшими. Диаметр вала червя­ка в ненарезанной части назначают таким, чтобы обеспечить, по воз­можности, свободный выход инструмента при обработке витков и необ­ходимую величину упорного заплечика для подшипника.

При относительно малом диаметре червяк приходится выполнять по рис.39,в. В этом случае высоту упорного заплечника в местах установки подшипников согласуют с наружным диаметром червяка.

4.1.4. Допуски формы и расположения поверхностей

для деталей червячной передачи

Правила выполнения чертежей цилиндрических червяков и червяч­ных колес устанавливаются ГОСТ 2403-75. Этот стандарт определяет правила указания на чертежах параметров зубчатых венцов. Другие данные, необходимые для изготовления этих деталей, приводятся на чертеже в соответствии с требованиями ЕСКД.

На изображении цилиндрического червяка (рис. 40) указывают: диаметр вершин витка , длину нарезной части червяка по верши­нам , размеры фасок Сна концах витка, шероховатость боковых по­верхностей витков Ö.

На изображении червячного колеса (рис.40) указывают: диаметр вершин зубьев , ширину зубчатого венца , расстояние от базового торца Т до средней торцовой плоскости колеса , наи­больший диаметр , радиус поверхности вершин зубьев R, размеры фасок С или радиусы притупления торцовых кромок зубьев, шерохова­тость боковых поверхностей зубьев.

4.1.5. Корпусные детали

червячных редукторов

Форму и размеры корпусных деталей определяют при компоновке редукторов; корпусные детали червячных редукторов конструируют в двух исполнениях: при небольших межосевых расстояниях мм корпуса делаются неразъемными, при мм - разъемными.

В разъемных корпусах линию разъема делают по линии оси вала червячного колеса. В неразъемных корпусах необходимо предусмот­реть возможность сборки редуктора, т.е. боковые крышки необходимо выполнить такого диаметра, через которые может войти внутрь редук­тора червячное колесо.

В зависимости от расположения червяка относительно колеса чер­вячные редукторы выполняются с нижним, боковым и верхним располо­жением червяка. Нижнее расположение червяка обычно применяется при скорости скольжения м/с. Что касается размеров элемен­тов самого корпуса редуктора, то при его конструировании можно пользоваться рекомендациями, которые приведены для корпуса зубча­того цилиндрического горизонтального редуктора (см. рис.19). Допус­ки формы и расположения элементов корпусных деталей см. на рис.24.

Червяки для силовых передач изготовляют из углеродистых или легированных сталей с соответствующей термообработкой, обеспечивающей высокую твердость рабочих поверхностей. Червяки из сталей 15Х, 20Х, 12ХН2, 18ХГТ, 20ХФ и т. д. подвергают цементации и закалке до твердости HRC58...63 , а из сталей Ст6, 40, 45, 40Х, 40ХН закаляют до HRC45...55 . Червяки из улучшенных и нормализованных сталей применяют в тихоходных и малонагруженных передачах, а также при отсутствии оборудования для их шлифовки, В передачах с колесами большого диаметра червяк изготовляют из бронзы, а колесо - из чугуна (для экономии бронзы). В большинстве случаев червяк выполняют как целое с валом реже насадным, т. е. изготовленным отдельно от вала и затем закрепленным на нем.

Выбор материала червячного колеса в основном зависит от скорости скольжения витков резьбы червяка по зубьям колеса

Где v 1 - окружная скорость червяка; γ - делительный угол подъема резьбы червяка. В связи со склонностью червячной передачи к заеданию и неблагоприятными условиями ее смазки венцы червячных колес изготовляют из бронзы. Реже их выполняют из чугуна и пластмасс. Для экономии бронзы из нее изготовляют лишь зубчатый венец (обод с зубьями), а центр колеса, т, е. ту часть его, которая находится внутри венца, выполняют из чугуна или углеродистой стали При скоростях скольжения v ск =5...30 м/с и длительной работе без перерыва венцы червячных колес изготовляют из бронз БрОФ10-1 , БрОНФ с высокими антифрикционными и противозадирными свойствами. При v ск ≤6 м/с зубчатые венцы выполняют из менее дорогих безоловянных бронз БрАЖ9-4Л, БрАЖН10-4-4Л и т. п.; при этом червяк должен иметь твердость HRC≥45 .

