Разностная машина бэббиджа. Разностная машина Чарльза Бэббиджа

Где-то в 1800-х годах Чарльз Бэббидж изобрел первый компьютер, тогда слово «компьютер» имело иное значение, и он назвал свое изобретение Разностной машиной или Аналитической машиной. Гениальный изобретатель опережал свое время, но, к сожалению, не завершил свое изобретение, и лишь спустя сто лет был изобретен первый настоящий компьютер, но это уже другая история. А сегодняшняя статья об Аналитической Машине Бэббиджа.

Согласно чертежам Бэббиджа машина должна была состоять из следующих частей:

1. Склад - жесткий диск, память; 2. Мельница - процессор; 3. Паровой двигатель - блок питания; 4. Принтер - принтер; 5. Карты операций - программы; 6. Карты переменных - система адресации; 7. Числовые карты - для ввода чисел; 8. Управляющие барабаны - микропрограммы.

Самовычисляющая машина

В этой статье мы попробуем выяснить устройство Аналитической Машины, но для начала следует отметить, что она принадлежала к распространенному с 1740-х годов семейству «автоматических» (само-) механизмов.

И хотя Бэббидж избегал использования этого понятия, в новостях и изданиях ее описывали именно так:

За завтраком я имела удовольствие сидеть рядом с мистером Бэббиджем, известным в наших кругах изобретателем самовычисляющей машины. Взгляд его кажется столь проницательным, будто он видит науку - или любой другой предмет, ставший объектом его внимания, - насквозь.
Эди Седжвик, 1841 г.
Центробежный регулятор - первый из «самодействующих» механизмов индустриальной эпохи. Кстати, именно он является одной из самых узнаваемых частей парового двигателя.


При разгоне двигателя шары отклоняются от оси под воздействием центробежной силы, из-за этого муфта сдвигается и ограничивает приток пара, а машина замедляет ход. Замедление машины опускает шары и этим открывает клапан - открывается приток пара, цикл замкнулся.

Сама же конструкция Разностной машины была схожа с арифмометрами, и, как арифмометры, Машина состояла из длинной череды зубчатых колес, которые складывают числа, а потом выдают сумму.

Где-то в 1834 году Бэббидж усовершенствовал конструкцию, и благодаря возврату суммы обратно в машину стали доступны более сложные вычисления.

Работа Аналитической машины основывалась именно на «пожирании своего хвоста», и работала система благодаря сложной цепи шестерней, которые управлялись перфокартами и барабанами, вычисляя суммы и отправляя результаты на склад, который состоял из ряда зубчатых колес.

Примерно все взаимодействовало так:

  1. Карты операций (А) указывают картам переменных (В), что нужно запросить числа для расчетов;
  2. Числа вводятся с числовых карт (С) или со склада (D) и поочередно поступают на ось ввода (Е);
  3. Ось ввода передает числа на центральные колеса (F);
  4. Карта операции дает команду сложения чисел или умножения или иную, а барабаны (G) поворачиваются до положения, в котором их штифты будут соответствовать операции.
  5. Барабаны активируют рычаги, соединяя шестерни мельницы (H) с центральными колесами. А уже в мельнице определенные устройства отвечают за сложение, умножение и иные действия;
  6. Шестерни выполняют умножение исходных чисел;
  7. Мельница при необходимости может зацикливать действия, передавая команды на разные участки перфокарты;
  8. Результат попадает на ось вывода (I).
  9. Ось вывода передает данные на принтер (D) или отправляет на склад согласно картам переменных;
  10. Карты операций подают команду на подачу звонка (J) и на остановку Машины. Всё!

Память: склад

Любому компьютеру, паровому или электронному, необходима возможность хранения данных. В изобретении Бэббиджа он назывался складом, и, как практически вся машина, он состоял из зубчатых колес, расположенных в высоких столбцах. На каждом из столбцов хранилось только одно число не длиннее пятидесяти цифр, а верхнее колесо определяло положительно число или отрицательно.

