Кто придумал двигатель внутреннего сгорания. Бензиновый двигатель

Первые идеи создания двигателей внутреннего сгорания относятся к XVII веку, в 1 680 году Гюйгенс предлагал построить двигатель, работающий за счет взрывов заряда пороха в цилиндре. К концу XVIII - началу XIX веков относится ряд патентов связанных с преобразованием тепла органического топлива в работу в цилиндре двигателя. Однако первый двигатель подобного типа, пригодный для практического использования, построен и запатентован Ленуаром (Франция) в 1860 году. Двигатель работал на светильном газе, без предварительного сжатия, и имел КПД около 3%.

В 70-80-е годы XIX века началось широкое практическое применение бензиновых двигателей с искровым зажиганием, работавших по циклу быстрого сгорания. С 1885 года началась постройка автомобилей с бензиновыми ДВС. Большой вклад в развитие этого типа двигателей внесли Карл Бенц, Роберт Бош (Германия), Даймлер (Австрия). Имели развитие эти двигатели и в России - капитан русского флота И.С. Костович построил в 1879 году самый легкий в то время двигатель для дирижабля мощностью 80 л.с. с удельным весом 3 кг/л.с., намного опередив немецких инженеров.

Следующим этапом в развитии ДВС явилось создание так называемых «калоризаторных» двигателей, в которых топливо воспламенялось не от электрической искры, от раскаленной детали в цилиндре. Такие двигатели начали строить в начале 90-х годов XIX века.

В 1892 году Рудольф Дизель, инженер фирмы МАН (Германия), получил патент на устройство нового двигателя внутреннего сгорания (патент № 67207 от 28 февраля 1892 года). В 1893 году им была выпущена брошюра “Теория и конструкция рационального теплового двигателя, призванного заменить паровую машину и другие существующие в настоящее время двигатели». В «рациональном» двигателе предполагалось давление сжатия - 250 ат, КПД - 75%, работа - по циклу Карно (подвод тепла при T=const), без охлаждения цилиндров, топливо-угольная пыль.

В 1893 году на заводе фирмы МАН в Аугсбурге была сделана попытка построить такой двигатель. Работами руководил сам автор. При этом выяснилась невозможность реализации идеи - на угольной пыли двигатель работать не мог, сгорание при T=const осуществить не удалось. В 1894 году построен 2-й двигатель, способный работать без нагрузки непродолжительное время. Более удачным оказался 3-й двигатель постройки 1895 года. В нем отказались от основных предложений Р. Дизеля - двигатель работал на керосине, распыливание топлива производилось сжатым воздухом, сгорание - при Р=const, предусматривалось водяное охлаждение цилиндров.

Официальным испытаниям в феврале 1897 года был предъявлен лишь 4-й двигатель, имевший мощность около 20 л.с., давление сжатия 30 ат и КПД 26-30%. Такой высокий КПД не достигался ранее ни в одном тепловом двигателе.

Цикл нового двигателя значительно отличался от описанного в патенте и в брошюре. В нем осуществлялись ранее известные и апробированные в других опытных двигателях принципы - предварительного сжатия воздуха в цилиндре, непосредственной подачи топлива в конце такта сжатия, самовоспламенения топлива и т.д. Отличия построенного двигателя от 1-го патента и использование идей других изобретателей послужили причиной многих выпадов против Р. Дизеля, его многочисленных судебных тяжб и финансовых затруднений. Вероятно, это и дало повод к трагической гибели Р. Дизеля перед началом 1-й мировой войны. Тем не менее, в честь признания заслуг Р. Дизеля в создании нового двигателя и его широком внедрении в промышленности и транспорте двигатель с воспламенением топлива от сжатия получил название «дизель».

В 1898 году Петербургский механический завод фирмы «Людвиг Нобель» (ныне завод
«Русский дизель») купил лицензию на производство новых двигателей. Была поставлена цель - обеспечить работу двигателя на дешевом топливе - сырой нефти (вместо дорогого керосина, применявшегося на Западе). Эта задача была успешно решена - в январе 1899 года был испытан первый дизель, построенный в России, мощностью 20 л.с. при частоте вращения 200 об/мин.

Русские инженеры решили многие конструктивные вопросы дизелестроения, при-дали деталям ту конструкцию, которая впоследствии стала общепринятой. В нашей стране были решены и вопросы, связанные с применением дизелей на судах. В 1903 году вступил в строй первый в мире теплоход «Вандал», танкер озерного типа грузоподъемностью 820 т с тремя нереверсивными 4-тактными двигателями суммарной мощностью 360 л.с. В 1908 году построен первый в мире морской теплоход - танкер «Дело» (впоследствии «В. Чкалов») для плавания в Каспийском море водоизмещением 6000 т с двумя дизелями по 500 л.с. Следом за заводом «Л. Нобель» к производству дизелей приступили Коломенский и Сормовский заводы.

Благодаря успехам дизелестроения в России дизели стали называть одно время «русскими двигателями». Россия сохраняла ведущее положение в судовом дизелестроении вплоть до 1-й мировой войны. Так, до 1912 года во всем мире было построено 16 теплоходов с мощностью главных дизелей более 600 л.с.; из них 14 построено в России. Даже в 20-е годы, несмотря на большие разрушения народного хозяйства в период 1-й мировой и гражданской войн, в нашей стране были созданы и выпускались судовые малооборотные крейцкопфные двигатели марок 6 ДКРН 38/50, 4ДКРН 41/50 и 6ДКРН 65/86 агрегатной мощностью соответственно 750, 500 и 2400 л.с…

Преимущественное распространение в мировой практике от начала использования до середины 30-х годов имели компрессорные дизели, в которых топливо подавалось в цилиндр с помощью сжатого до высокого давления воздуха. Как правило, в качестве главных использовались малооборотные крейцкопфные 2-х или 4-тактные дизели, часто двойного действия. Продувка 2-тактных ДВС осуществлялась поршневым продувочным насосом, приводимым от коленчатого вала.

Идея бескомпрессорного дизеля, запатентованная в 1898 году студентом Петербургского технологического института Г.В. Тринклером (впоследствии профессором Горьковского института инженеров водного транспорта), получила широкое развитие лишь в 30-е годы, когда была создана достаточно надежная топливная аппаратура для непосредственного впрыска топлива с помощью насосов высокого давления.

Особенно быстрое развитие дизелестроения наблюдалось после 2-й мировой войны. Преимущественное распространение в качестве главного двигателя на судах транспортного флота получил малооборотный крейцкопфный 2-тактный реверсивный бескомпрессорный дизель простого действия, работающий непосредственно на винт. В качестве вспомогательных двигателей использовались и используются по сей день среднеоборотные тронковые 4-тактные дизели.