В червячном колесе небольшого диаметра, не подвергающегося сильному нагреву, бронзовый венец обычно насаживают на центр с натягом и для надежности соединения скрепляют с ним винтами. В колесах больших и средних диаметров бронзовый венец скрепляют с центром винтами При серийном производстве червячные колеса изготовляют биметаллическими т. е. бронзовый венец отливают центробежным способом в форме, в которую помещают чугунный центр. При скоростях скольжения v ск ≤2 м/с червячные колеса для удешевления можно изготовлять целиком из чугуна СЧ15, СЧ18 и СЧ20 . Для амортизации ударов при работе червячной передачи, глушения механической вибрации и максимального снижения износа зубьев червячных колес их иногда изготовляют из пластмасс. Пластмассовые червячные колеса применяют в небольших силовых передачах и приборах; материалом для них служат древеснослоистые пластики (ДСП), текстолит и полиамиды (капрон и нейлон). Показано пластмассовое червячное колесо из текстолитовых или древопластиковых пластин, насаженных на металлическую втулку и соединенных болтамимежду стальными дисками. В остальном конструкция червячного колеса такая же, как изубчатого колеса.

Из 12 степеней точности изготовления червячных передач, регламентируемых ГОСТ 13675-68 (СТ СЭВ 311-76), для силовых передач предусмотрены 5, 6, 7, 8 и 9-я степени точности. В общем машиностроении чаще всего пользуются 7, 8 и 9-й степенями точности. Выбор степени точности червячной передачи в зависимости от окружной скорости колеса v 2 , обработки червяка и колеса и области применения передачи можно производить по таблице.

43.Кинематика червячной передачи. КПД червячной передачи. За каждый оборот червяка сечение его витка смещается в осевом направлении на величину хода резьбы: t = p 1 z 1 , со скоростью u 1 = p 1 z 1 n 1 . Червячное колесо имеет окружную скорость u 2 = pd 2 n 2 = pmz 2 n 2 . Так как u 1 = u 2 , то z 1 n 1 = z 2 n 2 или z 1 w 1 = z 2 w 2 . Следовательно, передаточное число

u = w 1 /w 2 = n 1 /n 2 = z 2 /z 1 .

При движении витки червяка скользят по зубьям колеса так, как в винтовой паре. Скорость скольжения u S (рис. 3.38, а ) направлена по касательной к винтовой линии червяка. Как относительная скорость, она равна геометрической разности абсолютных скоростей червяка и колеса:

/ cos g .

На рис. 3.38 показаны контактные линии, лежащие на боковой поверхности зубьев цилиндрической (б ) и глобоидной (в ) передач, а также изображены проекции u векторов скорости скольжения, которые по модулю и направлению близки к окружной скорости червяка.

Если угол наклона контактных линий к вектору скорости скольжения мал, то условия для гидродинамической смазки неблагоприятны. Если скорость скольжения направлена поперёк линии контакта, то создаются условия для образования масляного клина, обладающего значительной подъёмной силой, и возникает режим жидкостного трения. Поэтому нагрузочная способность глобоидных передач примерно в 1,5 раза выше цилиндрической.

Основные размеры венца червячного колеса (диаметры , , , , ширина венца ) определены при проектировании.

Радиус выемки поверхности вершин зубьев колеса (рис. 10) определяется по диаметру червяка:

,

где – делительный диаметр червяка.

m – модуль передачи.

На торцах червячного колеса выполняют фаски с округлением до стандартного значения (стандартный размерный ряд фасок дан в табл. 8).

Червячные колеса небольшого диаметра (до 100-120 мм) выполняют цельными . Толщину обода в этом случае можно принять:

.

Размеры диска и ступицы принимают как у сборных колес.

Более крупные колеса изготавливают сборными для экономии дорогостоящих бронз. Диск колеса выполняют из более дешевых чугунов или сталей, зубчатый венец – из бронзы.

Нарезание зубьев червячного колеса выполняют после сборки.

