Турбовинтовые. Авиационные двигатели

Турбовинтовой двигатель

В это время Опытный завод № 2 под Куйбышевом заполучил опытного двигателиста бывшего концерна «Юнкерс». Это был Фердинанд Бранднер, бывший ведущий проекта поршневого мотора с 24 цилиндрами Jumo 222. В 1944-м, когда эту тему закрыли, его назначили гауляйтером промышленности Австрии. Там он попадает в советский плен. Ему удается доказать, что он конструктор двигателей «Юнкерса». Тогда, в 1946 году, его отправляют в Уфу, где он налаживает серийное производство реактивного двигателя Jumo 004 под обозначением РД-10.

Теперь, после объединения двух ОКБ, Фердинанд Бранднер становится неофициальным руководителем немецких конструкторов. Номенклатура трофейных двигателей была достаточно большой. Но стало ясно, что Опытный завод № 2 не в состоянии разрабатывать все направления. Да это оказалось и не нужно. Двигатели Jumo 004 и BMW 003 уже серийно выпускаются в Уфе и Казани под индексами РД-10 и РД-20. Реанимированный и модифицированный Jumo 012, с тягой, в три раза большей, продемонстрировал все свои возможности в разных вариантах. Оказалось, что для будущих советских истребителей он тяжеловат и расходует много топлива, а моторные ОКБ Климова, Микулина и Люльки набирались знаний и опыта. Их реактивные двигатели уже были не хуже немецких и английских.

Турбовинтовой двигатель Jumo 022

Назначенный в мае 1949 года главным конструктором Опытного завода № 2, Николай Кузнецов нацеливает коллектив конструкторов на доводку одного немецкого двигателя – турбовинтового Jumo 022. Только один экземпляр этого уникального технического сооружения немцы успели изготовить в конце войны, но так и не испытали. И вот он здесь, под Куйбышевом, и здесь же многие его создатели.

Николай Кузнецов с реактивными двигателями «Юнкерса» был хорошо знаком. Он год проработал главным конструктором моторного завода в Уфе. Там Jumo 004 стал родным, пока его превращали в серийный РД-10. Там Кузнецов работал с Бранднером, а теперь перетащил сюда из Уфы многих опытных инженеров. На завод стали распределять и молодых специалистов. Общая численность работников перевалила за две тысячи.

Первоначально на «Юнкерсе» турбовинтовой 022 создавался на базе турбореактивного 012 с таким расчетом, что половина тяги будет создаваться двумя соосными винтами противоположного вращения, другая половина – реактивным соплом.

Турбовинтовой двигатель НК-12

Немецкий опытный турбовинтовой двигатель послужил «печкой», от которой начали танцевать. Главный вопрос – как понизить удельный расход. Немецкие конструкторы активно совершенствовали двигатель. Начальник отдела турбины доктор Кордес создает новую методику ее расчета и проектирования. Удельный расход снизился. Модернизированный Jumo 022 впервые прошел 50-часовые государственные испытания. С марта 1951 года двигатель стали называть ТВ-2, а в мае начались его успешные испытания в воздухе на летающей лаборатории Ту-4.

В начале 1950 года бригада перспективных проектов, которой руководит доктор Йозеф Фогтс, получает задание разработать проект турбовинтового двигателя удвоенной мощности для стратегического бомбардировщика. В этой бригаде трудились самые умные и образованные немцы. Доктор Хельмут Гайнрих руководил термодинамическими расчетами. Доктор Макс Лоренц – аэродинамика и воздушные винты с реверсом. Основной компоновщик двигателей «Юнкерса» Отто Гассенмайер все идеи переводил в графику на кальках чертежей.

Разработанный проектировщиками двигатель мощностью десять тысяч лошадиных сил на воздушных винтах не приняли конструкторы. Начальник бригады компрессоров Ганс Дайнхард категорически заявил, что получить степень повышения давления 13 в четырнадцати ступенях невозможно. Начальник бригады камер сгорания Манфред Герлах не видит возможности удвоения количества сжигаемого топлива. Начальник бригады редуктора Рихард Эльце назвал разработанный планетарно-дифференциальный редуктор, обеспечивающий противоположное вращение двух воздушных винтов, технической авантюрой. Начальник бригады прочности доктор Рудольф Шайност сказал, что гарантировать работоспособность такого двигателя он не может и проект не поддерживает. Только начальник бригады турбин доктор Герхард Кордес верил в реальность создания четырехступенчатой турбины. Главный немецкий конструктор Фердинанд Бранднер сделал по проекту только несколько замечаний, так и не одобрив его. Но, несмотря на разногласия немецких конструкторов, Кузнецов дает команду двигатель разрабатывать, организуя параллельно экспериментальные исследования проблемных узлов и агрегатов.

