Старт в науке. Законы физики и пдд

Слайд 2

План презентации

Общие сведения об автомобилях. Почему автомобиль движется? Задачи о движущемся автомобиле. Расчёт тормозного пути. Почему возникают ДТП? Безопасность пассажиров Как вести себя в экстремальной ситуации?

Слайд 3

Самодвижущийся экипаж (а именно так переводится слово «автомобиль») создали в 1885 году немецкие изобретатели Карл Бенц и Готлиб Даймлер. Появиться автомобиль смог только благодаря изобретению Даймлером в 1883 году бензинового двигателя внутреннего сгорания - цилиндрической камеры, внутри которой вперед-назад движется поршень. В цилиндры двигателя впрыскивается смесь воздуха с капельками бензина, приготовленная в карбюраторе. Поршень сжимает смесь, электрическая искра зажигает ее, и горячие газы сгоревшей смеси с силой толкают поршень обратно - происходит рабочий ход. На обратном пути поршень выжимает продукты сгорания из цилиндра, а затем засасывает новую порцию смеси. Поршни, двигаясь, вращают коленчатый вал. Двигатель соединён с коробкой передач - системой шестерен, которые позволяют изменять скорость автомобиля, и через нее с ведущими колесами (передними, задними или с обоими).

Слайд 4

Работа четырёхтактного двигателя

1 такт работы ДВС(такт впуска) 2 такт работы ДВС (такт сжатия) 3 такт работы ДВС (рабочий такт) 4 такт работы ДВС (такт выпуска):

Слайд 5

В четырёхтактном двигателе одновременно совершаются все такты: A – впуск; B – сжатие; C – рабочий ход; D – выхлоп. Один рабочий ход за два оборота вала.

Слайд 6

В 1908 году появился и первый российский автомобиль «Руссо-Балт». Его выпуск наладили на Русско-Балтийском вагоноремонтном заводе в Риге. С каждым годом улучшалась конструкция автомобилей, росла скорость, мощность двигателя, менялся внешний вид. За каких-нибудь сто лет автомобиль изменил мир. Сама машина тоже изменилась. Неуклюжий «безлошадный экипаж» превратился в быстрый, удобный и надёжный транспорт. Во время движения автомобиля и бензиновые, и дизельные двигатели выбрасывают через выхлопную трубу отработанные горячие газы. В этих газах много вредных веществ, которые отравляют окружающую среду. Во многих странах приняты жёсткие требования к двигателям автомобилей, ограничены нормы выброса вредных веществ. Но автомобилей в мире сотни миллионов и, конечно, они наносят большой ущерб природе.

Слайд 7

Автомобильные конструкторы давно пытаются заменить бензиновый двигатель электрическим. Автомобиль с электрическим мотором называют электромобилем. Но электрический мотор по мощности гораздо слабее бензинового, а его зарядные устройства - аккумуляторы - не рассчитаны на долгую поездку без подзарядки. В начале 21 века появились гибридные двигатели, то есть автомобиль оснащается и бензиновым, и электрическим моторами.

Слайд 8

Современный легковой автомобиль

Обычный легковой автомобиль рассчитан на трёх-четырёх пассажиров, не считая водителя, и относительно небольшого количества груза в багажнике или в заднем отсеке кузова. Однако есть также и миниатюрные двухместные машинки для города, и огромные, на 7-8 пассажиров - автомобили представительского класса. Современный легковой автомобиль оснащён множеством электронных схем, которые отслеживают самые различные параметры работы. Автомобильная электроника управляет работой двигателя, сообщает водителю о неполадках, о количестве топлива, о скорости автомобиля, отслеживает комфортную температуру в салоне, способна даже определить место нахождения автомобиля в любой точке Земле и даже проложить оптимальный маршрут движения.

Слайд 9

Роботизированная линия сборки, управляемая компьютером и запрограммированная на производство около 3000 сварных швов на корпусе каждого автомобиля, проходящего по конвейеру.

Слайд 10

Современное высокоавтоматизированное производство широко использует промышленные роботы. Автоматизированные линии и целые заводы уже не редкость. При наличии отработанной технологии и гарантированного качества используемых комплектующих человека вполне может заменить автомат. Постоянно работающие заводы способны производить сборку из готовых деталей не только автомобилей, но и электронных изделий, бытовой техники и вообще любой продукции, состоящей из стандартизованных комплектующих.