Согласно моим оценкам, пройдет немало времени, прежде чем эти ограничения перестанут удовлетворять нуждам науки.
Чарльз Бэббидж
На чертежах Бэббиджа склад состоял из двух параллельных рядов высоких числовых столбцов, и в каждом из них хранилось одно число. Одна из сторон склада сообщалась с мельницей.

Кроме зубчатых колес числа могли храниться на числовых картах в виде комбинаций отверстий:

На своих схемах Чарльз изображал ряд столбцов уходящим за край листа и не указывал конечное количество чисел, которые могла бы запоминать заключительная версия Машины.

Рейки и карты переменных для передачи данных

Для передачи чисел со склада в Машину Бэббидж использовал опять зубчатые колеса рейки с длинными зубцами. Каждое из числовых колес склада с помощью шестеренок были связаны с рейками и при их помощи значения передавались на специальный столбец колец, находящийся между мельницей и складом, и таким же образом числа передавались обратно на склад.


Колеса склада А подключено к рейке В с помощью шестеренки. Обнуляясь, колесо слада поворачивает ось ввода до позиции переданного числа.


Для передачи числа с дальнего конца склада требовалась зубчатая рейка длинной в несколько метров.

На картах переменных нанесены адреса на складе, с которых производится выборка чисел. Эти же карты могут быть запрограммированы на получение значений с числовых карт.
Каждый адрес нанесен на карты переменных в виде отверстий, и их сочетание переключает определенные рычаги:


При отсутствии отверстия на перфокарте рычаг не задействован, но как только отверстие появлялось, рычаг соединял шестеренку со скобой. И шестеренка, поднимаясь вместе со скобой, соединяла колесо ввода с зубчатой рейкой.

Мельница вычислений

После попадания чисел в мельницу начинается главная часть работы Машины - арифметические действия, выполняемые снова и снова.

Бэббиджем были разработаны отдельные узлы сложения, вычитания, умножения и деления, а также один из любимых его механизмов - перенос с предварением.

В своих публикациях Бэббидж очеловечивал Машину и про «сквозной перенос» писал:

В случае сквозного переноса Машина способна предвидеть и действовать в соответствии с предвидением.
Чарльз Бэббидж
Конечно, до переноса числа необходимо было сложить, и происходило это примерно так:

Колесо А обнуляется и на нем задается первое число. Второе число задается на колесе В, которое в сцепке с колесом А. Обнуление первого колеса прибавляет число, которое там содержалось, к значению на колесе В.

Возьмем для примера:

Вспомним школьную арифметику, а именно сложение в столбик и перенос единиц. Если расположить цифры обоих чисел по столбцам, как это сделано в Машине, и складывать их по разрядам, то в первом случае не будет переноса, во втором будет перенесена единица, а в третьем сумма будет равна 9, но перенесенная ранее единица инициирует перенос.

Когда Разностная машина работает, можно наблюдать волнообразные движения рычажков переноса в задней части Машины. Волны происходят из-за последовательных переносов единиц снизу вверх с проверкой инициации новых переносов.


Эта штука переносит единицу снизу вверх по одной!

Программы

В то время программ не существовало, ну точнее они уже были придуманы, но тогда они назывались картами операций и выглядели примерно так:


Карта операций

Программами занималась Ада Лавлейс, и, как истинные аристократы, они отдавали приказы барабанам и картам переменных не контактируя с рабочими механизмами. Даже простое сложение задействовало множество деталей, и при помощи большого барабана один рычаг мог задавать любое значение для восьмидесяти других рычагов.

Согласно отверстиям на картах барабан поворачивается к рычагам разными секциями, которые содержат определенный шифр и задействуют разные наборы рычагов.

И хотя барабаны напоминают валики шарманок, действуют они иначе. Вместо непрерывного вращения барабан поворачивается до определенной позиции и затем двигается вперед, толкая и активируя набор необходимых рычагов.