В 1951 году Сталин забраковал дальний бомбардировщик Туполева Ту-85 из-за его малой скорости и дальности. «Немецкое» ОКБ Кузнецова получило задание разработать турбовинтовой двигатель ТВ-12 мощностью более двенадцати тысяч лошадиных сил для стратегического бомбардировщика Ту-95.

Через год новый двигатель с пятиступенчатой турбиной «запирался» и не хотел запускаться. Только в ноябре 1952 года, когда были изобретены и установлены управляемые клапаны перепуска воздуха в компрессоре, проблему решили. Потом долго доводили редуктор. Только специальная система охлаждения и смазки шестерен дала результат. Доводка компрессора и турбины также потребовала времени.

Гигантский турбовинтовой двигатель еще испытывали по частям и вносили изменения в его конструкцию, когда в ноябре 1953 года немцам разрешили вернуться домой. Уникальная машина, в создании которой они приняли самое активное и весомое участие, продемонстрирует свое рождение только через год. За создание самого мощного в мире серийного турбовинтового двигателя НК-12 Николай Кузнецов будет удостоен звания Героя Социалистического Труда и получит Ленинскую премию.

Значение работы двигателистов «Юнкерса» в Советском Союзе трудно переоценить. Начиная с 1946 года они выступали в роли учителей и творцов новых конструкторских решений. В Куйбышев, в поселок Управленческий, приезжали конструкторы и технологи от всех организаций, связанных с выпуском реактивных двигателей. Эксперименты и результаты испытаний вариантов новых двигателей, проводимые немецкими специалистами, становились достоянием конструкторов ОКБ Микулина, Климова и Люльки, а также ученых ЦИАМа, НИАТа и ВИАМа.

Из книги Киевской Руси не было, или Что скрывают историки автора

Торговля - двигатель прогресса Если строго следовать постулатам исторического материализма, то в эпоху феодализма главную ценность представляла собой земля. Государства по этой концепции возникают тогда, когда земледелец становится способен создавать прибавочный

Из книги Третий проект. Том III. Спецназ Всевышнего автора Калашников Максим

Пушкин и его двигатель Живет и здравствует еще один добрый знакомый Шама – Ростислав Михайлович Пушкин. Этот неукротимый изобретатель из подмосковного Красноармейска, сделавшись заодно и главой фирмы «Простор», совершает целый переворот в двигателестроении.Он изобрел

Из книги Киевской Руси не было, или Что скрывают историки автора Кунгуров Алексей Анатольевич

автора

Перевернутый двигатель Выдающимся достижением Хуго Юнкерса явилась разработка небольшого 12-цилиндрового бензинового двигателя L10, которую он начал в 1931 году. Хуго Юнкерс задумал его как высокооборотный и экономичный с высокими удельными параметрами. Такой двигатель

Из книги Неизвестный Юнкерс автора Анцелиович Леонид Липманович

Реактивный двигатель Это было самое выдающееся изобретение двигателистов концерна «Юнкерс». Профессор Отто Мадер сначала не питал особых надежд на то, что у них получится что-то путное. Не было ни опыта, ни специалистов. Был только дерзкий рывок Хейнкеля, который показал

Из книги Пестрые истории автора Рат-Вег Иштван

Орфир? и его вечный двигатель Иоганн Элиас Бесслер позолотил сам себя романтическим именем Орфире, когда путем ряда мошеннических трюков смог обеспечить себе почтенное бюргерское благополучие. Поначалу жажда приключений и неистребимое отвращение к систематическому

Из книги Россия: критика исторического опыта. Том1 автора Ахиезер Александр Самойлович

Из книги Советская водка. Краткий курс в этикетках [илл. Ирина Теребилова] автора Печенкин Владимир

Из книги Тайны древних цивилизаций. Том 2 [Сборник статей] автора Коллектив авторов