В 50-е годы ведущие дизелестроительные фирмы развернули работы по форсировке двигателей с помощью газотурбинного наддува, испытанного и запатентованно¬го инж. Buchi (Щвейцария) еще в 1925 году. В малооборотных 2-тактных двигателях благодаря наддуву среднее эффективное давление в цилиндре Ре было поднято от 4-6 кг/см2 (начало 50-х годов) до 7-5-8,3 кг/см2 в 60-е годы при значении эффективного КПД двигателей до 38-40%. В 70-е годы при дальнейшей форсировке двигателей наддувом среднее эффективное давление в цилиндре было увеличено до 11-12 кг/см2; максимальные диаметры цилиндров достигли 1050-1060 мм при ходе поршня 1900-2900 мм и цилиндровой мощности 5000-6000 элс. В настоящий период промышленность поставляет на мировой рынок судовые малооборотные двигатели со средним эффективным давлением в цилиндре 18-19,1 кг/см2, с диаметром цилиндров до 960-980 мм и хо¬дом поршня до 3150-3420 мм. Агрегатные мощности достигают 82000-93000 элс. при эффективном КПД до 48-52%. Таких показателей экономичности не добивались ни в одном тепловом двигателе.

У среднеоборотных 4-х тактных двигателей в 50-е годы среднее эффективное давление Ре лежало в пределах 6,75-8,5 кг/см2. В 60-е годы Ре было увеличено до 14-15 кг/см2. В 70-80-е годы все ведущие дизелестроительные фирмы достигли уровня Ре 17-20 кг/см2; в опытных двигателях получено Рe 25-30 кг/см2. Максимальный диаметр цилиндра составил Дц = 600-650 мм, ход поршня S = 600-650 мм, максимальная цилиндровая мощность Neц = 1500-1650 элс., эффективный КПД 42-45 %. Примерно такие показатели предлагаются на рынке среднеоборотных 4-тактных двигателей и сегодня.

Тенденция к более широкому использованию среднеоборотных двигателей в качестве главных на судах морского флота проявились в 60-е годы. В какой-то степени было связано с успехами фирмы Пилстик (Франция), создавшей двигатель РС-2 высокой конкурентоспособности, а также с потребностями развития специализированных судов, выдвигавших ограничение по высоте машинного отделения. В последующем двигатели этого типа были созданы и другими фирмами - V 65/65 Зульцер-МАН, 60М Митсуи, ТМ-620 Сторк, Вяртсиля 46 и др. Дальнейшее совершенствование среднеоборотных судовых двигателей идет по пути увеличения хода поршня, форсировки наддувом, повышения экономичности рабочих циклов и экономичности эксплуатации путем использования все более тяжелых остаточных топлив, снижения вредных выбросов с выхлопными газами в окружающую среду.

Малооборотный 2-тактный дизель остается наиболее распространенным главным двигателем современных морских судов. При этом в результате острой конкурентной борьбы на рынке этого класса двигателей остались лишь 2 конструкции - фирмы Бурмейстер и Вайн (Дания) и Зульцер (Швейцария). Прекратили выпуск малооборотных двигателей подобной конструкции фирмы МАН (Германия), Доксфорд (Англия), Фиат (Италия), Гетаверкен (Швеция), Сторк (Голландия).

Фирма Зульцер, создав в начале 80-х годов достаточно высокоэффективный ряд двигателей типа RTA, тем не менее, из года в год сокращала их выпуск. В 1996 и 1997 гг. фирма вообще не получила заказов на двигатели RTA. Как итог, контрольный пакет акций фирмы Нью Зульцер Дизель был куплен фирмой Вяртсиля (Финляндия).

Фирма Бурмейстер и Вайн создала в 1981 году ряд высокоэкономичных длинноходовых двигателей типа МС. Однако фирма не могла преодолеть финансовых затруднений и уступила контрольный пакет акций фирме МАН. Объединение MAN-B&W продолжает совершенствовать двигатели ряда МС, предлагая потребителям крейцкопфные двигатели с диаметром цилиндров от 280 до 980 мм и с отношением хода поршня к диаметру, равным S/D = 2,8; 3,2 и 3,8.

В России современные малооборотные дизели выпускаются с 1959 года на Брянском машиностроительном заводе по лицензии фирмы Бурмейстер и Вайн. Двигатели устанавливаются как на отечественных судах, так и на судах иностранной постройки.

Дальнейшее совершенствование малооборотных крейцкопфных двигателей идет по пути их форсировки наддувом, уменьшения удельного веса, повышения надежности, увеличения срока службы между вскрытиями, использования самых тяжелых остаточных топлив, снижения вредных выбросов в окружающую среду. Учитывая ограниченность запасов жидкого нефтяного топлива на земле, проводятся исследовательские работы по использованию угольной пыли в качестве топлива в цилиндре малооборотного дизеля.

История создания двигателей внутреннего сгорания газовые лампы стали успешно конкурировать с дорогостоящими свечами. Однако светильный газ годился не только для освещения.

В 1801 году Лебон взял патент на конструкцию газового двигателя. Принцип действия этой машины основывался на известном свойстве открытого им газа: его смесь с воздухом взрывалась при воспламенении с выделением большого количества теплоты. Продукты горения стремительно расширялись, оказывая сильное давление на окружающую среду. Создав соответствующие условия, можно использовать выделяющуюся энергию в интересах человека. В двигателе Лебона были предусмотрены два компрессора и камера смешения. Один компрессор должен был накачивать в камеру сжатый воздух, а другой – сжатый светильный газ из газогенератора. Газовоздушная смесь поступала потом в рабочий цилиндр, где воспламенялась. Двигатель был двойного действия, то есть попеременно действовавшие рабочие камеры находились по обе стороны поршня. По существу, Лебон вынашивал мысль о двигателе внутреннего сгорания, однако в 1804 году он погиб, не успев воплотить в жизнь свое изобретение.

В последующие годы несколько изобретателей из разных стран пытались создать работоспособный двигатель на светильном газе. Однако все эти попытки не привели к появлению на рынке двигателей, которые могли бы успешно конкурировать с паровой машиной. Честь создания коммерчески успешного двигателя внутреннего сгорания принадлежит бельгийскому инженеру Жану Этьену Ленуару. Работая на гальваническом заводе, Ленуар пришел к мысли, что топливовоздушную смесь в газовом двигателе можно воспламенять с помощью электрической искры, и решил построить двигатель на основе этой идеи.

Ленуар не сразу добился успеха. После того как удалось изготовить все детали и собрать машиВ 1864 году было выпущено уже более 300 таких двигателей разной мощности. Разбогатев, Ленуар перестал работать над усовершенствованием своей машины, и это предопределило ее судьбу- она была вытеснена с рынка более совершенным двигателем, созданным немецким изобретателем Августом Отто.

В 1864 году тот получил патент на свою модель газового двигателя и в том же году заключил договор с богатым инженером Лангеном для эксплуатации этого изобретения. Вскоре была создана фирма «Отто и Компания».