Карты операций управляют и барабанами, и картами переменных, и выглядят примерно так:

Перфокарты

Первой системой, построенной на перфокартах, был жаккардов станок, и именно им вдохновлялся Бэббидж.


Карта Жаккара, 1850 г.

Принцип их работы прост и гениален одновременно: удерживающий перфокарты рычаг опускается, прижимая карту к набору подпружиненных горизонтальных штырьков. Если под штырьком отсутствует отверстие, то карта сдвигает штырек и наклоняет стержень с крючком так, что он цепляется за штифт. Затем штифты движутся вверх вместе с зацепившимися за них крючками.

Логика и циклы

Перфокарты и шестеренки - это великолепно, но не они делают Разностную машину компьютером. Из устройства для обсчета десятичной арифметики Машина превращается в компьютер благодаря небольшой детали - условному рычагу.

Этот рычаг автоматически опускается, если результат вычислений требует дальнейших действий со стороны программы. И если на определенной позиции барабана стоит штифт, а затем рычаг опускается - запускается новый цикл вычислений.

Таким образом, условный рычаг замыкает цикл, и Машина «поедает собственный хвост»: перфокарты управляют барабанами, барабаны Машиной, Машина барабанами, а барабаны перфокартами.

На этом я закончу сегодняшнюю статью. Если у вас есть какие-то дополнения, то я буду рад обсуждениям в комментариях.

Всем хорошего дня и точных вычислений!

Литература:
«Невероятные приключения Лавлейс и Бэббиджа. Почти правдивая история первого компьютера»

Изобретения Бэббиджа

Малая разностная машина

Впервые Бэббидж задумался о создании механизма, который позволил бы производить автоматически сложные вычисления с большой точностью в 1812 году. На эти мысли его натолкнуло изучение логарифмических таблиц, при пересчёте которых были выявлены многочисленные ошибки в вычислениях, обусловленные человеческим фактором. Ещё тогда он начал осмысливать возможность проведения сложных математических расчётов при помощи механических аппаратов.

Также очень большое влияние на Бэббиджа оказали работы французского учёного барона де Прони, который предложил идею разделения труда при вычислении больших таблиц (логарифмических, тригонометрических и др.). Он предлагал разделить процесс вычисления на три уровня. Первый уровень -- несколько выдающихся математиков, подготавливающих математическое обеспечение. Второй уровень -- образованные технологи, которые организовывали рутинный процесс вычислительных работ. А третий уровень занимали сами вычислители, от которых требовалось лишь умение складывать и вычитать. Идеи Прони навели Бэббиджа на мысль о замене третьего уровня (вычислителей) механическим устройством.

Однако Бэббидж не сразу начал заниматься развитием идеи построения вычислительного механизма. Лишь в 1819 году, когда он заинтересовался астрономией, он более точно определил свои идеи и сформулировал принципы вычисления таблиц разностным методом при помощи машины, которую он впоследствии назвал разностной. Эта машина должна была производить комплекс вычислений, используя только операцию сложения. В 1819 году Чарльз Бэббидж приступил к созданию малой разностной машины, а в1822 году он закончил её строительство и выступил перед Королевским Астрономическим обществом с докладом о применении машинного механизма для вычисления астрономических и математических таблиц. Он продемонстрировал работу машины на примере вычисления членов последовательности. Работа разностной машины была основана на методе конечных разностей. Малая машина была полностью механической и состояла из множества шестерёнок и рычагов. В ней использовалась десятичная система счисления. Она оперировала 18-разрядными числами с точностью до восьмого знака после запятой и обеспечивала скорость вычислений 12 членов последовательности в 1 минуту. Малая разностная машина могла считать значения многочленов 7-й степени.

За создание разностной машины Бэббидж был награждён первой золотой медалью Астрономического общества. Однако малая разностная машина была экспериментальной, так как имела небольшую память и не могла быть использована для больших вычислений.