Конструкция диска зависит от объема выпуска. При мелкосерийном производстве заготовки дисков получают из проката или поковок с последующей токарной обработкой (рис. 11а ). При серийном производстве (годовой объем выпуска свыше 100 шт.) предпочтительнее изготовление штампованных или литых дисков (рис. 11б ).

Для облегчения выемки заготовки из штампа или литейной формы необходимо на ободе и ступице предусмотреть уклоны и радиусы закругления мм. Для кованных и точеных дисков радиусы закругления принимают мм.

Толщина червячного венца S : .

Толщина обода : .

Отсюда наружный диаметр диска: .

Внутренний диаметр обода: .

Толщина диска , но не менее .

Диаметр ступицы наружный :

– для стальной ступицы при шпоночном соединении и посадке с натягом;

– для стальной ступицы при шлицевом соединении;

– для ступицы из чугуна.

Примечание: Диаметр вала определяется после расчета валов.

Длина ступицы :

– меньшие значения при посадке на вал с натягом, большие – при переходной посадке;

– оптимальное значение;

Окончательно принимается после расчета соединения вал–ступица.

Редукторные червячные колеса чаще всего имеют симметрично расположенную ступицу.

Червячные колеса весом более 20 кг должны иметь 4…6 отверстий на диске для обеспечения строповки. Диаметр отверстий принимается конструктивно.

Острые кромки на торцах ступицы притупляют фасками , размеры которых принимают по таблице 8.

Такие же по величине фаски можно применить и для притупления внутренней кромки обода.

Соединение венца с диском должно обеспечивать передачу большого крутящего момента и сравнительно небольшой осевой силы. Конструкция венца и способ соединения с диском зависит от объема выпуска.

При единичном и мелкосерийном производстве и небольших размерах колес ( 300 мм) венцы насаживают на диск с натягом (рис. 12).

Толщина обода: .

При постоянном направлении вращения червячного колеса на наружной поверхности диска предусматривают буртик (рис. 11а ), который воспринимает осевую силу. Размеры буртика можно принять: ; . Колесо реверсивной передачи можно выполнить без буртика.

При относительно небольших натягах (или принятии натяга без расчета), для гарантии непроворачиваемости, в стык червячного венца и диска устанавливают винты (рис. 12б ) в качестве цилиндрической шпонки (обычно по 3…4 штуки по окружности).

При больших размерах колес ( 300 мм) венец можно прикрепить к диску с помощью призонных болтов (под развертку) (рис. 13) или заклепок. В этом случае венец предварительно центрируют по диаметру D , сопряжение выполняют по переходной посадке.

Толщина обода: .

В данной конструкции необходимо предусмотреть надежное стопорение гайки от самоотвинчивания, для этого пружинные шайбы применять не рекомендуется .

При серийном производстве экономически выгоднее изготавливать колеса с венцами, получаемыми отливкой. Чугунный или стальной диск нагретый до 700…800ºС закладывают в металлическую форму, подогревают ее до 150…200ºС и заливают расплавленной бронзой. При остывании между диском и венцом возникает натяг, вызываемый усадкой затвердевающего жидкого металла венца.

Толщину венца при отливке принимают .

Диски изготавливают точением, штамповкой или литьем в кокиль. Наружные поверхности литых дисков механически не обрабатывают. Их обезжиривают и очищают от оксидных пленок с помощью химической обработки. На ободе диска предусматривают 6…8 углублений, после отливки на венце образуются выступы, которые воспринимают как окружную, так и осевую силы.

Вогнутую наружную поверхность диска (рис. 14а ,б ) получают точением. Поперечные пазы получают радиальной подачей фрезы: дисковой (рис. 14а ) – перпендикулярно оси вращения колеса или цилиндрической (рис. 14б ) – параллельно оси вращения. Размеры пазов: ; .

Углубления на ободе диска можно высверливать (рис. 14в ).

На рис. 14г ,д показаны диски с пазами, получаемые при литье в диска в кокиль.

Диаметр окружности выступов и ширина зубчатого венца – определяются при проектировочном расчете.

Толщину обода S для всех типов колес можно принять:

На торцах зубчатого венца (зубьях и углах обода) выполняют фаски (рис. 2.3):

,

которые округляют до стандартного значения по тому же ряду, что и (см. табл. 2.3).

