Вычислительная машина Чарльза Бэббиджа. Биография, идеи и изобретения Чарльза Бэббиджа. Разностная машина бэббиджа

(Для начала советую прочесть первую и вторую части статьи.)
Разностная машина Чарльза Бэббиджа впервые позволила автоматизировать процесс вычислений и производить его в некоторой степени без вмешательства человека. Как было сказано в предыдущей части, для вычисления функций типа логарифма, тригонометрических функций и прочих, их необходимо было разбить на участки, каждый из которых представлялся своим многочленом, и только потом можно было произвести расчёт значений функции для данного участка. Переходя от одного многочлена к другому, оператор машины должен был вручную ввести все исходные значения регистров. К тому же машина позволяла производить только операцию сложения, что было не много даже по меркам 19го века.

Раздумывая над этой проблемой, Бэббидж пришёл к выводу, что можно построить такую машину, которая бы сама меняла значения исходных регистров в зависимости от значения результата. То есть сама бы могла управлять процессом вычислений. В дальнейшем, развивая эту идею, Бэббидж пришёл к мысли не просто сделать машину, которая бы табулировала функцию полностью автоматически, а создать машину которая бы позволяла решать весь класс вычислительных задач. Для этого алгоритм такой машины должен быть не жёстко зашит в её конструкцию, а задаваться извне, а сама машины должна уметь выполнять все арифметические операции, а также управлять ходом выполнения вычислений. Новую вычислительную машину Бэббидж назвал Аналитической.

Основными частями Аналитической машины являлись:
1.«склад» - устройство для хранения чисел, то есть память в современной терминологии;
2.«мельница» - устройства для выполнения арифметических действий (Арифметическое устройство);
3.устройство, управляющее операциями машины;
4.устройства ввода и вывода;

(Элемент «мельницы». Рисунок Генри Бэббиджа. )

В такой архитектуре не сложно узреть прообраз современного компьютера с его памятью, процессором (мельница + устройство управления) и устройствами ввода вывода.

«Шину обмена» данными между АЛУ и памятью представлял собой набор зубчатых реек. Объём памяти должен был составлять тысячу чисел по 50 десятичных знаков. Для числа из 50-ти десятичных разрядов со знаком необходимо 168 бит, то есть объём ОЗУ был чуть больше двадцати килобайт. Для сравнения советую посмотреть объём ОЗУ первых компьютеров.

Как было сказано в предыдущей части, работая над аналитической машиной, Бэббидж придумал оригинальную схему предварительного переноса. Стоит сказать, что перед этим он продумал более двадцати вариантов исполнения схемы последовательного переноса, прежде чем понял, что для кардинального ускорения процесса необходим совершенной иной принцип.

Как и в разностной машине, регистры, хранящие числа, представляли собой зубчатые колёса. Знак числа задавался отдельным зубчатым колесом. Если данное колесо отображало чётное число, то это интерпретировалось как положительный знак, иначе как отрицательный.

Операции умножения и деления предполагалось реализовать как последовательные сложения или вычитания.

Расчётное время выполнения операций должно было составлять одну секунду для сложения и вычитания и одну минуту для умножения и деления, что не так уж и плохо для 19го века.

Для ввода данных в память и управлением работой машины, Бэббидж задумал использовать перфокарты. На тот момент они уже существовали не один десяток лет, и были изобретены Жаккаром Жозефом-Мари для управления узором автоматизированного ткацкого станка.
Аналитическая машина использовала два механизма с перфокартами - один механизм задавал операции, которые должна была выполнять мельница, второй же управлял переносом данных между «мельницей» и «складом».

(Ткацкий станок с картами Жаккара. )

Во время прибывания Бэббиджа в Италии к нему обратился метематик, профессор Мосотти. «Он заметил, что теперь вполне готов поверить в способность механизма овладеть арифметическими и даже алгебраическими соотношениями в любой нужной степени. Но он добавил что не может понять, как машина может сделать выбор, который часто необходим при аналитическом исследовании (то есть в процессе вычислений), когда представляются два или более путей, особенно в том случае, когда правильный путь, как это часто бывает, неизвестен до тех пор, пока не проделаны предшествующие вычисления». На этот случай в Аналитической машине была предусмотрена возможность организации условного выполнения и циклов. Для этого механизм переноса последнего разряда управлял движением перфокарт и мог заставить этот механизм повторить действие либо пропустить его.