На первый взгляд, двигатель Отто представлял собой шаг назад по сравнению с двигателем Ленуара. Цилиндр был вертикальным. Вращаемый вал помещался над цилиндром сбоку. Вдоль оси поршня к нему была прикреплена рейка, связанная с валом. Двигатель работал следующим образом. Вращающийся вал поднимал поршень на 1/10 высоты цилиндра, в результате чего под поршнем образовывалось разряженное пространство и происходило всасывание смеси воздуха и газа. Затем смесь воспламенялась. Ни Отто, ни Ланген не владели достаточными знаниями в области электротехники и отказались от электрического зажигания. Воспламенение они осуществляли открытым пламенем через трубку. При взрыве давление под поршнем возрастало примерно до 4 атм. Под действием этого давления поршень поднимался, объем газа увеличивался и давление падало. При подъеме поршня специальный механизм отсоединял рейку от вала. Поршень сначала под давлением газа, а потом по инерции поднимался до тех пор, пока под ним не создавалось разряжение. Таким образом, энергия сгоревшего топлива использовалась в двигателе с максимальной полнотой. В этом заключалась главная оригинальная находка Отто. Рабочий ход поршня вниз начинался под действием атмосферного давления, и поПоскольку двигатели Отто были почти в пять раз экономичнее двигателей Ленуара, они сразу стали пользоваться большим спросом. В последующие годы их было выпущено около пяти тысяч штук. Отто упорно работал над усовершенствованием их конструкции. Вскоре зубчатую рейку заменила кривошипно-шатунная передача. Но самое существенное из его изобретений было сделано в 1877 году, когда Отто взял патент на новый двигатель с четырехтактным циклом. Этот цикл по сей день лежит в основе работы большинства газовых и бензиновых двигателей. В следующем году новые двигатели уже были запущены в производство.

Четырехтактный цикл был самым большим техническим достижением Отто. Но вскоре обнаружилось, что за несколько лет до его изобретения точно такой же принцип работы двигателя был описан французским инженером Бо де Рошем. Группа французских промышленников оспорила в суде патент Отто. Суд счел их доводы убедительными. Права Отто, вытекавшие из его патента, были значительно сокращены, в том числе было аннулировано его монопольное право на четырехтактный цикл.

Хотя конкуренты наладили выпуск четырехтактных двигателей, отработанная многолетним производством модель Отто все равно была лучшей, и спрос на нее не прекращался. К 1897 году было выпущено около 42 тысяч таких двигателей разной мощности. Однако то обстоятельство, что в качестве топлива использовался светильный газ, сильно суживало область применения первых двигателей внутреннего сгорания. Количество светильногазовых заводов было незначительно даже в Европе, а в России их вообще было только два- в Москве и Петербурге.

Поэтому не прекращались поиски нового горючего для двигателя внутреннего сгорания. Некоторые изобретатели пытались применить в качестве газа пары жиБрайтон в том же 1872 году придумал один из первых так называемых «испарительных» карбюраторов, но он действовал неудовлетворительно.

Работоспособный бензиновый двигатель появился только десятью годами позже. Изобретателем его был немецкий инженер Юлиус Даймлер. Много лет он работал в фирме Отто и был членом ее правления. В начале 80-х годов он предложил своему шефу проект компактного бензинового двигателя, который можно было бы использовать на транспорте. Отто отнесся к предложению Даймлера холодно. Тогда Даймлер вместе со своим другом Вильгельмом Майбахом принял смелое решение- 1882 году они ушли из фирмы Отто, приобрели небольшую мастерскую близ Штутгарта и начали работать над своим проектом.

Проблема, стоявшая перед Даймлером и Майбахом была не из легких: они решили создать двигатель, который не требовал бы газогенератора, был бы очень легким и компактным, но при этом достаточно мощным, чтобы двигать экипаж. Увеличение мощности Даймлер рассчитывал получить за счет увеличения частоты вращения вала, но для этого необходимо было обеспечить требуемую частоту воспламенения смеси. В 1883 году был создан первый бензиновый двигатель с зажиганием от раскаленной полой трубочки, открытой в цилиндр.

Первая модель бензинового двигателя предназначалась для промышленной стационарной установки.

Процесс испарения жидкого топлива в первых бензиновых двигателях заставлял желать лучшего. Поэтому настоящую революцию в двигателестроении произвело изобретение карбюратора. Создателем его считается венгерский инженер Донат Банки. В 1893 году взял патент на карбюратор с жиклером, который был прообразом всех современных карбюраторов. В отличие от своих предшественников Банки предлаПервые двигатели внутреннего сгорания были одноцилиндровыми, и, для того чтобы увеличить мощность двигателя, обычно увеличивали объем цилиндра. Потом этого стали добиваться увеличением числа цилиндров.

В конце XIX века появились двухцилиндровые двигатели, а с начала XX столетия стали распространяться четырехцилиндровые.

Бензиновый двигатель - основной класс двигателей внутреннего сгорания легковых автомобилей. В цилиндрах бензинового двигателя предварительно сжатая топливовоздушная смесь поджигается электрической искрой.

Двигатель

К концу XVIII века человечество осознало необходимость найти замену сложным и требующим слишком много внимания паровым машинам. Основную часть промышленного сектора в тот момент составляли небольшие предприятия и мастерские. Наиболее распространенными на производстве двигателями на тот момент громоздкие паровые машины. Они устраивали далеко не всех. Инженеры понимали, что для повышеня эффективности производства необходимы другие силовые установки - легко запускающиеся, малых размеров и мощности.