Радиация – двигатель прогресса Но историческую миссию Каспиотиды как протоцивилизации определил, прежде всего, высокий радиоактивный фон региона. Экосистема впадины Каспийского моря благодаря особенностям своего геологического развития отличается радиоактивной

Из книги Киевской Руси не было. О чём молчат историки автора Кунгуров Алексей Анатольевич

Торговля – двигатель прогресса Если строго следовать постулатам исторического материализма, то в эпоху феодализма главную ценность представляла собой земля. Государства по этой концепции возникают тогда, когда земледелец становится способен создавать прибавочный

Из книги Россия и Запад. От Рюрика до Екатерины II автора Романов Петр Валентинович

Ересь как двигатель прогресса Ересь стригольников заключала в себе некоторые внешние черты, роднившие ее с западным рационализмом. Последующее движение уже отчетливо несет на себе следы связи с Западом. «Если не прямо с Западом эпохи Возрождения, то с ее отзвуками, хотя,

автора Гумилевский Лев Иванович

5. Универсальный двигатель ПолзуновПодобно тому как в произведении искусства сказывается творческая индивидуальность его автора, в любом инженерном сооружении - будь то железнодорожный мост, самолет или паровой двигатель - мы легко можем обнаружить личность творца,

Из книги Создатели двигателей [илл. Е.Ванюков] автора Гумилевский Лев Иванович

6. Идеальный тепловой двигатель КарноВ эпоху промышленной революции практический опыт шел далеко впереди научных знаний. Даже после того как паровые машины проникли во все области промышленности и транспорта, теоретические представления о том, что происходит в этих

Из книги Создатели двигателей [илл. Е.Ванюков] автора Гумилевский Лев Иванович

4. Вторичный двигатель Кооперация современниковМощность магнитоэлектрических машин зависела главным образом от силы магнита, возбуждающего в катушках электрические токи. К усилению этих магнитов и стремились конструкторы. Однако многого они в этом направлении не

Из книги Новгород и Ганза автора Рыбина Елена Александровна

4. Язык как двигатель торговли Знание русского языка считалось у ганзейцев очень важным и ценным качеством для купца, ведущего торговые дела с Русью, однако его изучение рассматривалось как большое и трудное дело, которое не должно было мешать основной деятельности

Из книги Россия и Запад на качелях истории. Том 1 [От Рюрика до Александра I] автора Романов Петр Валентинович

Ересь как двигатель прогресса Ересь стригольников заключала в себе некоторые внешние черты, роднившие ее с западным рационализмом. Последующее движение уже отчетливо несет на себе следы связи с Западом.Если не прямо с Западом эпохи Возрождения, то с ее отзвуками, хотя,

Двигатель турбовинтовой похож на поршневый: и тот, и другой имеют воздушный винт. Но во всем остальном они разные. Рассмотрим, что собой представляет этот агрегат, как работает, каковы его плюсы и минусы.

Общая характеристика

Двигатель турбовинтовой принадлежит к классу газотурбинных, которые разрабатывались как универсальные преобразователи энергии и стали широко использоваться в авиации. Они состоят из где расширенные газы вращают турбину и образуют крутящий момент, а к ее валу прикрепляют другие агрегаты. Двигатель турбовинтовой снабжается воздушным винтом.

Он представляет собой нечто среднее между поршневыми и турбореактивными агрегатами. Сначала в самолеты устанавливали состоящие из цилиндров в форме звезды с расположенным внутри валом. Но из-за того, что они имели слишком большие габариты и вес, а также низкую возможность скорости, их перестали использовать, отдав предпочтение появившимся турбореактивным установкам. Но и эти двигатели не были лишены недостатков. Они могли развивать сверхзвуковую скорость, но потребляли очень много топлива. Поэтому их эксплуатация обходилась слишком дорого для пассажирских перевозок.

Двигатель турбовинтовой должен был справиться с подобным недостатком. И эта задача была решена. Конструкция и принцип работы были взяты из механизма турбореактивного мотора, а от поршневого — воздушные винты. Таким образом, стало возможным совмещение небольших габаритов, экономичности и высокого

Двигатели были изобретены и сооружены еще в тридцатых годах прошлого века при Советском Союзе, а два десятилетия спустя начали их массовый выпуск. Мощность варьировалась от 1880 до 11000 кВт. Длительный период их применяли в военной и гражданской авиации. Однако для сверхзвуковой скорости они годными не были. Поэтому с появлением таких мощностей в военной авиации от них отказались. Зато гражданские самолеты в основном снабжаются именно ими.