Устройства вывода позволяли выводить на печать в результат вычислений машины в одной или двух копиях, воспроизводить в виде стереотипного отпечатка или пробивать результат на перфокартах.

Работая над аналитической машиной, Бэббидж сделал более 200 чертежей её различных узлов и около 30 вариантов компоновки машины. Однако размер замысла, и сложный характер изобретателя отсрочили рождение его изобретений на добрую сотню лет. Если взглянуть на разностную машину, которая по замыслу Бэббиджа должна был табулировать до 20-го знака функции с постоянными седьмыми разностями, то близкая по возможностям машина появилась в 1934-м году - она табулировала функции с постоянными разностями седьмого порядка и с точностью до 13 знаков. Что же говорить об исполинских возможностях задуманной аналитической машины

(Часть печатающего механизма машины. )

После смерти Чарльза Бэббиджа, его сын, Генри, занялся аналитической машиной, решив сосредоточиться на двух узлах - «мельнице» и печатающем устройстве. В 1888-м году были готовы данные узла машины, которые смогли вычислить и напечатать произведение на числа натурального ряда с 29 знаками. При вычислении 32-го члена машина выдала неверный результат из-за сбоя в механизме переноса. Всю оставшуюся жизнь Генри продолжал работу над аналитической машиной отца, а также занимался популяризацией идей вычислительных машин.

Не смотря на то, что Бэббидж за свою жизнь написал немало книг и статей, он так и не создал подробного изложения принципов работы разностной и аналитической машины, так как считал создание машин более важным занятием, нежели их описание. Подробное описание разностной машины было дано Дионисием Ларднером, а аналитическая машина была описана в статье Луиджи Фредериго Менабреа. Именно эта статья и привела к тому, что на свет появилась первая в мире программа и первый программист. Честь носить такое звание имеет Ада Августа Лавлейс, дочь поэта Байрона. Чарльз Бэббидж был знаком с семьёй юной талантливой девушки и всячески поощрял её тягу к науке. Однажды Ада заинтересовалась вычислительными машинами Бэббиджа и взялась за перевод статьи Менабреа. Работая над переводом, Ада, дополнила её своими комментариями, примерами практического использования машин, а также составила «программу» вычисления чисел Бернулли. Имя Ады было увековечено в названии одного из языков программирования - Ада (Ada). Подробнее углубляться в биографию Ады я не буду, т.к. данная тема уже была раскрыта на хабре.

Судьба Чарльза Бэббиджа была не менее сложная, чем судьба его вычислительных машин. Отношение современников к этому учёному со временем менялось от гения до чудака и даже до изобретателя, повредившегося рассудком на почве вычислительных машин. За свою жизнь он создал большое количество разнообразных изобретений, таких как спидометр, динамометр, придумал единый почтовый тариф и прочее. Президент Королевского общества лорд Росс писал что «Бэббидж только своими изобретениями в области машиностроения вполне возместил те средства, которые правительство вложило в строительство его разностной машины».

Идея, родившаяся в девятнадцатом веке и ставшая реальностью в веке двадцатом, сделала переворот не только в науке, но и в нашей повседневной жизни. Жизнь Бэббиджа, история создания его вычислительных машин является ярчайшим примером того на сколько дальновидным и упорным может быть гений, и на сколько тернистым и долгим бывает путь созидания.

PS: Всем кому интересны механические вычислительные машины, их история создания, описание конструкции и принципов работы и зарождение их электронных собратьев рекомендую найти и прочитать книгу «От абака до компьютера» за авторством Р. С. Гутера и Ю. Л. Полунова 1981 года издания.

Как я уже писала в статье , она не была построена своим создателем. Однако в ходе работы у Бэббиджа возникла идея создания универсального вычислительного автомата, который должен был работать по программе без вмешательства человека.

Такую машину он назвал аналитической. Более 100 лет спустя эта идея была положена в основу создания электронно-вычислительных машин.