История изобретения бензинового двигателя

Предтечей появления двигателей внутреннего сгорания стало открытие светильного газа, сделанное на рубеже XVIII и XIX столетий французским инженером Ф. Лебоном.Патент на способ его получения и использования он получил в 1799 году. Светильный газ стал настоящим прорывом в технике освещения.А уже через 2 года Лебоном был получен следующий патент - на разработанную им конструкцию газового двигателя. Он состоял из камер смешения и двух компрессоров. Один из них накачивал в камеру сжатый воздух, другой – сжатый светильный газ из газогенератора. Эта смесь поступала в рабочий цилиндр и воспламенялась. Рабочие камеры располагались по обе стороны поршня и действовали попеременно.Газовый двигатель стал первым шагом к созданию двигателя внутреннего сгорания. Но, к сожалению, разработки в этом направлении приостановились с трагической гибелью Лебона. Дальнейшие попытки многих изобретателей не привели к появлению газовой силовой установки, способной конкурировать с паровой.Первым в мире двигателем внутреннего сгорания считается агрегат, запатентованный Жаном Этьеном Ленуаром в 1859 году.Бельгийский инженер решил воспламенять газовую смесь с помощью электрической искры. Двигатель Ленуара был двойного действия. Воздух и газ поочередно подавались нижним золотником в полости цилиндров, расположенных по обе стороны поршня. За выпуск отработанных газов отвечал верхний золотник. Воздух и газ поступали к золотнику по отдельным каналам, при этом всасывание смеси в полость происходило только до половины хода. Потом впускное окно перекрывалось, и электрическая искра воспламеняла получившуюся смесь, заставляя ее расширяться и толкать поршень. Когда реакция заканчивалась, второй золотник выпускал отработанные газы. В это время в цилиндре, расположенном с другой стороны поршня, происходило воспламенение топливовоздушной смеси.Чтобы избежать заклинивания поршня из-за термического расширеня, Ленуар дополнил свою конструкцию водяной системой охлаждения и системой смазки. Несмотря на низкий КПД (около 4%), сбои в системе зажигания, большой расход газа и смазки, двигатели Ленуара получили большое распространение и имели коммерческий успех.В 1864 году появилась более совершенная газовая силовая установка, разработанная Августом Отто. Хотя он и , предложенная им конструкция позволила добиться более полного расширения продуктов сгорания, а значит, и повысить КПД двигателя до 15%. Это превосходило показатели всех существовавших на тот момент устройств! К тому же, новый двигатель был экономичнее двигателя Ленуара в 5 раз.Совершенствуя свое изобретение, Отто применил в конструкции , заменившую зубчатую рейку. А вскоре, вместе с промышленником Лангеном, приступил к выпуску четырехтактных газовых двигателей. Этот цикл является основой работы ДВС и до сегодняшнего дня.Использование светильного газа в качестве топлива для двигателей внутреннего сгорания существенно ограничивало область их применения, поэтому активные поиски доступной альтернативы не прекращались. В 1872 году американцем Брайтоном был предложен «испарительный» карбюратор, в котором в качестве топлива применялся керосин. Но конструкция его была слишком несовершенна.По настоящему работоспособный бензиновый двигатель появился только спустя 10 лет. Его разработал Готлиб Даймлер, бывший членом правления фирмы Отто. Он представил проект бензиновой силовой установки, применимой на транспорте, но идея была отвергнута его патроном. Поэтому в 1882 году уходят из фирмы «Отто и компания» и создают собственную мастерскую. Их цель была амбициозна: создать легкий, компактный и мощный двигатель, способный перемещать экипаж.Первое детище Даймлера и Майбаха было стационарным. Процесс испарения бензина и система зажигания в нем были далеки от совершенства.Простую и надежную систему предложил конструктор Д. Банки в 1893 году. Изобретенный им карбюратор стал прообразом современных. После этого прогресс в развитии ДВС начал стремительно набирать обороты. Увеличивались объем цилиндров и их количество. Широкое распространение получили 4-цилиндровые силовые установки, обеспечивающие равномерность вращения коленчатого вала.В первый раз бензиновый двигатель был использован на велоколяске Карла Бенца. Немецкий автоконструктор построил ее в 1885 году. Трехколесная машина развивала скорость до 16 км/ч. А через 13 лет Карл Бенц создал уже четырехколесную велоколяску, мощностью 3 лошадиные силы, которая могла «мчаться» со скоростью 30 км/ч! Первый - в привычном нам понимании - автомобиль с бензиновым двигателем увидел свет в 1895 году. Его создали французские инженеры Р. Панар и Э. Левассор. Машина имела и оснащалась силовой установкой Даймлера, которая располагалась впереди и закрывалась крышкой капота. Крутящийся момент передавался на задние колеса с помощью корданового вала. Автомобиль имел стенки кузова, лобовое стекло, крышу, резиновые шины, коробку передач и рычаг переключения скоростей. Так началась эпоха автомобилей с бензиновыми двигателями. Среди пионеров построения таких самоходных экипажей были З. Маркус, А. Пежо, Братья Рено, Ф. У. Ленчестер, Г. Остин и Г. Форд.

Устройство и принцип работы бензинового двигателя

Устройство и принцип работы современных бензиновых двигателей удобнее всего рассмотреть на примере , поскольку отличаются они только количеством цилиндров. Одноцилиндровый бензиновый двигатель состоит из:
- глушителя;
- пружины клапана;
- карбюратора;
- впускного клапана;
- поршня;
- свечи зажигания;
- выпускного клапана;
- шатуна;
- маховика;
- распределительного вала;
 - коленчатого вала.Такт сжатия происходит при следующей половине оборота коленчатого вала. Поршень перемещается из НМТ в ВМТ. Оба клапана в этот момент остаются закрытыми. Рабочая смесь сжимается, в цилиндре возрастает давление и температура.Такт расширения по сути является рабочим ходом. После завершения сжатия рабочей смеси, происходит ее воспламенение от искры, создаваемой свечой. Процесс сгорания приводит к возрастанию температуры и давления (2,500 гр.С и 5 МПа). Поршень начинает двигаться вниз и воздействует на шатун, который толкает коленчатый вал, предавая ему вращательное движение. Полезная работа такта расширения заключается в преобразовании тепловой энергии в механическую. Когда поршень приближается к НМТ, происходит открытие выпускного клапана, открывающего путь отработанным газам. Температура и давление в цилиндре падает (1,200 гр. С, 0,65 МПа).Такт выпуска начинается с движением поршня в ВМТ. При этом выталкиваются отработанные газы в полностью открытый выпускной клапан. По окончании такта выпуска температура и давление в цилиндре падают (500 гр. С, 0,1 МПа). Но определенный процент отработанных газов остается в цилиндре и участвует в образовании рабочей смеси следующего такта.Четыре такта работы двигателя повторяются циклически. Маховик, прикрепленный к коленчатому валу, способствует ровной и устойчивой работе установки.

Достоинства и недостатки бензиновых двигателей ДВС

Преимущества бензиновых ДВС - значительная мощности на единицу объема, большой ресурс, простота выхлопной системы.Кроме того, следует отметить низкий уровень шума работы силовой установки и отсутствие необходимости в стартере. Бензиновые ДВС достигают больших оборотов и поэтому успешно применяются в небольших автомобилях и обеспечивают агрессивную динамику езды.Недостатками бензиновых двигателей являются низкий КПД (до 30%), высокие требования к качеству топливной смеси и низкая эффективность на малых оборотов. В последнее время много нареканий звучит в адрес экологических показателей бензиновых ДВС. Высокое содержание в выхлопных газах окиси углерода пагубно влияет на окружающую среду.Кроме этого, подобные двигатели укрепляют зависимость мирового автомобильного парка от, увы, небезграничных природных ресурсов. И, хотя, бензиновые ДВС далеко не полностью исчерпали свои потенциальные возможности, во всем мире ведутся активные поиски и разработки

Сегодня по всему миру в промышленности, на транспорте широко используются различные приводы на базе электрических и дизельных двигателей. В уходящем году научно-техническая общественность отметила две связанные с этим знаменательные даты: 170 лет со дня применения первого электродвигателя Якоби для привода транспортного средства - судна и 150 лет со дня рождения Рудольфа Дизеля - изобретателя дизельного двигателя внутреннего сгорания. 170 лет назад 13 сентября 1838 года. Б.С. Якоби одним из первых в мире применил созданный им электродвигатель для транспортных целей - движения по Неве катера (бота) с пассажирами.