Устройство турбовинтового двигателя и принцип его работы

Конструкция мотора очень проста. В него входят:

  • редуктор;
  • воздушный винт;
  • камера сгорания;
  • компрессор;
  • сопло.

Схема турбовинтового двигателя выглядит следующим образом: после нагнетания и сжатия компрессором воздух попадает в камеру сгорания. Туда же впрыскивается топливо. Полученная смесь воспламеняется и создает газы, которые при расширении поступают в турбину и вращают ее, а она, в свою очередь, вращает компрессор и винт. Нерастраченная энергия выходит через сопло, создавая реактивную тягу. Так как величина ее не является существенной (всего десять процентов), не считается турбореактивным турбовинтовой двигатель.

Принцип работы и конструкция, впрочем, схожи с ним, но энергия здесь не полностью выходит через сопло, создавая реактивную тягу, а лишь частично, так как полезная энергия еще и вращает винт.

Рабочий вал

Бывают двигатели с одним или двумя валами. В одновальном варианте на одном валу находятся и компрессор, и турбина, и винт. В двухвальном — на одном из них установлены турбина и компрессор, а на другом — винт через редуктор. Здесь же имеются две турбины, связанные друг с другом газодинамическим способом. Одна из них предназначена для винта, а другая — для компрессора. Такой вариант наиболее распространен, так как энергия может применяться без запуска винтов. А это особенно удобно, когда самолет находится на земле.

Компрессор

Эта деталь состоит из двух-шести ступеней, позволяющих воспринимать существенные перепады температуры и давления, а также снижать обороты. Благодаря такой конструкции получается понизить вес и габариты, что является очень важным для авиационных двигателей. В компрессор входят рабочие колеса и направляющий аппарат. На последнем может быть предусмотрена или не предусмотрена регуляция.

Воздушный винт

Благодаря этой детали образуется тяга, но скорость является ограниченной. Лучшим показателем считается уровень от 750 до 1500 оборотов в минуту, так как при увеличении коэффициент полезного действия начнет падать, и винт вместо разгона будет превращаться в тормоз. Явление называется «эффектом запирания». Оно вызвано лопастями винта, которые на высоких оборотах при вращении, превышающей начинают функционировать некорректно. Тот же самый эффект будет наблюдаться при увеличении их диаметра.

Турбина

Турбина способна развить скорость до двадцати тысяч оборотов в минуту, но винт не сможет ей соответствовать, поэтому здесь имеется понижающий редуктор, сокращающий скорость и увеличивающий крутящий момент. Редукторы могут быть разными, но главная их задача вне зависимости от вида — снижать скорость и повышать момент.

Именно эта характеристика ограничивает использование турбовинтового двигателя в военных самолетах. Однако разработки по созданию сверхзвукового двигателя не прекращаются, хоть пока и не являются успешными. Для повышения тяги иногда двумя винтами снабжается турбовинтовой двигатель. Принцип работы при этом у них реализуется за счет вращения в противоположные стороны, но при помощи одного редуктора.

В качестве примера можно рассмотреть двигатель Д-27 (турбовинтовентиляторный), имеющий два винтовых вентилятора, прикрепленных на свободной турбине редуктором. Это единственная модель данной конструкции, используемая в гражданской авиации. Но его успешное применение считают большим скачком по улучшению эксплуатационных качеств рассматриваемого мотора.

Преимущества и недостатки

Выделим минусы и плюсы, которыми характеризуется работа турбовинтового двигателя. Преимуществами являются:

  • малый вес по сравнению с поршневыми агрегатами;
  • экономичность по сравнению с турбореактивными моторами (благодаря воздушному винту коэффициент полезного действия достигает восьмидесяти шести процентов).

Однако, несмотря на такие неоспоримые достоинства, реактивные двигатели в ряде случаев являются более предпочтительным вариантом. Скоростной предел турбовинтового мотора составляет семьсот пятьдесят километров в час. Однако для современной авиации этого очень мало. Кроме того, шум образуется очень высокий, превышающий допустимые значения Международной организации гражданской авиации.