В 1834 году Чарльз Бэббидж описал свою аналитическую машину (Analytical Engine). Это был проект компьютера общего назначения с применением перфокарт, а также парового двигателя в качестве источника энергии.

Перфокарта

Перфокарты представляли из себя куски перфорированного картона. Впервые они были применены в 1804 г. французом Жаккаром для механического ткацкого станка, управляемого последовательностями перфокарт. В соответствии с положениями отверстий на карте челнок совершал определенные движения, придавая ткани соответствующую структуру.

Кстати, в начале 1980-х свои программы все пользователи-программисты того времени набивали именно на перфокарты.

Перфокарты были необходимы для автоматизации работы аналитической машины, которая достигается за счет работы по заранее составленной человеком программе . Именно Чарльз Бэббидж является родоначальником идеи механической машины с программным управлением.

Действительно, без автоматического программного управления вычислительным процессом каждую последующую операцию машине должен «подсказывать» человек, нажимая на соответствующие кнопки. А осмысленно человек в самом лучшем случае может делать это 1-2 раза в секунду из-за инерционности своей нервной системы.

Следовательно, сколь бы быстро не работали блоки машины, она, выполняя каждую операцию по указанию человека, будет работать медленно – в темпе работы своего хозяина. И только заранее введя в машину программу решения задачи, «научив» ее решать самостоятельно ту или иную задачу, можно добиться, чтобы она считала «без оглядки на человека», со свойственной ей, машине, скоростью.

По проекту 1834 г., разработанному Бэббиджем на бумаге, аналитическая машина включала 4 блока:

  1. регистры памяти (по терминологии Бэббиджа store - хранилище, склад) – это аналог современного запоминающегося устройства (ЗУ) для хранения исходных данных и результатов;
  2. арифметический блок (по терминологии Бэббиджа mill - мельница) – это аналог современного устройства для вычислений;
  3. барабан, управляющий операциями машины (control barrel) - прообраз современного устройства управления (УУ);
  4. перфокарты – прототип ввода/вывода информации.

Такая схема Вам ничего не напоминает? Ведь это уже практически архитектура электронно-вычислительных машин (ЭВМ). Остается лишь придумать схему совместного хранения программ и данных в памяти компьютера. Это было сделано 100 лет спустя коллективом ученых во главе с американским математиком Джоном фон Нейманом.

Вернемся в 1834 год. Еще не изобретены фотография и электричество, нет телефона и радио. По морям плавают исключительно парусные судна, а на суше лошадь – друг человека. И вдруг – аналитическая машина, то есть, механическое устройство с идеями автоматического программного управления! Человечество смогло это реализовать спустя более 100 лет благодаря появлению электроники.

К 1834 г. арифмометр уже был изобретен. Аналитическая машина отличалась от него наличием регистров, что позволяло ей работать по программе, предварительно составленной человеком. В регистрах сохранялся промежуточный результат вычисления, и с их же помощью выполнялись действия, предписанные «программой».

Изобретение регистров предоставляло такие вычислительные возможности, которые поразили Бэббиджа по сравнению с его первой разностной машиной: «Шесть месяцев я составлял проект машины, более совершенной, чем первая. Я сам поражен той вычислительной мощностью, которой она будет обладать; еще год назад я не смог бы в это поверить».

Как уже отмечалось, в единую логическую схему Бэббидж увязал арифметическое устройство («мельница»), регистры памяти, объединенные в единое целое («склад»), и третье устройство, которому автор не дал названия. Оно было реализовано с помощью перфокарт трёх типов:

  1. операционные карты (англ. operation card) служили для переключения машины между режимами сложения, вычитания, деления и умножения;
  2. карты переменных (англ. variable card) управляли передачей информации со «склада» на «мельницу» и обратно;
  3. числовые перфокарты могли быть использованы для ввода данных в машину, а также для сохранения промежуточных результатов вычислений, если место на «складе» было ограничено.

Кроме того, из операционных карт можно было составить библиотеку функций. По замыслу автора аналитическая машина должна была содержать устройство печати и устройство вывода результатов на перфокарты для последующего использования. Таким образом, именно Бэббидж стал автором идеи ввода-вывода.