Б.С. Якоби (1801–1874)

Борис Семенович Якоби (Мориц Герман, как он именовался до приезда в Россию) родился 21 сентября 1801 г. в Потсдаме. Высшее образование получил по специальности архитектор-строитель. Наряду с работой в строительном департаменте Пруссии Якоби с увлечением занимался исследованиями в области электромагнетизма. В 1834 г. он создал модель электродвигателя. Она состояла из восьми электромагнитов, расположенных попарно на подвижном и неподвижном деревянных барабанах.

В зависимости от направления тока в обмотках электромагнитов они то притягивались, то отталкивались друг от друга, за счет чего барабан приходил во вращение. Так Якоби впервые применил в своем электродвигателе коммутатор с вращающимися металлическими дисками и медными рычагами, которые при скольжении по дискам обеспечивали токосъем. В современных тяговых двигателях используется такой же принцип коммутации.

О своем изобретении Якоби сделал доклад в Парижской академии наук, благодаря которому его исследования приобрели мировую известность. В 1835 г. Якоби был приглашен в Россию на должность профессора архитектуры Дерптского университета. Позднее Россия стала для него второй родиной, которой он самоотверженно служил и внес большой вклад в развитие ее науки и техники.

В том же году он опубликовал «Мемуар о применении электромагнетизма для движения машин». Этот научный труд, по существу являвшийся обобщением всей его работы в области электромагнетизма, вызвал большой интерес ученых многих стран. По рекомендации известных ученых Петербургской академии наук, знакомых с работами Якоби, он составил докладную записку с предложением о практическом применении электродвигателя «для приведения в действие мельницы, лодки или локомотива» и обратился с этим к президенту Академии наук и министру просвещения графу С.С. Уварову.

Предложение Якоби было поддержано и доведено до сведения Николая I. Обращая внимание императора на первенство работ Якоби в области создания электродвигателя, Уваров писал, что двигатель мог бы с успехом заменить паровую машину: «…маленькое судно, к которому будет приделан этот двигатель, было бы удобнейшим средством испытания. Впрочем, можно было бы произвести опыт на карете по железной дороге».

Николай I дал указание создать комиссию из числа академиков по руководству опытами, на проведение которых были отпущены большие по тому времени деньги - 50 тыс. руб. Перед Якоби и учреждаемой комиссией была поставлена задача - направить все усилия на применение электродвигателя в судоходстве. Возглавил эту государственную комиссию по проведению первых натурных испытаний тягового электродвигателя с учетом водной специфики адмирал И.Ф. Крузенштерн (выдающийся мореплаватель, начальник первой русской кругосветной экспедиции). В комиссию входили также известные ученые - Э.Х. Ленц, М.В. Остроградский и другие.

Якоби переезжает из Дерпта в Петербург и на первом заседании комиссии 9 июля 1837 г. демонстрирует модель своего электродвигателя. Комиссия одобрила модель и предложила перейти к натурным испытаниям. В Петербурге под руководством Якоби была создана специальная мастерская (лаборатория), где он за короткий срок выполнил огромный объем работ по изготовлению электродвигателя, усовершенствованию источника питания (гальванической батареи) и созданию специальных электроизмерительных приборов.

13 сентября 1838 г. провели первые натурные испытания тягового электродвигателя. Сохранился текст донесения Крузенштерна графу Уварову. Вот выдержки из него: «13 сентября 1838 г. на Неве был произведен опыт плавания судна, приводимого в движение электромагнитной силой - опыт впоследствии многократно повторенный… Время не позволило устроить для этих опытов особое судно и пришлось довольствоваться обыкновенным восьмивесельным катером… На нем была устроена двигательная машина с гальваническим прибором. Сама машина занимает на катере пространство 1,4 м в ширину и 0,8 м в длину. Батареи, состоявшие из 320 пластинок, удобно устроены вдоль боковых стенок так, что на судне разместилось без стеснения до 12 человек. В одном опыте лодка проплыла 7 верст кряду по Неве и каналам, совершив свой путь в течение 3 часов». Одновременно комиссия отметила некоторые недостатки тяговой установки и вынесла решение продолжать опыты, а в случае их успешного результата - приступить к сооружению большого судна с электрической тягой 10 л.с.

После года напряженной работы 8 августа 1839 г. было проведено испытание электрохода с усовершенствованной конструкцией электродвигателя и батареи. Электроход развивал мощность порядка 0,5 л.с. и скорость около 4 верст в час с 11 пассажирами. Объем батареи уменьшился более чем в 6 раз. Опыты продолжались до 1842 г., за это время электроход проплыл по Неве около 40 верст, имея временами на борту до 14 пассажиров.

Труды Б.С. Якоби стали важной вехой в истории развития электрического транспорта и вызвали целую серию работ по применению электродвигателей для тяги. Однако все попытки изобретателей до создания в 1871 г. динамо-машины не выдерживали конкуренции с паровой машиной из-за дороговизны и несовершенства гальванических батарей, их значительного веса и эксплуатационных расходов. Якоби надеялся на изобретение в недалеком будущем нового, более мощного источника электроэнергии. Вот что он писал об этом: «Но на одном пункте необходимо стоять твердо и неуклонно - я имею в виду дальнейшее развитие науки. Дайте нам только время. Однако, к сожалению, мы находимся в том же положении, как и астрономы, которые воздвигают себе научные памятники на отдаленное будущее с той разницей, что мы стоим перед необходимостью «жертвовать» своими детьми, едва они покинут материнское лоно».

Такая участь постигла только одно детище Якоби - электродвигатель. Другими его изобретениями в области электротехники «жертвовать» не пришлось, и они принесли автору подлинный триумф. Наиболее важным из них было изобретение гальванопластики. К нему он пришел еще в 1836 г., во время работ по созданию электродвигателя и совершенствованию гальванической батареи. В процессе подбора различных пластин для батареи Якоби обратил внимание, что на медной пластине, помещенной в раствор медного купороса, при протекании электрического тока образуется слой меди. Его затем можно было легко отделить, и он точно копировал рельеф пластины. Якоби вырезал на поверхности медных пластин различные рельефы и надписи и получал точные выпуклые копии матрицы. Их образцы он приложил к сообщению о своем открытии, посланному в Академию наук и многим видным зарубежным ученым. Так, на одной пластине он по-английски начертал: «Фарадею от Якоби с приветом».

Изобретение было высоко оценено. В 1840 г. Академия наук присудила Якоби «Демидовскую премию», в том же году был издан его труд «Гальванопластика». Это открытие вскоре нашло широкое применение в типографском деле. Гальванопластика дала возможность изготавливать прочные матрицы с типографских наборов и с произведений мастеров гравюры.