На всех прямозубых зубчатых колесах фаску выполняют под углом 45° (рис. 2.3а ). На косозубых и шевронных колесах при твердости менее 350 HB фаску выполняют под углом 45° (рис. 2.3а ), при более высокой твердости – под углом 15…20° (рис. 2.3б ).



а б
Рис. 2.3. Конструкция фаски на торцах зубчатого венца

Диаметр ступицы наружный (см. рис. 2.2):

– для ступицы из чугуна.

Длина ступицы :

– оптимальное значение;

Зубчатые колеса для редукторов чаще всего имеют симметрично расположенную ступицу.

Острые кромки на торцах ступицы притупляют фасками , размеры которых принимают по таблице 2.5.

20…30 30…40 40…50 50…80 80…120 120…150 150…250 250…500
1,0 1,2 1,6 2,0 2,5 3,0 4,0 5,0

Зубчатые колеса небольшого диаметра (до 150 мм) имеют простую форму. Заготовку получают из проката (рис. 2.4а и рис. 2.5а ) или свободной ковкой (рис. 2.4б и рис. 2.5б ). Применяются как при серийном, так при единичном производстве.

Такую конструкцию можно применять, если толщина обода в месте, ослабленном шпоночным пазом, будет не менее 2,5m , в противном случае зубчатое колесо надо изготавливать заодно с валом (см. п. 2.4.6.2, «Конструкция вал-шестерней»).



Чтобы уменьшить объем точной обработки резанием на дисках колес выполняют выточки (для колес > 80 мм) (рис. 2.5). Эту же конструкцию колес можно применять для колес большего диаметра (до 500 мм) в единичном производстве, если нет жестких требований к массе.

Кованные колеса (рис. 2.6) – колеса большего диаметра (до 500 мм) в единичном и мелкосерийном производстве получают из проката свободной ковкой с последующей токарной обработкой.

Толщина диска . Для уменьшения массы в технически оправданных случаях можно принимать , а в диске выполнить 4…6 отверстий большого диаметра.

Радиусы закруглений .

Штампованные колеса – при серийном производстве заготовки колес диаметром до 500 мм получают из круглого проката ковкой в штампах. При годовом объеме выпуска до 100 шт. экономически оправдана ковка в простейших односторонних подкладных штампах (рис. 2.7). Для свободной выемки заготовок из штампа принимают значения штамповочных уклонов и радиусов закруглений R ³ 6 мм.

Толщина диска .

При годовом объеме выпуска более 100 шт. применяют двусторонние штампы (рис. 2.8).

Для уменьшения влияния объемной термообработки на точность геометрической формы зубчатые колеса могут быть сделаны массивными (рис. 2.9): .

Цельнолитые колеса – применяются в серийном производстве, как наименее трудоемкие, для изготовления колес диаметром свыше 500 мм. По своей несущей способности они уступают колесам с кованным или прокатанным ободом. До диаметра 900 мм их преимущественно выполняют однодисковыми (рис. 2.10а ), а при больших диаметрах и ширине – подкрепляется ребрами (рис. 2.10б ) или выполняются двухдисковыми (рис. 2.10в ).

Спицы могут иметь крестовидное, тавровое, двутавровое, овальное или другой формы сечения. Размеры сечения спиц у ступицы определяются из условного их расчета на изгиб. Поскольку жесткость обода невелика, распределение нагрузки между спицами очень неравномерное. Если окружное усилие на колесе , то условно полагают, что нагрузка, приходящаяся на наиболее нагруженную спицу:

,

где T – вращающий момент на колесе;

d – делительный диаметр колеса;

– количество спиц.

Тогда условие прочности спиц:

где – осевой момент сопротивления сечения спицы.

Для свободной выемки заготовок из формы принимают значения литьевых уклонов и радиусов закруглений R ³ 10 мм.

Во избежание биения и вибрации во время работы для зубчатых колес проводят балансировку, высверливая на торце обода отверстия, если их частота вращения превышает 1000 об/мин.