Аналитическая машина не была построена. Изобретатель писал в 1851 г.: «Все разработки, связанные с Analytical Engine, выполнены за мой счет. Я провел целый ряд экспериментов и дошел до черты, за которой моих возможностей не хватает. В связи с этим я вынужден отказаться от дальнейшей работы».

В 1822 г. англичанин Чарльз Бэббидж построил счетное устройство, которое назвал разностной машиной. В эту машину вводилась информация на картах. Для выполнения ряда математических операций в машине применялись цифровые колеса с зубьями. Десять лет спустя Бэббидж спроектировал другое счетное устройство, гораздо более совершенное, которое назвал аналитической машиной. В первой половине XIX века английский математик Чарльз Бэббидж попытался построить универсальное вычислительное устройство - Аналитическую машину, которая должна была выполнять вычисления без участия человека. Для этого она должна была уметь выполнять программы, вводимые с помощью перфокарт (карт из плотной бумаги с информацией, наносимой с помощью отверстий, как в ткацких станках), и иметь “склад” для запоминания данных и промежуточных результатов (в современной терминологии - память). Бэббидж не смог довести до конца работу - она оказалась слишком сложной для техник того времени. Друг Бэббиджа, графиня Ада Августа Лавлейс, показала, как можно использовать аналитическую машину машину для выполнения ряда конкретных вычислений. Чарльза Бэббиджа считают изобретателем компьютера, а Аду Лавлейс называют первым программистом компьютера. Даже одини из компьютерных языков был официально назван в честь графини – ADA. В 1985 г. сотрудники Музея науки в Лондоне решили выяснить наконец, возможно ли на самом деле построить вычислительную машину Бэббиджа. После нескольких лет напряженной работы старания увенчались успехом. В ноябре 1991 г. незадолго до двухсотлетия со дня рождения знаменитого изобретателя, разностная машина впервые произвела серьезные вычисления. После смерти Бэббиджа умер и его сын, но перед этим он успел построить несколько миникопий разностной машины Бэббиджа и разослать их по всему миру, дабы увековечить эту машину. В октябре 1995 года одна из тех копий была продана на лондонском аукционе австралийскому музею электричества в Сиднее за $200,000.

1.2.5. Герман Холлерит

В конце XIX в. были созданы более сложные механические устройства. Самым важным из них было устройство, разработанное американцем Германом Холлеритом. Исключительность его заключалась в том, что в нем впервые была употреблена идея перфокарт и расчеты велись с помощью электрического тока. Это сочетание делало машину настолько работоспособной, что она получила широкое применение в своё время. Например, при переписи населения в США, проведенной в 1890 г., Холлерит, с помощью своих машин, смог выполнить за три года то, что вручную делалось бы в течении семи лет, причем гораздо большим числом людей.

1.2.6. Конрад Цузе

Лишь спустя 100 лет машина Бэбиджа привлекла внимание инженеров. В конце 30-х годов 20 века немецкий инженер Конрад Цузе разработал первую двоичную цифровую машину Z1. В ней широко использовались электромеханические реле, то есть механические переключатели, приводимые в действие электрическим током. В 1941 г. Конрад Цузе создал машину Z3, полностью управляемую с помощью программы.

1.2.7. Говард Айкен

Большой толчок в развитии вычислительной техники дала вторая мировая война: американским военным понадобился компьютер. В 1944 г. американец Говард Айкен на одном из предприятий фирмы ІВМ построил довольно мощную по тем временам вычислительную машину «Марк-1». В этой машине для представления чисел использовались механические элементы – счетные колеса, а для управления применялись электромеханические реле. Программа обработки данных вводилась с перфоленты. Размеры: 15 X 2,5 м., 750000 деталей. "Марк-1" мог перемножить два 23-х разрядных числа за 4 с.

2. Электронно-вычислительный период

Одно время его считали гением, потом чуть не посадили в долговую яму.
Да и вправду потраченные суммы были фантастичны для начала 19 века.
А обещанная машина так и не заработала. А он мечтал уже о следующей.
Попутно он изобрел тахометр. Он поднимался с экспедицией на Везувий,
погружался на дно озера в водолазном колоколе, участвовал в археологических
раскопках, изучал залегание руд, спускаясь в шахты.