За свои научные и практические достижения в 1838 г. Якоби был избран членом-корреспондентом Академии наук. В следующем году ему поручили работы по совершенствованию телеграфных аппаратов и созданию самовоспламеняющихся (гальваноударных) мин. Было создано несколько оригинальных конструкций электромагнитных телеграфных аппаратов, в том числе и буквопечатающих, а также осуществлена прокладка в 1841-1843 гг. первых телеграфных линий в столице - между Петербургом и Царским Селом.

В 1840-50-е годы Якоби много времени уделял созданию гальваноударных подводных мин, которые включались в электрическую цепь гальванической батареи и взрывались при ударе о корпус корабля. Во время Крымской войны по проекту Якоби были установлены минные заграждения Кронштадтского рейда, которые способствовали обороне города. Якоби предложил так же защитить и Севастополь, однако князь Меньшиков отказался от минных заграждений, мотивируя это тем, что, «несмотря на деятельную поспешность приготовления предлагаемых мин … доставка их из Петербурга потребует много времени и, может быть, еще доставятся они не совершенно в исправном виде». Важное место в деятельности академика Б.С. Якоби (он стал им в 1847 г.) занимали исследования в области электрических измерений и метрологии. Он разработал несколько новых электроизмерительных приборов и ряд оригинальных конструкций реостатов, много сделал для введения в России метрической системы.

В 1867 г. Якоби был направлен в качестве представителя России в Париж на международную выставку. Ему было поручено ознакомиться с достижениями мировой техники. На этой выставке огромным успехом пользовались и достижения самого Якоби в области гальванопластики. При выставке был создан специальный Комитет, именовавшийся «комитет, учрежденный при Парижской всемирной выставке 1867 г., о единообразии мер и весов». Якоби возглавил одну из его комиссий.

В 1869 г. он выступил с докладом на физико-математическом отделении Академии наук о задачах, стоящих перед метрологией, и призвал Академию обратиться с предложением о создании по этому вопросу международной комиссии из представителей разных стран. Это удалось завершить уже после смерти Якоби, когда была заключена международная конвенция, согласно которой в Париже образовано Международное бюро мер и весов. Преемником работ Якоби в области метрологии стал другой выдающийся русский ученый Д.И. Менделеев. Многолетний напряженный труд подорвал здоровье Бориса Семеновича. 27 февраля 1874 г. он ушел из жизни.

150 лет назад 18 марта 1858 г. в Париже в семье выходца из Баварии родился Рудольф Дизель - создатель названного по его имени двигателя внутреннего сгорания, нашедшего широкое применение в промышленности и на транспорте. В связи с началом франко-прусской войны в 1870 г. семья переехала в Англию, а двенадцатилетнего Рудольфа отправили к родственникам в Германию. После получения среднего образования он, как один из лучших учеников, был приглашен на учебу в Высшую техническую школу в Мюнхене. Во время одной из лекций по термодинамике, когда читавший ее профессор Линде указал на крайне низкий к.п.д. паровых машин, Рудольф был настолько поражен этим, что решил посвятить себя делу создания более совершенного теплового двигателя.

В 1878 г. по окончании Высшей технической школы по рекомендации профессора Линде Рудольф Дизель отправился в Швейцарию в качестве практиканта на машиностроительный завод братьев Зульцер, бывший тогда одним из лучших в Европе. После практики он начал работать на заводе акционерного общества «Холодильник» в Париже и уже через год стал его директором. Рудольф Дизель был постоянно в курсе всех новых разработок тепловых двигателей. Он хорошо видел их недостатки и настойчиво шел к решению задачи создания простого, экономичного и мощного двигателя внутреннего сгорания. В итоге многолетних исследований пришел к выводу, что для получения такого двигателя нужно изменить рабочий процесс по сравнению с существующим в тепловых двигателях.

Новый процесс был сформулирован в 1892 г. и на него Дизелю был выдан патент «Рабочий процесс и способ выполнения одноцилиндрового и многоцилиндрового двигателя». По идее изобретателя самовоспламенение топлива в двигателе должно происходить от сжатия, что позволяло отказаться от устройства зажигания и использовать любое топливо, включая сырую нефть. Более подробно принцип работы будущего двигателя автор изложил в своей брошюре, изданной в 1893 г. под названием «Теория и конструкция рационального теплового двигателя, призванного заменить паровую машину и другие существующие в настоящее время двигатели».

Для постройки двигателя Дизелю необходимы были значительные средства, и он настойчиво ищет богатых предпринимателей. В итоге ему удалось заключить договор с дирекцией Аугсбургского машиностроительного завода о проведении опытов и постройке двигателя, а финансирование работ взяла на себя фирма Г. Круппа. Обеим фирмам Дизель уступил свои права на изобретение, а сам возглавил работу в опытных мастерских, где разрабатывался его двигатель.

В июле 1893 г. первый двигатель был построен, однако нужного давления воздуха в его цилиндре не достигалось. В августе удалось повысить давление до 34 атм. При первом впрыске горючего (им был бензин) произошла авария. Изобретатель едва не получил удар по голове металлическим осколком. Несмотря на неудачу, Дизель с огромной энергией продолжал работу. Он внес ряд изменений в конструкцию, и в начале 1894 г. был создан второй опытный экземпляр двигателя, в цилиндре которого удалось довести давление до 40 атм. После проведения всесторонних испытаний этого двигателя Дизель написал в своем дневнике: «Первый не работает, второй работает несовершенно, третий будет работать хорошо». Своей непоколебимой верой в успех он воодушевлял всех окружающих.

Созданный в 1895 г. третий двигатель был снабжен охлаждающей водяной «рубашкой» и воздушным насосом. Работая с нагрузкой, двигатель имел малый расход топлива и к.п.д. около 30%. Через год был изготовлен дизель-мотор мощностью 20 л.с. и начались его испытания. В качестве топлива в нем использовался керосин, который вместе со сжатым воздухом от компрессора распылялся с помощью форсунки. Сжатие воздуха в компрессоре было большим, чем в цилиндре двигателя (в цилиндре воздух сжимался до 35 атм). Пары керосина под действием разности давления поступали через небольшое отверстие из форсунки в цилиндр. Температура сжатого воздуха в цилиндре достигала 600 - 700° С, что приводило к воспламенению горючего и сообщало энергию поршню.

Высокую оценку двигателю дал профессор Мюнхенской Высшей технической школы Шретер (в прошлом учитель Дизеля): «Как четырехтактный двигатель с одним цилиндром, он уже в первой стадии своего развития стоит выше всех современных тепловых двигателей. В высшей степени простое разрешение такого трудного вопроса, как подача горючего посредством впрыскивания сжатым воздухом, указывает на совершенство конструкции, знания и талант изобретателя». После испытаний учитель поздравил Дизеля с выдающимся успехом. Ныне этот испытанный в 1897 г. экземпляр работоспособного экономичного двигателя хранится в музее в Мюнхене как «первый дизель-мотор».