2.4.6.2 Конструкция вал-шестерней

Вал-шестерни применяются в тех случаях, если диаметр вала близок по размерам диаметру шестерни (преимущественно в редукторах при 3,15),

Конструкция вал-шестерни должна обеспечивать нарезание зубьев со свободным выходом инструмента (рис. 2.11а ). При больших передаточных числах допускается изготовление вал-шестерни с врезанием зубьев в тело вала (рис. 2.11б ,в ). Выход фрезы определяют графически по ее наружному диаметру. Применения врезных вал-шестерен желательно избегать, так как в этом случае затруднено фрезерование и шлифование зубьев. При этом диаметр окружности впадин шестерни не должен быть меньше расчетного диаметра вала .

По возможности следует предусматривать вход инструмента со стороны заплечика вала (рис. 2.11г ).


2.4.6.3 Конструкция червяков

Червяки выполняют заодно с валом. Насаживаемые червяки применяются крайне редко. Основные размеры червяка (диаметры , , , длина ) определены при проектировании. Ориентировочное расстояние между опорами l определяется на стадии эскизного проектирования редуктора.

Одним из основных требований, предъявляемых к конструкции вала-червяка, является обеспечение высокой жесткости. С этой целью расстояние между опорами стараются принимать как можно меньше.

Диаметр вала-червяка в ненарезанной части выбирают таким, чтобы обеспечить, по возможности, свободный выход инструмента при обработке витков и необходимую величину упорного заплечика для подшипника (рис. 2.12а ).

Если диаметр червяка недостаточно большой для обеспечения нужной высоты заплечика, то необходимо предусмотреть буртик (рис. 2.12б ).

При малом диаметре червяк приходится выполнять по рис. 2.12в . В этом случае заплечики выполняют как по рис. 2.12а , так и по рис. 2.12б .


2.4.6.4 Конструкция червячных колес

Основные размеры венца червячного колеса (диаметры , , , , ширина венца ) определены при проектировании.

Радиус выемки поверхности вершин зубьев колеса (рис. 2.13) определяется по диаметру червяка:

,

где – делительный диаметр червяка.

m – модуль передачи.

На торцах червячного колеса выполняют фаски с округлением до стандартного значения (стандартный размерный ряд фасок дан в табл. 2.6).

Червячные колеса небольшого диаметра (до 100-120 мм) выполняют цельными . Толщину обода в этом случае можно принять:

.

Размеры диска и ступицы принимают как у сборных колес.

Более крупные колеса изготавливают сборными для экономии дорогостоящих бронз. Диск колеса выполняют из более дешевых чугунов или сталей, зубчатый венец – из бронзы.

Нарезание зубьев червячного колеса выполняют после сборки.

Конструкция диска зависит от объема выпуска. При мелкосерийном производстве заготовки дисков получают из проката или поковок с последующей токарной обработкой (рис. 2.14а ). При серийном производстве (годовой объем выпуска свыше 100 шт.) предпочтительнее изготовление штампованных или литых дисков (рис. 2.14б ).

Для облегчения выемки заготовки из штампа или литейной формы необходимо на ободе и ступице предусмотреть уклоны и радиусы закругления мм. Для кованных и точеных дисков радиусы закругления принимают мм.

Толщина червячного венца S : .

Толщина обода : .

Отсюда наружный диаметр диска: .

Внутренний диаметр обода: .

Толщина диска , но не менее .

Диаметр ступицы наружный :

– для стальной ступицы при шпоночном соединении и посадке с натягом;

– для стальной ступицы при шлицевом соединении;

– для ступицы из чугуна.

Длина ступицы :

– меньшие значения при посадке на вал с натягом, большие – при переходной посадке;

– оптимальное значение;

Окончательно принимается после расчета соединения вал–ступица.

Редукторные червячные колеса чаще всего имеют симметрично расположенную ступицу.

Червячные колеса весом более 20 кг должны иметь 4…6 отверстий на диске для строповки. Диаметр отверстий принимается конструктивно.

Острые кромки на торцах ступицы притупляют фасками , размеры которых принимают по таблице 2.6.

20…30 30…40 40…50 50…80 80…120 120…150 150…250 250…500
1,0 1,2 1,6 2,0 2,5 3,0 4,0 5,0

Такие же по величине фаски можно применить и для притупления внутренней кромки обода.