Поэтому производство турбовинтовых двигателей в России ограниченно. В основном их устанавливают в самолеты, которые летают на большие расстояния и с небольшой скоростью. Тогда применение оправданно.

Однако в военной авиации, где главными характеристиками, которыми должны обладать самолеты, являются высокая маневренность и бесшумная работа, а не экономичность, эти двигатели не отвечают необходимым требованиям и здесь используются турбореактивные агрегаты.

В то же время постоянно ведутся разработки по созданию сверхзвуковых винтов, чтобы преодолеть «эффект запирания» и выйти на новый уровень. Возможно, когда изобретение станет реальностью, от реактивных двигателей откажутся в пользу турбовинтовых и в военных самолетах. Но в настоящее время их можно назвать лишь «рабочими лошадками», не самыми мощными, зато стабильно функционирующими.

турбореактивный двигатель форсунка

Устройство и принцип действия. Для современных самолетов, обладающих большой грузоподъемностью я дальностью полета, нужны двигатели, которые могли бы развить необходимые тяги при минимальном удельном весе. Этим требованиям удовлетворяют турбореактивные двигатели. Однако они неэкономичны по сравнению с винтомоторными установками на небольших скоростях полета. В связи с этим некоторые типы самолетов, предназначенные для полетов с относительно невысокими скоростями и с большой дальностыо, требуют постановки двигателей, которые сочетали бы в себе преимущества ТРД с преимуществами винтомоторной установки на малых скоростях полета. К таким двигателям относятся турбовинтовые двигатели (ТВД).

Турбовинтовым двигателем называется газотурбинный авиационный двигатель, в котором турбина развивает мощность, большую потребной для вращения компрессора, и этот избыток мощности используется для вращения воздушного винта. Принципиальная схема ТВД показана на рис. 109.

Как видно из схемы, турбовинтовой двигатель состоит из тех же узлов и агрегатов, что и турбореактивный. Однако в отличие от ТРД на турбовинтовом двигателе дополнительно смонтированы воздушный винт и редуктор. Для получения максимальной мощности двигателя турбина должна развивать большие обороты (до 20000 об/мин). Если с этой же скоростью будет вращаться воздушный винт, то коэффициент полезного действия последнего будет крайне низким, так как наибольшего значения к. п. д. винта на расчетных режимах полета достигает при 750--1 500 об/мин.

Для уменьшения оборотов воздушного винта по сравнению с оборотами газовой турбины в турбовинтовом двигателе устанавливается редуктор. На двигателях большой мощности иногда используют два винта, вращающихся в противоположные стороны, причем работу обоих воздушных винтов обеспечивает один редуктор.

В некоторых турбовинтовых двигателях компрессор приводится во вращение одной турбиной, а воздушный винт -- другой. Это создает благоприятные условия для регулирования двигателя.

Тяга у ТВД создается главным образом воздушным винтом (до 90%) и лишь незначительно за счет реакции газовой струи.

В турбовинтовых двигателях применяются многоступенчатые турбины (число ступеней от 2 до 6), что диктуется необходимостью срабатывать на турбине ТВД большие теплоперепады, чем на турбине ТРД. Кроме того, применение многоступенчатой турбины позволяет снизить ее обороты и, следовательно, габариты и вес редуктора.

Назначение основных элементов ТВД ничем не отличается от назначения тех же элементов ТРД. Рабочий процесс ТВД также аналогичен рабочему процессу ТРД. Так же, как и в ТРД, воздушный поток, предварительно сжатый во входном устройстве, подвергается основному сжатию в компрессоре и далее поступает в камеру сгорания, в которую одновременно через форсунки впрыскивается топливо. Образовавшиеся в результате сгорания топливовоздушной смеси газы обладают высокой потенциальной энергией. Они устремляются в газовую турбину, где, почти полностью расширяясь, производят работу, которая затем передается компрессору, воздушному винту и приводам агрегатов. За турбиной давление газа практически равно атмосферному.

Турбовинтовые двигатели на первый взгляд внешне напоминают поршневые моторы по общей черте и тех и других — воздушному винту. Но на этом сходство прекращается, далее наступает путь конструктивно совершенно иной машины, с иным принципом работы, с иными характеристиками и режимами работы, с иными возможностями.