После успешных испытаний Дизелю стали поступать предложения от многих фирм на изготовление двигателей. За один только первый год реализации своего патента Дизель получил огромную сумму - около трех миллионов марок золотом. Новые машины стали называть по имени его создателя дизель-моторами или просто дизелями.

Право на реализацию своего патента Дизель продал немецким, английским, французским и бельгийским фирмам. Перспективным оказался и рынок России, где патентные права приобрел Э. Нобель (младший) за большую сумму, около 0,5 млн. руб. золотом.

Именно в Петербурге на заводе Нобеля (позже «Русский дизель») и в Винтертуре на заводе фирмы «Братья Зульцер» были изготовлены мощные, надежные в эксплуатации двигатели, построенные на основе чертежей дизель-мотора 1897 г. Мощные дизели начали постепенно вытеснять паровые машины сначала в промышленности, а затем и на транспорте. Первыми транспортными средствами, на которых установили дизели, были речные суда. Одними из первых таких теплоходов в России были нефтеналивные баржи «Вандал» и «Сармат», построенные на Коломенском машиностроительном заводе в 1903 и 1904 гг.

Труднее, оказалось, использовать дизели на локомотивах железных дорог. Проблемой стала передача - как трансформировать вращающий момент, передаваемый от вала дизеля на колесо. Дело в том, что мощность дизельного двигателя при неизменной подаче топлива прямо пропорциональна частоте вращения вала. Поэтому необходимо обеспечить возможность работы дизеля с постоянной (наибольшей для реализации его расчетной мощности) частотой вращения вала при переменной частоте вращения ведущих колес локомотива, зависящей от скорости его движения.

Другая особенность дизельного двигателя - это его неспособность работать на малых оборотах вала, когда при медленном осуществлении процесса сжатия воздуха в цилиндре не может быть получена температура, необходимая для воспламенения топлива. На решение этой трудной задачи - создания мощного работоспособного дизельного локомотива - ученым и конструкторам многих стран пришлось потратить несколько десятков лет. Одним из первых взялся за это сам изобретатель двигателя. Первая попытка построить поездной тепловоз относится к 1906 г., когда, в какой-то мере по инициативе Дизеля, управление Прусских железных дорог заказало двум крупнейшим европейским заводам - паровозостроительному «Аугуст Борзит» в Берлине и двигателестроительному «Братья Зульцер» в Винтертуре (Швейцария) - пассажирский тепловоз типа 2-2-2 с двухтактным двигателем Дизеля.

При участии изобретателя было организовано «Общество термолокомотивов». Около шести лет Дизель и инженер завода Клозе работали над проектом дизельного локомотива. Построенный тепловоз имел четырехцилиндровый V-образный двигатель мощностью 960 л.с. Для разгона тепловоза (с составом) использовался сжатый воздух из резервуаров.

После проведения первых испытаний на местной швейцарской линии дизельный локомотив решено было отправить в Германию для дальнейших испытаний и пробного обслуживания пассажирских поездов на линии Берлин - Манфельд.

При переезде из Швейцарии в Берлин тепловоз вел пассажирский состав. На локомотиве находились Дизель и Клозе, которые в целом были удовлетворены его работой. На отдельных участках скорость поезда достигала 100 км/ч. Однако дальнейшие эксплуатационные испытания, которые проводились уже после смерти изобретателя, выявили ряд существенных недостатков локомотива. Эти недостатки были принципиальными и неустранимыми, связанными с отсутствием передачи. Вскоре тепловоз был снят с поездной работы. Последний период жизни Р. Дизеля был чередой побед и огорчений. Огромную радость и гордость доставляли ему известия о создании все более совершенных и мощных конструкций его двигателя.

В Петербурге, куда он приехал в 1909 г., ему был показан 4-тактный реверсивный двигатель, построенный на заводе «Русский дизель». Дизельными двигателями оборудовали новейшие океанские теплоходы, подводные лодки и дирижабли. Знаменитый Р. Амундсен, благодаря замене на шхуне «Фрам» (на которой Ф. Нансен пытался достичь Северного полюса) паровой машины на дизель мощностью 180 л.с. выгадал 60% в весе и месте. Это во многом предопределило успех его экспедиции на «Фраме» в Антарктиду и открытие в 1911 г. Южного полюса.

В 1912 г. Дизель совершил триумфальную поездку в США, где выступал с многочисленными докладами, восторженно встреченные слушателями. Ему предлагались выгодные финансовые контракты, но поскольку это требовало его задержки в США на полтора года, он отказался от всех предложений. Дизель встретился с Эдисоном и был восхищен великим изобретателем и его лабораторией в Менло-Парке. Вскоре он вернулся в Германию.

Наряду с поклонниками у Дизеля было немало завистников и недоброжелателей. Владельцы заводов паровых машин инспирировали злобную кампанию против изобретателя, в ходе которой опровергались все его заслуги. Дизель пытался защищаться.

В 1912 г. он выступил с докладом об истории создания своего двигателя на собрании немецких судостроителей и вскоре подготовил рукопись своей книги «Происхождение дизель-моторов».

Еще во время напряженной работы по созданию двигателя его из-за большого переутомления мучили головные и сердечные боли. В последние годы жизни они стали особенно сильными. 29 сентября 1913 г. Р. Дизель после посещения Бельгии отплыл на пароходе в Англию. Однако утром 30 сентября его не нашли в каюте. Согласно предположениям, он покончил с собой, выбросившись за борт. Таков трагический конец великого изобретателя. Но за свою сравнительно короткую жизнь он подарил миру простой и экономичный двигатель, без которого не может обойтись в настоящее время ни одна отрасль промышленности и транспорта.

Первый двигатель внутреннего сгорания (ДВС) был изобретен французским инженером Ленуаром в 1860 г. Этот двигатель во многом повторял паровую машину, работал на светильном газе по двухтактному циклу без сжатия. Мощность такого двигателя составляла примерно 8 л.с., КПД – около 5%. Этот двигатель Ленуара был очень громоздким и поэтому не нашел дальнейшего применения.

Через 7 лет немецкий инженер Н. Отто (1867 г.) создал 4-х-тактный двигатель с воспламенением от сжатия. Этот двигатель имел мощность 2 л.с., с числом оборотов 150 об/мин и уже выпускался серийно.

Двигатель мощностью 10 л.с. имел КПД 17% , массу 4600 кг и нашел широкое применение. Всего таких двигателей было выпущено более 6 тыс.

К 1880 г. мощность двигателя была доведена до 100 л.с.

Рис 3. Двигатель Ленуара: 1 – золотник; 2 – полость охлаждения цилин-дра: 3 – свеча зажигания: 4 – поршень: 5 – шток поршня: 6 – шатун: 7 – контактные пластины зажигания: 8 – тяга золотника: 9 – кривошипный вал с маховиками: 10 – эксцентрик тяги золотника.