Почти год он занимался безопасностью железнодорожного движения и сделал
очень много специального оборудования. В том числе создал спидометр.
Кроме того он разработал немало оборудования для обработки металла.

Чарльз Бэббидж родился 26 декабря 1791 года в Лондоне. Его отец, Бенджамин Бэббидж, был банкиром. Мать звали Элизабет Бэббидж. Ее девичья фамилия Тип (Teape). В детстве у Чарльза было очень слабое здоровья. В 8 лет, его отправили в частную школу в Альфингтоне на воспитание священнику. На тот момент его отец уже был достаточно обеспечен, чтобы позволить обучение Чарльза в частной школе. Бенджамин Бэббидж попросил священника не давать Чарльзу сильных учебных нагрузок из-за слабого здоровья.
После школы в Альфингтоне Чарльз был отправлен в академию в Энфилде, где по существу и началось его настоящее обучение. Именно там Бэббидж начал проявлять интерес к математике, чему поспособствовала большая библиотека в академии.

После обучения в академии, Бэббидж обучался у двух репетиторов. Первый был священником, жившим возле Кембриджа. По словам Чарльза, священник не дал бы ему тех знаний, который он мог получить, обучаясь у более опытного репетитора. После священника у Бэббиджа был репетитор из Оксфорда. Он смог дать Бэббиджу основные классические знания, достаточные для поступления в колледж.

В 1810 году Бэббидж поступил в Тринити-колледж в Кембридже. Однако, основам математики он обучался самостоятельно по книжкам. Он тщательно изучал труды Ньютона, Лейбница, Лагранжа, Лакруа, Эйлера и других математиков академий Санкт-Петербурга, Берлина и Парижа. Бэббидж очень быстро обогнал своих преподавателей по знаниям и был сильно разочарован уровнем преподавания математики в Кембридже. Более того он заметил, что Британия вцелом заметно отстала от континентальных стран по уровню математической подготовки.

В связи с этим, он решил создать общество, целью которого являлось внесение современной европейской математики в Кембриджский университет. В 1812 году Чарльз Бэббидж, его друзья, Джон Гершель (John Herschel) и Джордж Пикок (George Peacock) и еще несколько молодых математиков основали «Аналитическое общество». Они стали проводить собрания. Обсуждать различные вопросы, связанные с математикой. Начали публиковать свои труды. Например, в 1816 году они опубликовали переведенный ими на английский язык «Трактат по дифференциальному и интегральному исчислению» французского математика Лакруа, а в 1820 году опубликовали два тома примеров, дополняющих этот трактат. Аналитическое общество своей активностью инициировало реформу математического образования вначале в Кембридже, а затем и в других университетах Британии.

В 1812 году Бэббидж перешел в колледж Св. Петра (Peterhouse). А в 1814 году он получил степень бакалавра. В том же году Чарльз Бэббидж женился на Джорджии Витмур (Georgiana Whitmore), и в 1815 году они переехали из Кембриджа в Лондон. За тринадцать лет брака у них было восемь детей, но пятеро из них умерли в детстве. В 1816 году он стал членом Королевского Общества Лондона. К тому времени он написал несколько больших научных статей в разных математических дисциплинах. В 1820 году он стал членом Королевского Общества Эдинбурга и Королевского Астрономического Общества. В 1827 году он похоронил отца, жену и двоих детей. В 1827 году он стал профессором математических наук в Кембридже, и занимал этот пост в течении 12 лет. После того, как он покинул этот пост, он большую часть своего времени посвятил делу его жизни – разработке вычислительных машин.

Часть разностной машины Чарльза Бэббиджа, собранная после смерти учёного его сыном из деталей, найденных в лаборатории отца.

Малая разностная машина

Впервые Бэббидж задумался о создании механизма, который позволил бы производить автоматически сложные вычисления с большой точностью в 1812 году. На эти мысли его натолкнуло изучение логарифмических таблиц, при пересчёте которых были выявлены многочисленные ошибки в вычислениях, обусловленные человеческим фактором. Ещё тогда он начал осмысливать возможность проведения сложных математических расчётов при помощи механических аппаратов.