Разностная машина Чарльза Бэббиджа

В 1822 году Бэббидж задумался о создании большой разностной машины, которая позволила бы заменить огромное количество людей, занимающихся вычислением различных астрономических, навигационных и математических таблиц. Это позволило бы сэкономить затраты на оплату труда, а также избавиться от ошибок, связанных с человеческим фактором.

Со своим предложением профинансировать создание большой разностной машины Чарльз Бэббидж обратился в Королевское и Астрономическое общества. И те, и другие отозвались на это предложение положительно. В 1823 году Бэббидж получил 1500 фунтов стерлингов и приступил к разработке новой машины. Он планировал сконструировать машину за 3 года. Однако Бэббидж не учёл сложности конструкции, а также технические возможности того времени. И уже к 1827 году было затрачено 3500 фунтов стерлингов (более 1000 личных денег). Ход работы по созданию разностной машины сильно замедлился.

Кроме того, на процесс конструирования машины большое влияние оказали трагические события в жизни Бэббиджа в 1827 году. В этот год он похоронил отца, жену и двоих детей. После этих событий у него ухудшилось самочувствие, и он не мог заниматься конструированием машины. Чтобы восстановить здоровье, он поехал в путешествие по континенту.

После путешествия в 1828 году Бэббидж продолжил разработку, но денег уже не было. Он обращался ко многим обществам и правительству с просьбой о помощи. Только в 1830 году он получил от правительства ещё 9000 фунтов стерлингов, после чего продолжил конструирование разностной машины.

В 1834 году работы по созданию машины были приостановлены. На тот момент уже было затрачено 17000 фунтов государственных денег и 6000 личных. С 1834 по 1842 год правительство обдумывало, оказывать поддержку проекту или нет. А в 1842 году отказалось финансировать проект. Разностная машина так и не была достроена.

Большая разностная машина должна была состоять из 25 000 деталей, весить почти 14 тонн и быть 2,5 метра высотой. Кроме того, разностная машина должна была быть оснащена печатным устройством для вывода результатов. Память была рассчитана на 1000 50-разрядных чисел.

Возможно, причиной неудачи создания разностной машины, наряду с трагическими событиями 1827 года и недостаточным уровнем технологий того времени, стала излишняя разносторонность Бэббиджа. Он поднимался с экспедицией на Везувий, погружался на дно озера в водолазном колоколе, участвовал в археологических раскопках, изучал залегание руд, спускаясь в шахты. Почти год он занимался безопасностью железнодорожного движения и сделал очень много специального оборудования -- в том числе создалспидометр. Кроме того, при конструировании разностной машины он разработал немало оборудования для обработки металла. В 1851 году Чарльз Бэббидж предпринял попытку сконструировать улучшенную версию разностной машины -- «Разностную машину 2». Но и этот проект не был удачным.

Одна из 6-ти демонстрационных моделей вычислительной части разностной машины Чарльза Бэббиджа, собранная после его смерти сыном Генри из деталей, найденных в лаборатории.

Однако труды Бэббиджа по созданию разностной машины не пропали даром. В 1854 году шведский изобретатель Шойц по работам Бэббиджа построил несколько разностных машин. А ещё через некоторое время Мартин Виберг усовершенствовал машину Шойца и использовал её для расчётов и публикации логарифмических таблиц.

В 1891 году была построена «Разностная машина 2», которая находится сейчас в Лондонском научном музее.

механическое устройство, изобретённое математиком Чарльзом Бэббиджем, предназначенное для автоматизации вычислений путём аппроксимации (т.е. приближением - научным методом, который заключается в замене одних объектов другими, в каком-то смысле близкими к исходным, но более простыми) функций многочленами и вычисления конечных разностей. Как раз наличие функции приближённого представления в тригонометрических функциях и многочленах логарифмов позволяет рассматривать разностную машину Бэббиджа как универсальный прибор.