В 1885 г. в России капитан Балтийского флота И.С.Костович создал двигатель для воздухоплавания мощностью 80 л.с. с массой 240 кг. Тогда же в Германии Г.Даймлер и независимо от него К.Бенц создали двигатель небольшой мощность для самодвижущихся экипажей – автомобилей. С этого года началась эра автомобилей.

В конце 19 в. немецким инженером Дизелем был создан и запатентован двигатель, который впоследствии стали называть по имени автора двигателем Дизеля. Топливо в двигателе Дизеля подавалось в цилиндр сжатым воздухом от компрессора и воспламенялось от сжатия. КПД такого двигателя составляло примерно 30%.

Интересно, что за несколько лет до Дизеля русский инженер Тринклер разработал двигатель, работающий на сырой нефти по смешанному циклу – по которому работают все современные дизельные двигатели, однако он не был запатентован, а имя Тринклера мало кто теперь знает.

Конец работы -

Эта тема принадлежит разделу:

ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ

факультет МиАС... Содержание дисциплины... Введение Двигатели внутреннего сгорания Роль и применение...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Роль и применение ДВС в строительстве
Двигателем внутреннего сгорания (ДВС) называют поршневой тепловой двигатель, в котором процессы сгорания топлива, выделение теплоты и превращение ее в механическую работу происходят непосредственно

Основные механизмы и системы двигателя
ДВС состоит из кривошипно-шатунного механизма, механизма газораспределения и пяти систем: питания, зажигания, смазки, охлаждения и пуска. Кривошипно-шатунный механизм предназначен для восп

Теоретические и действительные циклы
Характер рабочего процесса в двигателе бывает различный – подвод теплоты (сгорание) происходит при постоянном объеме (вблизи ВМТ -это карбюраторные двигатели) или при постоянном дав


1.7.3. Процесс сжатияслужит: 1 для расширения температурных пределов между которыми протекает рабочий процесс; 2 для обеспечения возможности получения максимально

Теплообмен в процессе сжатия
В начальный период сжатия после закрытия впускного клапана или продувочных и выпускных окон температура заряда, заполнившего цилиндр, ниже температуры стенок, головки, и днища поршня. Поэтому в пер

Показатели эффективности, экономичности и совершенства конструкции двигателей
Индикаторные показатели: Рис. 20. Индикаторная диаграмма четырехтактного

Показатели токсичности отработавших газов и способы снижения токсичности
Исходными веществами в реакции горения является воздух, содержащий примерно 85% углерода, 15% водорода и другие газы и углеводородное топливо, содержащее примерно 77% азота, 23% кис

Пределы воспламеняемости топливовоздушных смесей
Рис. 24. Температуры сгорания бензино-воздушных горючих смесей разных составов: Т

Сгорание в карбюраторных двигателях
В карбюраторных двигателях к моменту появления искры рабочая смесь, состоящая из воздуха, парообразного или газообразного топлива и остаточных газов, заполняет объем сжатия. Процесс

Детонация.
Детонация – сложный химико-тепловой процесс. Внешними признаками детонации являются появление звонких металлических стуков в цилиндрах двигателя, снижение мощности и перегрев двигат

Сгорание в дизельных двигателях
Особенности процесса сгорания, рис. 28: - подача топлива начинается с опережением на угол θ до в.м.т. и заканчивается после в.м.т.; - изменение давления от т.

Формы камер сгорания дизельных ДВС
Неразделенные камеры сгорания. В неразделенных камерах сгорания Рис.29 улучшение процесса распыливания топлива и перемешивания его с воздухом достига

Кривошипно-шатунный и газораспределительный механизмы
3.1. Кривошипно-шатунный механизм (рис.33)предназначен для восприятия давления газов и преобразования возвратно-поступательного движения поршня во вращательное движение коленчатого вала Он

Наддув, назначение и способы наддува
Наддув цилиндров двигателей может быть либо динамическим, либо осуществляться при помощи специального нагне­тателя (компрессора). Различают три системы наддува при помощи нагнетателей: с п

Системы питания двигателей
4.1 Система питания дизелей. Система питания осуществляет подачу топлива в ци­линдры. При этом должны обеспечиваться высокие мощностные

Система питания карбюраторных двигателей
Приготовление и подача к цилиндрам карбюраторных двигате­лей горючей смеси, регулирование ее количества и состава осу­ществляется системой питания, работа которой оказывает большое

Контактно-транзисторная система зажигания
КТСЗ начала появляться на автомобилях в 60-х годах. При увеличении степени сжатия, использовании более бедных рабочих смесей и с увеличением частоты вращения коленчатого вала и числа цилинд­ров кла

Бесконтактно-транзисторная система зажигания
БТСЗ начали применять с 80-х годов. Если в КСЗ прерыватель непосредственно размыкает первичную цепь, в КТСЗ – цепь управления, то в БТСЗ (рис.61-63) прерывателя нет и управление становится бесконта

Микропроцессорные системы управления двигателем
МСУД стали устанавливать на автомобили с середины 80-х годов на легковые автомобили оборудованные системами впрыска топлива. Система управляет двигателем по оптимальным характеристикам и н

Крышка распределителя
Наружную поверхность крышки распределителя также как и катушки зажигания необходимо содержать в чистоте. У высоких «жигулевских» крышек стекание импульса по наружной поверхности на корпус распредел

Свечи зажигания
Свечи зажигания служат для образования электрической искры, необходимой для воспламенения рабочей смеси в цилиндрах двигателя.

Контакты прерывателя
Надежность классической системы зажигания (KC3) в существен­ной мере зависит от прерывателя. Часто бывает так, что о прерывателе (кстати, как и о других элементах системы зажигания)

Системы смазки и охлаждения и пуска
Основные положения.Система смазки двигателей предназна­чается для предотвращения повышенного изнашивания, перегрева и заедания трущихся поверхностей, уменьшения затраты индикатор­н

Система охлаждения
В поршневых двигателях в процессе сгорания рабочей смеси температура в цилиндрах двигателя повышается до 2000-28000 К. К концу процесса расширения она снижается до 1000-1

Система пуска
Пуск поршневых д. в. с., независимо от типа и конструкции, осуществл-яется вращением коленчатого вала двигателя от постороннего источника энергии. При этом частота вращения должна о

Топлива
Топлива для ДВС – продукты переработки сырой нефти (бензин, дизельное топливо)- Основная часть его – углеводороды. Бензин получают путем конденсации легких фракций переработки неф

Моторное масло
7.3.1.Требования, предъявляемые к моторным маслам.В поршневых двигателях для смазки деталей используют масла главным обра­зом нефтяного происхождения. Физико-химические свойства масел обусл

Охлаждающие жидкости
Через систему охлаждения отводится 25-35% общего тепла. Эффективность и надежность системы охлаждения в значительной степени зависит от качества охлаждающей жидкости. Требования к охлаж