Слайд 11

В каких случаях автомобиль начинает двигаться самостоятельно

Автомобиль может скатиться вниз не с любого возвышения. На автомобиль, находящийся на наклонной плоскости, действуют три силы: сила тяжести, направленная вертикально вниз, сила нормального давления, направленная перпендикулярно плоскости, и сила трения покоя, направленная вдоль наклонной плоскости вверх. Автомобиль может находиться на плоскости в равновесии, если выполняется условие:

Слайд 12

Роль силы трения покоя в движении автомобиля

Сила трения покоя препятствует относительному движению тел, поэтому она часто «передаёт» механическое движение от одних тел к другим. Например, сила трения покоя «разгоняет» автомобили. Колесо автомобиля, вращаясь, толкает дорожное полотно назад, действуя на него силой трения покоя (нижняя точка колеса покоится). При этом Земля толкает колесо, а вместе с ним и автомобиль, соединённый с колесом, вперёд.

Слайд 13

Почему возникает сила трения качения?

Если сила трения покоя помогает автомобилю двигаться, то сила трения качения мешает этому При качении колесо немного вдавливается в поверхность, из-за чего катящемуся телу приходится всё время как бы вкатываться на небольшую горку – это и является главной причиной силы трения качения. Поэтому трение качения тем меньше, чем твёрже поверхности обоих тел – колеса и дороги. Вот почему хорошие дороги делают с твёрдым покрытием.

Слайд 14

Одновременное действие сил трения покоя и сил трения качения при движении грузовика с двумя ведущими колесами.

Слайд 15

Дорога

Современная автомобильная дорога – сложное сочетание инженерных сооружений. Она снабжена сигнальными знаками и указателями, наклонными виражами на поворотах, мостами вместо перекрёстков, транспортными развязками. Многоярусная дорожная развязка в центре города.

Слайд 16

Дорожные знаки

Дорожное движение регулируется знаками и правилами. Дорожные знаки - элемент оборудования дороги в виде щитка определенной формы с условными обозначениями или надписями, предназначенными для информации участников движения о конкретных условиях движения и состоянии дороги. Подразделяются на предупреждающие, приоритетные, запрещающие и информационно-указательные.

Слайд 17

Физический смысл дорожных знаков

В основе знаков и правил, регламентирующих дорожное движение, лежат объективные физические законы. Например, существование знаков, изображённых выше, обусловлено необходимостью учёта явления инерции.

Слайд 18

Светофор регулирует движение автомобилей и пешеходов на улице, поездов на железной дороге. Переходить улицу можно только на зелёный сигнал светофора. Обходить автобус и троллейбус сзади, а трамвай - спереди

Слайд 19

Зеркала заднего вида автомобиля

Для улучшения обзора дороги применяют зеркала заднего вида. В качестве зеркал заднего вида в автомобилях используют выпуклые зеркала. Они образуют прямые, уменьшенные, мнимые изображения, увеличивающие обзор.

Слайд 20

Что такое скорость? - Мадам, вы нарушили правила дорожного движения: вы ехали со скоростью 90 км/ч. - Я всего 7 минут назад выехала из дома, как же я могла проехать 90 километров в час. - Но если бы вы продолжали так ехать, то проехали бы за час 90 километров. - А я и не собиралась так ехать целый час! Я собиралась проехать ещё один квартал и остановиться. Как бы вы на месте полицейского объяснили, что такое скорость, и доказали, что правила дорожного движения всё-таки были нарушены?

Слайд 21

Измерение скорости движения

  • Слайд 22

    Задачи о движущемся автомобиле

    Среди множества задач о движущихся телах в механике задачи о движущемся автомобиле занимают особое место. Каждый из нас был пассажиром автомобиля, неоднократно наблюдал разнообразные ситуации на дорогах, хотел бы научиться водить автомобиль, т. е. представляет себя и в роли пассажира, и в роли пешехода. Задачи с конкретным физическим содержанием решать гораздо интереснее.

    Слайд 23

    Первым автомобилям запрещалось ехать со скоростью больше 3 километров в час. Впереди машины должен был идти человек с флагом для оповещения других участников движения. Рекорд скорости для автомобиля был установлен в 1983 году на английском автомобиле «Траст-2». Он развил скорость почти 1020 километров в час. Правда, вместо автомобильного двигателя на «Трасте» стоял двигатель от реактивного самолета.

    Слайд 24

    Задача 1

    Нажимая на педаль «газ», водитель увеличивает мощность, развиваемую двигателем автомобиля. При какой мощности начнётся пробуксовка колёс автомобиля, если коэффициент трения между шинами и дорогой 0,2, масса автомобиля 1 т, скорость автомобиля 60 км/ч, КПД двигателя 40 %?