Впервые идея разностной машины была озвучена немецким учёным Иоганном Мюллером в книге, изданной в 1788 году, но Бэббидж заимствовал идею создания своего проекта не у Мюллера, а из работ французского математика и учёного-гидравлика Гаспара де Прони , почти 10 лет занимавшего должность руководителя бюро переписи населения.

Прони было поручено выверить и уточнить данные логарифмических тригонометрических таблиц для подготовки к принятию метрической системы (ввели в стране после революции). Гаспар предложил распределить работу по трём уровням. Группа крупных математиков представляла верхний уровень. Они занимались выводом математических выражений, пригодных для численных расчётов, так сказать решением задач в общем виде. Второй, средний уровень, вычислял значения функций для аргументов, которые находились друг от друга на пять или десять интервалов. Рассчитанные значения входили в таблицу в качестве опорных. После этих действий формулы отправляли вниз, третьей, самой многочисленной группе, члены которой проводили рутинные расчёты и именовались «вычислителями». Понятное дело, что они были наименее квалифицированными математиками из всех уровней. От вычислителей требовалось только аккуратно складывать и вычитать в последовательности, определённой формулами, полученными «сверху».

Работы Гаспара де Прони (так и не законченные ввиду революционного времени, инфляции и т.д.), с которыми Бэббидж познакомился, будучи во Франции, как раз и навели Бэббиджа на мысль о возможности создания машины, способной заменить третью группу - вычислителей.

В 1822 году Бэббидж публикует научную статью с описанием машины, способной рассчитывать и печатать большие математические таблицы. Спустя несколько месяцев ему удалось построить пробную модель своей Разностной машины, состоящую из шестерёнок и валиков, вращаемых вручную с помощью рычага. Бэббидж смог добиться поддержки Королевского общества, а это немного ни мало самая престижная научная организация Великобритании. Он обратился к правительству страны с просьбой профинансировать создание полномасштабной работающей машины. В письме президенту Королевского общества, Бэббидж указывал на то, что с «невыносимой утомительной работой», заключающейся в однообразных повторяющихся математических расчётах, будет покончено. Королевское общество поддержало Бэббиджа и он получил грант от правительства на полторы тысячи фунтов стерлингов.

Следующие 10 лет своей жизни Бэббидж полноценно потратил на своё изобретение. Он планировал завершить работу за 3 года, однако после каждой модификации Разностная машина становилась только сложнее. Мешали болезни, финансовые проблемы, остальная работа. Сумма правительственной поддержки выросла почти в 10 раз: до 17000 фунтов стерлингов. Официальные лица всё больше сомневались в целесообразности и в итоге их скептицизм взял верх, выделение средств на Разностную машину прекратилось.

В 1833 году Бэббидж уже был готов навсегда закрыть проект Разностной машины. Однако, размышлять на ту же тему он не закончил, и в итоге пришел к идее создания еще более мощной – Аналитической машины .

Хотя, работая над новым проектом, Бэббидж больше не возвращался к его предшественнику, шведский изобретатель, издатель и переводчик Пер Георг Шойц, ознакомившись с материалами этого устройства, построил его слегка измененный вариант, воспользовавшись рекомендациями Бэббиджа. Конечно, это было для Бэббиджа одновременно и радостное, и печальное событие, когда он, наконец, увидел, как его бывшее, а теперь уже общее детище, успешно прошло испытания… Это случилось в 1854 г. в Лондоне. Спустя всего год Разностная машина Шойца получила золотую медаль на Всемирной выставке в Париже. Прошло всего несколько лет и вот уже британское правительство, отказавшее в свое время в финансировании Бэббиджу, заказало одну из таких машин для правительственной канцелярии.

В период 1989-1991 гг. к двухсотлетию со дня рождения Чарльза Бэббиджа на основе его оригинальных работ в лондонском Музее науки была собрана работающая копия разностной машины № 2.