Соединение венца с диском должно обеспечивать передачу большого крутящего момента и сравнительно небольшой осевой силы. Конструкция венца и способ соединения с диском зависит от объема выпуска.

При единичном и мелкосерийном производстве и небольших размерах колес ( 300 мм) венцы насаживают на диск с натягом (рис. 2.15).

Толщина обода: .

При постоянном направлении вращения червячного колеса на наружной поверхности диска предусматривают буртик (рис. 2.15а ), который воспринимает осевую силу. Размеры буртика можно принять: ; . Колесо реверсивной передачи можно выполнить без буртика.

При относительно небольших натягах (или принятии натяга без расчета), для гарантии непроворачиваемости, в стык червячного венца и диска устанавливают винты (рис. 2.15б ) в качестве цилиндрической шпонки (обычно по 3…4 штуки по окружности).

При больших размерах колес ( 300 мм) венец можно прикрепить к диску с помощью призонных болтов (под развертку) (рис. 2.16) или заклепок. В этом случае венец предварительно центрируют по диаметру D , сопряжение выполняют по переходной посадке.

Толщина обода: .

В данной конструкции необходимо предусмотреть надежное стопорение гайки от самоотвинчивания, для этого пружинные шайбы применять не рекомендуется .

При серийном производстве экономически выгоднее изготавливать колеса с венцами, получаемыми отливкой. Чугунный или стальной диск нагретый до 700…800ºС закладывают в металлическую форму, подогревают ее до 150…200ºС и заливают расплавленной бронзой. При остывании между диском и венцом возникает натяг, вызываемый усадкой затвердевающего жидкого металла венца.

Толщину венца при отливке принимают .

Диски изготавливают точением, штамповкой или литьем в кокиль. Наружные поверхности литых дисков механически не обрабатывают. Их обезжиривают и очищают от оксидных пленок с помощью химической обработки. На ободе диска предусматривают 6…8 углублений, после отливки на венце образуются выступы, которые воспринимают как окружную, так и осевую силы.

Вогнутую наружную поверхность диска (рис. 2.17а ,б ) получают точением. Поперечные пазы получают радиальной подачей фрезы: дисковой (рис. 2.17а ) – перпендикулярно оси вращения колеса или цилиндрической (рис. 2.17б ) – параллельно оси вращения. Размеры пазов: ; .

Углубления на ободе диска можно высверливать (рис. 2.17в ).

На рис. 2.17г ,д показаны диски с пазами, получаемые при литье в диска в кокиль.

2.4.6.5 Выбор посадок, предельных отклонений, допусков форм и расположения поверхностей, шероховатостей.

Допуски и предельные отклонения размеров колес и червяков

Допуски на размер диаметра окружности выступов можно принять: для зубчатых колес 7 степени точности – h8 , 8 степени точности – h9 , 9 степени точности – h10 . Для 11 степени точности (прямозубые и узкие косозубые колеса передач в ручных приводах) в реверсивных передачах – h11 , в нереверсивных передачах – h12 .

Допуск на длину ступицы принимают h11- h12 .

Допуски на остальные размеры обычно принимают по 14 квалитету.

Шероховатость поверхностей колес и червяков

Поверхности элементов зубчатых и червячных передач должны иметь шероховатость, указанные в таблице 2.7.


Таблица 2.7

Шероховатость поверхностей элементов зубчатых и червячных колес

Элементы зубчатых колес Шероховатость, Ra, мкм
Рабочие поверхности зубьев зубчатых колес 0,8 – 0,1
Рабочие поверхности зубьев червячных колес 0,8 – 0,4
Рабочие поверхности витков червяков 0,4 – 0,2
Поверхности выступов зубьев 6,3
Фаски и выточки на зубчатых и червячных колесах 6,3
Торцы ступиц, базирующихся по торцу заплечиков валов, при отношении 1,6
То же при отношении 3,2
Рабочие поверхности шпоночных пазов 1,6
Нерабочие поверхности шпоночных пазов 3,2
Посадочные поверхности отверстий при посадке H7 :
при диаметрах ≤ 50 мм 0,8
при диаметрах > 50 мм 1,6

Проектирование валов

2.4.7.1 Построение эскизов валов

Разработку эскиза вала можно начинать с конца вала. Рекомендуется применять стандартные концы (табл. 4, 5 приложения): цилиндрические – по ГОСТ 12080-66 или конические – по ГОСТ 12081-72. Цилиндрические концы валов проще в изготовлении, но требуют дополнительной осевой фиксации насаженных деталей. Конические концы валов сложнее в изготовлении, но обеспечивают простую и плотную посадку деталей. Их рекомендуют для валов с высокой скоростью вращения.