Турбовинтовые двигатели (ТВД) – это разновидность газотурбинных двигателей, которые нашли широкое применение в авиации. Сами по себе газотурбинные двигатели (ГТД) были разработаны в качестве универсального преобразователя энергии, которые в итоге стали использовать в авиастроении. Газотурбинный двигатель представляет собой тепловую машину, в которой при сгорании топлива расширенные газы вращают турбину, создавая крутящий момент, а к валу турбины можно подключать необходимые агрегаты. В случае с ТВД к валу подключается воздушный винт.

Турбовинтовые двигатели – это своеобразная «помесь» поршневых моторов с турбореактивными. Поршневые двигатели были первыми силовыми установками, которыми снабжались самолеты. Они представляли собой цилиндры, расположенные в виде звезды, в центре которой располагался вал, вращающий воздушный винт. Но из-за своего большого веса и ограничений по скорости от них со временем отказались, отдав предпочтение турбореактивным двигателям. Правда, ТРД тоже оказались далеко не идеальными. При возможности развивать сверхзвуковую скорость они довольно «прожорливые», что повышает затраты на топливо при их эксплуатации, а их использование на пассажирских и грузовых самолетах делает перелеты слишком дорогими. Именно этот недостаток реактивных двигателей и было возложено устранить их турбовинтовым сородичам, которые на сегодняшний день успешно используются в авиации. Взяв за основу строение и принцип работы ТРД и умело совместив его с работой воздушного винта от поршневых моторов, они смогли соединить в себе небольшие габариты и малый вес, экономный расход топлива и высокий КПД.

Hawker Beechcraft King Air 350

Впервые в Советском Союзе ТВД сконструировали и испытали еще в 30-х годах, а в 50-е началось их серийное производство. Диапазон их мощностей был в пределах 1880-11000 кВт. Турбовинтовые двигатели долгое время успешно использовались в гражданской и военной авиации, отличаясь надежностью и долговечностью. Примером может служить заслуженный «ветеран» отечественного авиастроения АИ-20, которым оснащались ИЛ-18, АН-8, АН-32, АН-12, БЕ-12, ИЛ-38. Но со временем стало понятно, что увеличивать их мощность можно только до определенного предела, а использовать их на сверхзвуковых скоростях не получится, так что сфера их использования резко сократилась. Сейчас ТВД в основном используются в гражданской авиации на самолетах с низкой скоростью, тогда как сверхзвуковые самолеты оснащены турбореактивными двигателями. ТВД устанавливаются на АН-24, АН-32, ИЛ-18, ТУ-114.

Устройство и принцип работы турбовинтового двигателя

Строение турбовинтового двигателя довольно простое. Он состоит из воздушного винта с редуктором, компрессора, камеры сгорания, турбины и выходного устройства – сопла. Компрессор нагнетает и сжимает воздух, направляя его в камеру сгорания, куда впрыскивается топливо. Горючая смесь, полученная при смешивании воздуха с топливом, воспламеняется, образуя газы с высокой потенциальной энергией, которые, расширяясь, поступают на лопасти турбины, вращая ее, а сама турбина вращает воздушный винт и компрессор. Энергия, не потраченная на вращение турбины, выходит в виде потока воздуха через сопло, образуя реактивную тягу, величина которой не более 10% от общей тяги мотора. Поскольку она незначительна по своей величине, ТВД не считается реактивным. Как видно, по своему строению и принципу работы турбовинтовой двигатель очень напоминает турбореактивный с той лишь разницей, что в первом случае выработанная полезная энергия идет на вращение винта, а во втором она полностью выходит в виде потока воздуха через сопло, образуя реактивную тягу.

Строение турбовинтового двигателя

Рабочий вал

Различают двухвальные и одновальные турбовинтовые двигатели. В одновальных ТВД турбина с компрессором и винт расположены на одном валу, тогда как в двухвальных между ними нет механической связи: турбина и компрессор закреплены на одном валу, а винт через редуктор – на другом. Во втором случае конструкция мотора включает в себя две турбины, связанные между собой не механически, а газодинамически: одна для компрессора, вторая для винта. Это более распространенный и эффективный вариант, который, несмотря на более сложную конструкцию, используется чаще. Такое решение позволяет использовать энергию двигателя без запуска винтов, что удобно в случаях, когда самолет находится на земле и нужно обеспечить выработку электроэнергии и подачу воздуха высокого давления.