В 2000 году в том же музее заработал принтер , который также придумал Бэббиджем для своей машины. После устранения обнаруженных в старых чертежах небольших конструктивных неточностей, обе конструкции заработали идеально. Данные эксперименты подвели черту под длительными спорами о принципиальной работоспособности конструкций изобретателя (хотя некоторые исследователи всё же полагают, что Бэббидж намеренно вносил неточности в свои чертежи, чтобы тем самым защитить свои творения от несанкционированного копирования).

На момент прекращения работ над созданием разностной машины деятельный мозг Бэббиджа был занят решением уже другой, более тяжелой задачи. Бэббидж пожелал создать новый прибор - Аналитическую машину (Analytical Engine). Ее главным отличием от разностной машины должно было стать то обстоятельство, что она была программируемой и могла выполнять любые заданные ей вычисления.

От арифмометра новая машина отличалась наличием регистров. В них сохранялся промежуточный результат вычисления, и с их же помощью выполнялись действия, предписанные программой. Вычислительные возможности, открывшиеся после изобретения регистров, поразили самого Бэббиджа. На этот счет сохранилась следующая реплика изобретателя: «Шесть месяцев я составлял проект машины, более совершенной, чем первая. Я сам совершенно поражен той вычислительной мощностью, которой она будет обладать. Еще год назад я не смог бы в такое поверить!»

Архитектура Аналитической машины Чарльза Бэббиджа уже практически соответствует современным ЭВМ. В ней присутствуют все три классических составляющих компьютера:

Control barrel - управляющий барабан (управляющее устройство - УУ), -store - хранилище (теперь мы называем это памятью - ЗУ) -mill - мельница (арифметическое устройство - АУ).

Регистровая память машины Бэббиджа была способна хранить как минимум сто десятичных чисел по 40 знаков, теоретически же могла быть расширена до тысячи 50-разрядных (для сравнения укажем, что запоминающее устройство одной из первых ЭВМ «Эниак» в 1945 г. сохраняло всего 20 десятиразрядных чисел). Арифметическое устройство имело, как мы бы сейчас сказали, аппаратную поддержку всех четырех действий арифметики. Машина производила сложение за 3 секунды, умножение и деление - за 2 минуты. Эта «мельница» состояла из трех основных регистров: два для операндов, а третий для результатов действий, относящихся к умножению. Имелись также таблица для хранения промежуточных результатов и счетчик числа итераций. Основная программа заносилась на барабан (Управляющее устройство), в дополнение к ней могли использоваться перфокарты, предложенные Жозефом Мари Жаккаром еще в 1801 г. для быстрого перехода с узора на узор в ткацких станках.

Большую помощь в разработке машины Бэббиджу оказала Ада Лавлейс (урожденная Байрон). Лавлейс была дочкой знаменитого английского поэта лорда Байрона, но так его никогда и не увидела, так как незадолго до ее рождения он уехал в Грецию, где и погиб в составе отряда повстанцев. Лавлейс бывала в гостях у Бэббиджа со своей подругой Мэри Соммервилл. Бэббидж всегда относился к ним приветливо и подолгу объяснял назначение всех устройств машины. А вскоре он обнаружил незаурядные математические способности Ады Лавлейс. Именно она впоследствии создаст первые в мире теоретические основы программирования, напишет первый учебник по программированию, и войдет в историю как «первая программистка».

Именно Лавлейс принадлежит идея использования для подачи на вход машины двух потоков перфокарт, которые были названы операционными картами и картами переменных: первые управляли процессом обработки данных, которые были записаны на вторых.

Информация заносилась на перфокарты путем пробивки отверстий. Из операционных карт можно было составить библиотеку функций. Помимо этого, Analytical Engine, по замыслу автора, должна была содержать устройство печати и устройство вывода результатов на перфокарты для последующего использования. Так что Бэббидж стал пионером идеи ввода-вывода.

Бэббидж предлагал также создать механизм для перфорирования цифровых результатов на бланке или металлических пластинках. Для хранения информации в памяти ученый собирался использовать не только перфокарты, но и металлические диски, которые будут поворачиваться на оси. Металлические пластинки и металлические диски могут теперь рассматриваться нами как далекие прототипы магнитных карт и магнитных дисков.