    Слайд 25

    Задача 2

    Автомобиль движется по выпуклому мосту, имеющему форму дуги радиусом 40 м. Какое максимальное ускорение в горизонтальном направлении может развить автомобиль в верхней точке моста, если в этой точке его скорость 50,4 км/ч? Коэффициент трения колёс автомобиля о мост 0,57.

    Слайд 26

    Движение вверх по наклонной плоскости

    Задача 3 С каким максимальным ускорением может двигаться вверх по наклонной дороге автомобиль? Считать угол наклона полотна дороги и коэффициент трения между колёсами автомобиля и дорогой известными.

    Слайд 27

    Задача 4

    Грузовой автомобиль массой М = 4 т тянет за нерастяжимый трос вверх по уклону легковой автомобиль с выключенным двигателем. Автомобили движутся с ускорением 0,6 м/с2. Какова максимально возможная масса легкового автомобиля m, если угол наклона равен arcsin 0,1, а коэффициент трения между шинами грузового автомобиля и дорогой 0,2? Силой трения качения, действующей на легковой автомобиль, пренебречь.

    Слайд 28

    Силы, действующие на автомобиль при повороте

    Ускорение автомобиля обусловлено равнодействующей всех приложенных к автомобилю сил. Сила тяжести и сила реакции опоры направлены вертикально и компенсируют друг друга. Поэтому горизонтально направленное ускорение автомобилю сообщает сила трения покоя между колёсами и дорогой, что позволяет рассчитать допустимую скорость на повороте:

    Слайд 29

    Задача 5

    Шофёр грузовика, едущего со скоростью 72 км/ч, заметил на дороге знак. Сможет ли он, не сбавляя скорость, проехать поворот, если радиус поворота 25 м? Считайте значение коэффициента трения покоя равным 0,4. Почему водитель должен быть особенно внимательным в сырую погоду, во время листопада или при гололёде?

    Слайд 30

    Задача 6

    Оцените силу натяжения ремней безопасности, удерживающих водителя в автомобиле, если автомобиль, движущийся со скоростью 36 км/ч, в результате столкновения со столбом получил вмятину глубиной 60 см. Оцените силу, деформирующую кузов автомобиля.

    Слайд 31

    Расчёт тормозного пути автомобиля

    Тормозной путь - расстояние, пройденное транспортной машиной от начала торможения до полной остановки. Зависит от эффективности тормозных механизмов, времени срабатывания привода и тормозов, скорости движения, силы сцепления колес с опорной поверхностью (дорога, рельсы и т. п.).

    Слайд 32

    Пусть транспортное средство массой М, движущееся со скоростью υ, начинает тормозить, чтобы остановиться. Путь, пройденный автомобилем до остановки, можно определить, пользуясь теоремой о кинетической энергии: при неизменной силе трения тормозной путь тем больше, чем больше начальная кинетическая энергия автомобиля.

    Слайд 33

    Расчёт тормозного пути автомобиля по графику скорости

    Обратите внимание: путь, пройденный автомобилем до остановки, пропорционален квадрату его начальной скорости. Например, при увеличении скорости в 2 раза тормозной путь увеличивается в 4 раза! Вот почему движение на слишком большой скорости представляет опасность для водителя, пассажиров, пешеходов и других автомобилей.

    Слайд 34

    Задача, которую удобно решать графическиЗадача 7

    За пятую секунду равнозамедленного движения автомобиль проходит 50 см и останавливается. Какой путь прошёл автомобиль за третью секунду? Какую скорость имел автомобиль перед началом торможения?

    Слайд 35

    Задача 8

    На участке дороги, где установлен дорожный знак, изображённый на рисунке, водитель применил аварийное торможение. Инспектор ГАИ обнаружил по следу колёс, что тормозной путь равен 12 м. Нарушил ли водитель правила движения, если коэффициент трения (резина по сухому бетону) равен 0,6?

    Слайд 36

    Осторожно, пешеходы!

    Прежде чем выбежать на проезжую часть перед движущимся транспортным средством, вспомните про его тормозной путь. Даже при небольшой скорости грузовик обладает значительной кинетической энергией, так как обладает значительной массой. Масса легкового автомобиля меньше, чем у грузовика, но легковые автомобили обычно движутся с большими скоростями. При большой кинетической энергии тормозной путь такого транспортного средства может оказаться слишком длинным.

    Слайд 37

    Почему возникают ДТП?