Однако, Бэббидж не сразу начал заниматься развитием идеи построения вычислительного механизма. Лишь в 1819 году, когда он заинтересовался астрономией, он более точно определил свои идеи и сформулировал принципы вычисления таблиц разностным методом при помощи машины, которую он впоследствии назвал разностной. Эта машина должна была производить комплекс вычислений, используя только операцию сложения. В 1819 году Чарльз Бэббидж приступил к созданию малой разностной машины, а в 1822 году он закончил её строительство и выступил перед Королевским Астрономическим обществом с докладом о применении машинного механизма для вычисления астрономических и математических таблиц. Он продемонстрировал работу машины на примере вычисления членов последовательности. Работа разностной машины была основана на методе конечных разностей. Малая машина была полностью механической и состояла из множества шестерёнок и рычагов. В ней использовалась десятичная система счисления. Она оперировала 18 разрядными числами с точностью до восьмого знака после запятой и обеспечивала скорость вычислений 12 членов последовательности в 1 минуту. Малая разностная машина могла считать значения многочленов 7-ой степени.


За создание разностной машины Бэббидж был награждён первой золотой медалью Астрономического общества. Однако, малая разностная машина была экспериментальной, так как имела небольшую память и не могла быть использована для больших вычислений.


Работающая копия разностной машины в лондонском Музее науки

В 1823 году правительство Великобритании предоставило ему субсидию в размере 1500 фунтов стерлингов (общая сумма правительственных субсидий, полученных Бэббиджем на реализацию проекта, составила в конечном счёте 17 000 фунтов стерлингов).


Разрабатывая машину, Бэббидж и не представлял всех трудностей, связанных с её реализацией, и не только не уложился в обещанные три года, но и спустя девять лет вынужден был приостановить свою работу. Однако часть машины все же начала функционировать и производила вычисления даже с большей точностью, чем ожидалось.

Конструкция разностной машины основывалась на использовании десятичной системы счисления. Механизм приводился в действие специальными рукоятками. Когда финансирование создания разностной машины прекратилось, Бэббидж занялся проектированием гораздо более общей аналитической машины , но затем всё-таки вернулся к первоначальной разработке. Улучшенный проект, над которым он работал между 1847 и 1849 годами, носил название «Разностная машина № 2» (англ. Difference Engine No. 2 ).


Основываясь на работах и советах Бэббиджа, шведский издатель, изобретатель и переводчик Георг Шутц (швед. Georg Scheutz ) начиная с 1854 года сумел построить несколько разностных машин и даже сумел продать одну из них канцелярии английского правительства в 1859 году. В 1855 году разностная машина Шутца получила золотую медаль Всемирной выставки в Париже. Спустя некоторое время другой изобретатель, Мартин Виберг (швед. Martin Wiberg ), улучшил конструкцию машины Шутца и использовал её для расчёта и публикации печатных логарифмических таблиц.




Разностный калькулятор Шутца

Аналитическая машина Бэббиджа:

Несмотря на то что разностная машина не была построена её изобретателем, для будущего развития вычислительной техники главным явилось другое: в ходе работы у Бэббиджа возникла идея создания универсальной вычислительной машины, которую он назвал аналитической и которая стала прообразом современного цифрового компьютера. В единую логическую схему Бэббидж увязал арифметическое устройство (названное им «мельницей»), регистры памяти, объединённые в единое целое («склад»), и устройство ввода/вывода, реализованное с помощью перфокарт трёх типов. Перфокарты операций переключали машину между режимами сложения, вычитания, деления и умножения. Перфокарты переменных управляли передачей данных из памяти в арифметическое устройство и обратно. Числовые перфокарты могли быть использованы как для ввода данных в машину, так и для сохранения результатов вычислений, если памяти было недостаточно.




В целом Беббиджа подвела недостаточная точность металлообработки того времени и конечно недостаток финансирования

В дальнейшем на протяжении почти столетия ничего похожего на Аналитическую машину не появилось, однако идея использования перфокарт для обработки данных была опробирована довольно скоро. Спустя 20 лет после смерти Бэббиджа американский изобретатель Герман Холлерит создал электромеханическую счетную машину – табулятор, в которой перфокарты использовались для обработки результатов переписи населения, проводившейся в США в 1890 г.