Только в одном отношении аналитическая машина не была автоматической. Функции, записанные таблично, должны были быть заранее отперфорированы. Предвосхищая будущее вычислительных машин, Бэббидж писал: «Кажется наиболее вероятным, что она рассчитывает гораздо быстрее по соответствующим формулам, чем пользуясь своими же собственными таблицами». И действительно, в современных вычислительных машинах существует обширная библиотека стандартных подпрограмм, с помощью которой рассчитываются функции различной степени сложности. Интересно, что термин «библиотека» для данного применения также был впервые употреблен Чарльзом Бэббиджем!

Разностная машина Бэббиджа - вычислительная машина британского математика Чарльза Бэббиджа , предназначенная для автоматизации вычислений путем аппроксимации функций многочленами и вычисления конечных разностей. В начале 19 века логарифмические таблицы содержали множество ошибок. Решая проблему их исправления, Бэббидж пришел к выводу о необходимости создания машины для автоматических расчетов.

В 1822 году Бэббидж опубликовал статью с описанием вычислительной машины и приступил к ее созданию. В основу машины был положен математический метод аппроксимации функций полиномами и вычислением конечных разностей. Поэтому машина Бэббиджа получила название разностной, она должна была вычислять значения полиномов до шестой степени с точностью до восемнадцатого знака. В 1822 году Бэббиджем была построена модель разностной машины, состоящая из валиков и шестерней, вращаемых вручную при помощи рычага. В 1823 году правительство Великобритании предоставило Бэббиджу субсидию для дальнейших работ. Общая сумма субсидий, полученных Бэббиджем, составила 17 тысяч фунтов стерлингов.

Начиная постройку машины, Бэббидж не представлял всех предстоящих трудностей и спустя девять лет вынужден был приостановить работу. Однако часть машины могла функционировать и производила вычисления с большей точностью, чем ожидалось. Конструкция разностной машины основывалась на десятичной системе. Когда финансирование разностной машины прекратилось, Бэббидж занялся проектированием более общей аналитической машины, затем снова вернулся к первоначальной разработке. Новый проект, над которым он работал между 1847 и 1849 годами, назывался Разностной машиной номер 2 (Difference Engine No. 2).

Основываясь на опыте Бэббиджа, шведский изобретатель Пер Георг Шойц (Georg Scheutz) с 1854 года приступил к постройке разностных машин и даже сумел продать одну из них канцелярии британского правительства в 1859 году. В 1855 году разностная машина Шойца получила золотую медаль Всемирной выставки в Париже. Позднее шведский изобретатель Мартин Виберг (Martin Wiberg) улучшил конструкцию машины Шойца и использовал ее для расчета и публикации печатных логарифмических таблиц.

В 1989-1991 годах к двухсотлетию со дня рождения Чарльза Бэббиджа на основе его работ в Лондонском музее науки была собрана работающая копия Разностной машины номер 2. В 2000 году в том же музее был собран принтер, сконструированный Бэббиджем для своей машины. Эти эксперименты подвели черту под дебатами о работоспособности конструкций Чарльза Бэббиджа.

В ходе работ у Бэббиджа возникла идея создания универсальной вычислительной машины, которую он назвал Аналитической. Она стала прообразом компьютера. В единую логическую схему Бэббидж увязал арифметическое устройство (названное им «мельницей»), регистры памяти, объединенные в единое целое («склад»), и устройство ввода/вывода, реализованное с помощью перфокарт трех типов. Перфокарты операций переключали машину между режимами сложения, вычитания, деления и умножения. Перфокарты переменных управляли передачей информации со «склада» на «мельницу» и обратно. Числовые перфокарты могли быть использованы как для ввода данных в машину, так и для сохранения результатов вычислений, если место на «складе» было ограничено.