Рекомендуемые размеры фасок и радиусов галтелей даны в таблице 2.8. Если участок вала необходимо при изготовлении шлифовать, вместо обычного перехода предусматривают канавку для выхода шлифовального круга (рис. 2.19, табл. 2.9).

Высоту заплечика t принимают конструктивно, в зависимости от характера нагрузки, действующей на насаженную деталь: от 1,25r – для деталей не испытывающих осевых нагрузок, до (2,0…2,5)r – для деталей, воспринимающих сильные осевые нагрузки. Диаметры остальных участков вала определяют последовательно с учетом высоты заплечиков каждой ступени.

Таблица 2.8

Размеры заплечиков вала, мм

Таблица 2.9

Размеры канавки под выход шлифовального круга, мм

Если участок вала предназначен для посадки детали, то необходимо на начале участка предусмотреть фаску: под углом 45º – при посадке с зазором или переходной посадке; под углом 30º – при посадке с натягом.

Длины участков валов определяются с помощью прорисовки с учетом габаритов насаживаемых деталей, их взаимного расположения, величины необходимых зазоров между ними и т.д.

2.4.7.2 Посадка зубчатых и червячных колес на валах

Передача крутящего момента от вала к колесу или наоборот, независимо от типа посадки, осуществляется при помощи шпоночных или шлицевых соединений.

В серийных редукторах общего назначения обычно применяется одна из переходных посадок: H7 /k6 (напряженная), H7 /m6 (тугая). Эти посадки применяются в механизмах, работающих при небольших нагрузках и подвергающихся частым разборкам. Переходные посадки требуют дополнительного крепления колес от осевого перемещения (пружинными кольцами, установочными винтами, распорными втулками, гайками и т.д.).

При редких разборках применяются посадки: H7 /n6 (глухая), H7 /p6 (легкопрессовая). Эти посадки также требуют дополнительного крепления колес от осевого перемещения.

Посадка зубчатых колес на валы в тяжелонагруженных передачах, работающие при вибрационных и ударных нагрузках, осуществляется по одной из прессовых посадок: H7 /r6 , H7 /s6 . Применение этих посадок наряду с повышением надежности соединения предохраняет колеса от осевого перемещения.

2.4.7.3 Шероховатость поверхностей валов

Поверхности валов должны иметь шероховатость, указанные в таблице 2.10.


Таблица 2.10

Шероховатость поверхностей валов

Элементы валов Шероховатость, Ra, мкм
Неподвижные соединения с посадкой скольжения 0,2 – 0,05
Соединения с переходными посадками 0,4 – 0,1
Прессовые и конусные соединения 0,4 – 0,05
Упорные буртики неподвижных цилиндрических соединений (рабочие поверхности) 1,6 – 0,4
Посадки подшипников качения на валу при классе точности подшипника:
нормальном 0,4 – 0,1
повышенным 0,1 – 0,05
Шлицевые соединения, центрирование:
по наружному диаметру 0,4 – 0,1
по внутреннему диаметру 0,8 – 0,2
Шпоночно-пазовые соединения (рабочие грани пазов) 3,2 – 0,8
Резьбы наружные 3,2 – 1,6
Резьбы внутренние 6,4 – 3,2
Уплотнения цилиндрические контактные с мягкими элементами манжеты (рабочие поверхности валов) 0,1 – 0,05
Свободные поверхности деталей (торцы и ненесущие цилиндрические поверхности валов, фаски и т.п.):
малонагруженных 6,4 – 1,6
нагруженных высокими цикличными нагрузками 1,6 – 0,2
Галтели:
неответственного назначения 3,2 – 1,6
деталей, нагруженных высокими цикличными нагрузками 0,4 – 0,1