Принтер! для машины Бэббиджа:

Последние годы жизни Бэббидж посвятил философии и политической экономии.
Чарльз Бэббидж умер в возрасте 79 лет 18 октября 1871 года.

Машина различий Бэббиджа:

PS.

Многое из того, что известно об этой машине, дошло до нас благодаря научным трудам одаренного математика-любителя Огасты Ады Байрон (графини Лавлейс), дочери поэта лорда Байрона. В 1843 г. она перевела статью об Аналитической машине, написанную одним итальянским математиком, снабдив ее собственными подробными комментариями, которые касались потенциальных возможностей машины.

В период 1989 по 1991 год к двухсотлетию со дня рождения Чарльза Бэббиджа на основе его оригинальных работ в лондонском Музее науки была собрана работающая копия разностной машины № 2 . В 2000 году в том же музее заработал принтер, также придуманный Бэббиджем для своей машины. После устранения обнаруженных в старых чертежах небольших конструкционных неточностей, обе конструкции заработали безупречно. Эти эксперименты подвели черту под долгими дебатами о принципиальной работоспособности конструкций Чарльза Бэббиджа (некоторые исследователи полагают, что Бэббидж умышленно вносил неточности в свои чертежи, пытаясь таким образом защитить свои творения от несанкционированного копирования).

Источники:

1. Биография Чарльза Бэббиджа
2. Чарльз Бэббидж — изобретатель и… политэконом
3. Нас переехали колеса Бэббиджа
4. http://www.sciencemuseum.org.uk/onlinestuff/stories/babbage.aspx

Чарльз Бэббидж (1791-1871) - пионер создания вычислительной техники, который разработал 2 класса вычислительных машин - разностные и аналитические. Первый из них свое название получил благодаря математическому принципу, на котором основан - методу конечных разностей. Его красота заключается в исключительном использовании арифметического сложения без необходимости прибегать к умножению и делению, которые сложно реализовать механически.

Больше чем калькулятор

Разностная машина Бэббиджа представляет собой счетное устройство. Она оперирует числами единственным способом, на который способна, постоянно складывая их в соответствии с методом конечных разностей. Ее нельзя использовать для общих арифметических расчетов. Аналитическая же машина Бэббиджа гораздо больше, чем просто калькулятор. Она знаменует переход от механизированной арифметики к полномасштабным вычислениям общего назначения. На разных этапах эволюции идей Бэббиджа насчитывалось по меньшей мере 3 проекта. Поэтому на его аналитические машины лучше ссылаться во множественном числе.

Удобство и инженерная эффективность

Бэббиджа являются десятеричными устройствами в том смысле, что они используют 10 цифр от 0 до 9, и цифровыми потому, что оперируют только с целыми числами. Значения представлены шестернями, а каждому разряду отведено свое колесо. Если оно останавливается в промежуточном положении между целыми значениями, то результат считается неопределенным, а работа машины блокируется, чтобы показать нарушение целостности расчетов. Это является своеобразной формой обнаружения ошибок.

Бэббидж также рассматривал использование систем счисления, отличных от десятеричной, в т. ч. двоичной и с основанием 3, 4, 5, 12, 16 и 100. Он остановился на десятеричной по причине ее привычности и инженерной эффективности, поскольку благодаря ей значительно уменьшается количество движущихся частей.

Разностная машина №1

В 1821 г. Бэббидж начал разработки с механизма, предназначенного для расчета и табуляции полиномиальных функций. Автор описывает его как устройство для автоматического вычисления последовательности значений с автоматической печатью результатов в виде таблицы. Интегральной частью конструкции является принтер, механически связанный с расчетной секцией. Разностная машина №1 представляет собой первую полноценную конструкцию для автоматического выполнения расчетов.

Время от времени Бэббидж менял функциональные возможности устройства. Дизайн 1830 г. изображает машину, рассчитанную на 16 цифр и 6 порядков разности. Модель состояла из 25 тыс. частей, разделенных поровну между вычислительной секцией и принтером. Если бы устройство было построено, то весило бы, по оценкам, 4 т и имело бы высоту 2,4 м. Работа по созданию разностной машины Бэббиджа была остановлена в 1832 г., после спора с инженером Джозефом Клементом. Государственное финансирование окончательно прекратилось в 1842 г.