Компрессор

Компрессор ТВД имеет ступенчатую конструкцию с числом ступеней в пределах 2-6, что позволяет воспринимать значительные перепады давления и температур при работе, регулировать и снижать обороты. Многоступенчатая конструкция также дает возможность снизить массу и размеры мотора, что немаловажно для авиационных двигателей, где на счету каждый грамм веса. Компрессор состоит из рабочех колес с лопатками и направляющего аппарата. Направляющий аппарат может быть как регулируемым (с поворачивающимися лопатками вокруг своей оси), так и не регулируемым.

Воздушный винт

Воздушный винт создает необходимую тягу, но при этом скорость его вращения ограничена. Наиболее эффективно он работает на скорости 750-1500 об/мин, после чего КПД падает, а сам винт из движителя фактически превращается в тормоз. Это явление носит название «эффект запирания» и связано оно с тем, что отдельные части лопастей винта на высоких оборотах начинают двигаться со скоростью, превышающей скорость звука, что становится причиной его некорректной работы. Это же происходит, если увеличить диаметр лопастей, ведь чем они длиннее, тем больше линейная скорость на их концах.

Турбина

Турбина же развивает скорость до 20 000 об/мин, но винт на таких оборотах просто не сможет работать, поэтому он оснащается понижающим редуктором, уменьшающим скорость вращения и повышающим момент. Редукторы по своему строению могут отличаться, но их задача – понижение скорости вращения и увеличение момента – остается неизменной. Ограничение скорости вращения винта во многом ограничивает использование ТВД особенно в военной авиации, где важна скорость, но ученые и конструкторы ведут активную работу по созданию сверхзвукового двигателя, правда, пока их старания не увенчались успехом. Для увеличения тяги на некоторых моделях устанавливаются по два винта, которые в процессе работы вращаются в противоположные стороны, приводимые в движение одним редуктором. Примером такого двигателя является Д-27, который называют турбовинтовентиляторным. Он оснащен двумя винто-вентиляторами, закрепленными через редуктор на оси свободной турбины. Пока это единственный двигатель такого рода, который используется в гражданской авиации на самолетах АН-70, но его появление и успешное использование смогут стать настоящим прорывом в сфере улучшения эксплуатационных показателей ТВД.

Преимущества и недостатки

Подведя итоги, можно выделить основные преимущества и недостатки ТВД. Преимуществами турбовинтовых двигателей являются:

— небольшой вес в сравнение с поршневыми моторами;

— экономичность и меньший расход топлива в сравнение с турбореактивными двигателями, что объясняется наличием воздушного винта, КПД которого порой достигает 86%.

Но при всех своих достоинствах ТВД не могут полностью заменить собой реактивные двигатели, ведь их конструкция не позволяет развивать большие скорости. Их скоростной предел составляет 750 км/час, тогда как современная авиация требует намного большего. Еще один минус – шум при работе винта, превышающий гранично допустимые значения, определенные Международной организацией гражданской авиации.

Таким образом, несмотря на высокий КПД и экономичность, использование турбовинтовых двигателей ограничено. В основном ими оснащаются самолеты, летающие с небольшой скоростью и на дальние расстояния, что позволяет значительно снизить стоимость пассажирских и грузовых перелетов. В этих случаях их использование полностью оправдано. Но в военной авиации ТВД практически не используются – здесь важны не экономия топлива, а скорость, маневренность и бесшумность, что вполне могут обеспечить турбореактивные двигатели. Вместе с тем в авиационной промышленности постоянно ведутся работы по созданию сверхзвуковых винтов, которые смогли бы преодолевать звуковой барьер без потерь КПД и «эффекта запирания». Возможно, со временем этим двигателям удастся вытеснить своих реактивных собратьев и занять их место в современном авиастроении. Пока же ТВД остаются пусть и не самыми мощными, но выносливыми и надежными «рабочими лошадками».

Наконец-то двигателестроители обратили внимание не только на создание моторов для самолётов большой авиации, но и готовы помочь в оснащении двигателями воздушных судов региональной и малой авиации. Причём на самолёты местных воздушных линий планируется установка турбовинтовых двигателей отечественного производства, изготовленных на предприятиях России и из отечественных материалов.