Аналитическая машина

Когда работа над разностным аппаратом застопорилась, в 1834 году Бэббидж задумал более амбициозное устройство, которое позже получило название аналитического универсального программируемого вычислительного механизма. Структурные свойства машины Бэббиджа во многом соответствуют основным блокам современного цифрового компьютера. Программирование производится с помощью перфокарт. Эта идея была заимствована у жаккардового ткацкого станка, где они служат для создания сложных текстильных узоров.

Логическая структура аналитической машины Бэббиджа в основном соответствует доминирующему дизайну компьютеров электронной эры, который подразумевает наличие памяти («магазина»), отделенной от центрального процессора («мельницы»), последовательное выполнение операций и средства для ввода и вывода данных и инструкций. Поэтому звание пионера вычислительной техники автор разработки получил вполне заслуженно.

Память и центральный процессор

У машины Бэббиджа есть «магазин», где хранятся числа и а также отдельная «мельница», где выполнялась арифметическая обработка. Она имела набор из 4 арифметических функций и могла выполнять прямое умножение и деление. Кроме того, устройство было способно производить операции, которые теперь получили названия условного разветвления, цикла (итерации), микропрограммирования, параллельной обработки, фиксации, формирования импульсов и т. п. Сам автор такую терминологию не использовал.

ЦПУ аналитической машины которое он называл «мельницей», обеспечивает:

  • хранение чисел, операции над которыми производятся немедленно, в регистрах;
  • имеет аппаратные средства для произведения с ними основных арифметических операций;
  • передачу ориентированных на пользователя внешних инструкций в детальное внутреннее управление;
  • систему синхронизации (такт) для выполнения инструкций в тщательно подобранной последовательности.

Механизм управления аналитической машины выполняет операции автоматически и состоит из двух частей: нижнего уровня, контролируемого массивными барабанами, называемыми бочками, и высокого уровня, использующего перфокарты, разработанными Жаккардом для ткацких станков, широко применявшихся в начале 1800-х годов.

Устройства вывода

Результат вычислений выводится различными способами, включая печать, перфокарты, построение графиков и автоматическое производство стереотипов - лотков из мягкого материала, на которых производится оттиск результата, способных служить формой для отливки пластин для печати.

Новая конструкция

Новаторскую работу над аналитической машиной Бэббидж в основном завершил к 1840 г. и начал разрабатывать новое устройство. В период с 1847 по 1849 год он закончил разработку разностной машины №2, представлявшей собой улучшенную версию оригинала. Эта модификация была рассчитана на операции с 31-разрядными числами и могла привести в табличную форму любой полином 7-го порядка. Дизайн был изящно простым и требовал лишь третью часть от количества деталей первоначальной модели, обеспечивая равную с ней вычислительную мощность.

В разностной и аналитической машинах Чарльза Бэббиджа использовалась одна и та же конструкция устройства вывода, которое не только делало распечатку на бумаге, но и автоматически создавало стереотипы и самостоятельно производило форматирование согласно заданному оператором макету страницы. При этом предусматривалась возможность настройки высоты строки, числа столбцов, ширины полей, обеспечивались автоматическое сворачивание строк или столбцов и расстановка пустых строк для удобства чтения.

Наследие

Помимо нескольких частично созданных механических сборок и тестовых моделей небольших рабочих секций, ни одна из конструкций не была реализована полностью в течение жизни Бэббиджа. Основная собранная в 1832 г. модель была 1/7 частью разностной машины №1, которая состояла примерно из 2 тыс. деталей. Она безупречно работает по сей день и является первым успешным автоматическим вычислительным устройством, которое реализует математические расчеты в механизме. Бэббидж умер, когда собиралась небольшая экспериментальная часть аналитической машины. Многие детали конструкции сохранились, как и полный архив чертежей и записок.

Проекты огромных механических вычислительных машин Бэббиджа считаются одним из потрясающих интеллектуальных достижений XIX века. Только в последние десятилетия его работа была детально изучена, и степень важности того, что он совершил, становится все более очевидной.