Особенности производства нового турбовинтового двигателя

В рамках программы импортозамещения Уральский завод гражданской авиации (УЗГА) разработал проект и готовит производство турбовинтового двигателя ВК-800С для самолёта чешского производства L-410UVP-E20, который изготавливают на этом же предприятии. Ранее эта машина была оснащена силовыми установками М601 и Н80, изготовленными в Чехии.

Инженер-конструктор, созданного в Санкт-Петербурге обособленного подразделения по импортозамещению, подтвердил, что в научно-производственном центре «Лопатки.Компрессоры. Турбины.» (НПЦ «ЛКТ») в мае уже будут собраны три опытных мотора ВК-800С, летом начнутся их стендовые испытания, а осенью их тестируют в воздухе.

НПЦ «ЛКТ» выбрано неслучайно для сборки этих силовых установок, поскольку изготовление лопаток турбин и роторного колеса – это и так высокие технологии, а организовать на таком центре дополнительное производство не стало большой проблемой. Поставлена задача добиться использования для производства двигателей ВК-800С комплектующих только из России.

Это становится возможным, поскольку агрегаты и основные узлы для этих моторов стали производить в Омске, Перми, Самаре и других российских городах, где расположены заводы и предприятия соответствующего профиля. Минпромторг уже сделал заказ на производство двух самолётов L-410UVP-E20 с российскими двигателями, а серийный выпуск ВК-800С начнётся сразу после процедуры сертификации, которую планируют закончить в течение двух лет.

Новый турбовинтовой двигатель ВК-800С для лёгких многоцелевых самолётов.

В сущности мотор ВК-800С – это версия вертолётного турбовального двигателя ВК-800В, который был создан в одном из подразделений объединённой двигателестроительной корпорации «ОДК-Климов» и предназначен для многоцелевых самолётов грузоподъёмностью до 1.5 тонны. Это весьма компактный двигатель, имеющий длину около одного метра, весом не более 140 кг и развивающий мощность на взлёте порядка 900 л.с.

«Русский самолёт» L-410

Ещё в 2008 году начался приход русских на чешский завод, точнее, после приобретения 51% акций, а в 2015 году УЗГА построил новые цеха и начал производство L-410 в ходе процесса постепенно заменяя все узлы и детали на отечественные комплектующее. Сам чехи уже называют L-410 «русским самолётом» и в действительности он станет полностью отечественным, как только уральский завод наладит серийный выпуск российских турбовинтовых двигателей ВК-800С.

Уральские специалисты наладили выпуск L-410 в 2016 году и готовят эти машины к суровым русским условиям. Самолёт оснащают нескольким видам шасси – лыжное предназначено для посадки на снежную поверхность, а поплавковое – на воду также готовится вариант для посадки на мягкий грунт и неподготовленные площадки. Словом, машину адаптируют полностью к эксплуатации в любых климатических условиях России, в том числе и на Крайнем Севере.

Лыжное шасси для L-410 найдёт применение на аэродромах Крайнего Севера и неподготовленных площадках Арктики.

Выпускаемый на уральском заводе L-410 получил современную авионику, связь и оборудование, изготовленные исключительно из отечественных комплектующих. Очевидно, что и двигатели у этой машины скоро будут российского производства.

Многоцелевой 19-местный самолёт L-410 востребован в различных вариантах как для гражданской авиации, так и для военной. Для обоих ведомств эта машина превосходно подходит как учебно-тренировочная для подготовки и обучения курсантов. На данный момент — это единственный самолёт обучения будущих пилотов военно-транспортной авиации. Простая и лёгкая в управлении машина способна прощать ошибки в пилотировании, особенно на посадке и лучших самолётов этого класса для подготовки курсантов пока не предвидится.

Пассажирский салон L-410 весьма комфортный и удобный.

Для гражданской авиации машина найдёт применение в грузопассажирском варианте, а её санитарная версия будет востребована в труднодоступной местности и при проведении поисково-спасательных работ. В военном ведомстве найдут применение разведывательные, санитарные и десантные варианты L-410 .

Заключение

На настоящее время в России отсутствуют самолёты подобного класса, такая машина нужна для первоначального обучения и для потребностей Минобороны. Хорошо известна неприхотливость этого самолёта, а оснащение его турбовинтовыми двигателями позволят использовать машину в полной мере, в том числе и для нужд Арктики. Значительно расширит область применения L-410 разработка нового шасси для мягких грунтов.