    Улица часто становится местом, где возникают экстремальные ситуации. Опасность представляют собой общественный транспорт, грузовики и легковые автомобили. Причем, не только для тех, кто находится внутри, но и для пешеходов. А потому главное - необходимо всегда соблюдать правила дорожного движения. К ДТП могут привести невнимательность водителя или пешехода, нарушение правил дорожного движения, неисправность транспорта, плохая или скользкая дорога. Следует быть особенно осторожным и внимательным при переходе через дорогу, на переездах, посадочных платформах.

    Слайд 38

    Задача 9. Какая машина крепче? При столкновении грузовика с легковой машиной повреждение получает главным образом легковая. Но ведь согласно III закону Ньютона на обе машины должны действовать одинаковые силы, которые должны произвести одинаковые повреждения. Как объяснить это противоречие?

    Слайд 39

    Что происходит с кинетической энергией при столкновении?

    Задача 10 Какое столкновение автомобилей опаснее: лобовое или удар в заднюю часть тормозящей машины? Почему?

    Слайд 40

    Безопасность пассажиров

    Сидящие в движущемся автомобиле пассажиры обладают кинетической энергией. При внезапной остановке автомобиля каким-либо препятствием пассажир ещё продолжает движение по инерции и может травмироваться. Существуют различные защитные устройства, призванные уберечь водителя и пассажиров от ударов о ветровое стекло или руль автомобиля, потерявшего скорость.

    Слайд 41

    Конструкторы приложили немало усилий для того, чтобы сделать автомобиль безопасным. Все детали, применяемые в автомобилестроении, сделаны из негорючих материалов. Автомобильное стекло - триплекс - при ударе не разлетается на острые осколки. Пассажиров автомобиля попавшего в аварию спасут от травм подушки безопасности, спрятанные в различных местах салона. Но и обязательное пристегивание ремнями безопасности может спасти жизнь. Ребёнка можно перевозить только на заднем сиденье машины, а малышей - в специальном кресле, которое снабжено ремнями безопасности. Пешеходу же переходить дорогу только в положенных местах, где водитель наиболее внимателен!

    Слайд 42

    Испытания систем безопасности автомобиля

    Испытания систем безопасности автомобиля на заводах БМВ и «Вольво». В современном мире моторов и высоких скоростей сохранение жизни и здоровья водителя и пассажиров является важнейшей задачей. Для того чтобы испытать системы аварийной защиты, на предприятиях проводят искусственные аварии, максимально приближенные к возможным катастрофам. Автомобили разбивают о стены, заставляют сталкиваться друг с другом, опрокидывают, переворачивают. По результатам испытаний дорабатывают конструкции или полностью отказываются от компоновки кузова, не обладающего требуемым уровнем защиты пассажиров и водителя.

    Слайд 43

    Как вести себя в экстремальной ситуации?

    Что делать, если столкновение с каким-то препятствием неизбежно? Главное - сохранять самообладание, до предела напрячь мышцы, постараться защитить в первую очередь голову и грудь, вдавиться спиной в сиденье автомобиля или лечь на сиденье. Если автомобиль упал в воду, покидать его надо через лобовое окно (при открытой двери он тонет слишком быстро), разбив его тяжёлым предметом. Сразу же после аварии на дороге необходимо выбраться из автомобиля через двери или окна: возможно возгорание!

    Слайд 44

    Использованные информационные ресурсы:

    Ланина И. Я. Не уроком единым: Развитие интереса к физике. М., 1991. Большая энциклопедия Кирилла и Мефодия 2006, 10 CD. Иллюстрированный энциклопедический словарь, 2 CD. Энциклопедия «Мир вокруг нас», CD. Детская энциклопедия Кирилла и Мефодия 2006, 2 CD. Физика, 7 – 11 классы. Библиотека наглядных пособий, CD. Л.Э. Генденштейн, Ю.И. Дик. ФИЗИКА-10. Интерактивный учебник и др.

    Посмотреть все слайды

    Статистика аварийности в Петрозаводске такова, что 80% всех сбитых пешеходов приходится именно на пешеходные переходы. В подобного рода ДТП люди страдают не только физически, но и судьбы могут оказаться покалеченными. Причинение тяжкого телесного вреда здоровью или смерти в результате управления транспортным средством зачастую влечет уголовную ответственность. В итоге, одни лишаются близкого человека по причине смерти, другие - вынуждены ждать из мест заключения. И тот, и другой вариант плачевны.

    С целью проинформировать и водителей, и пешеходов об опасностях, которые таит в себе пешеходный переход, и написана эта статья.

    Пешеходный переход – участок проезжей части, обозначенный знаками или разметкой, выделенный для движения пешеходов.

    По своему виду бывают РЕГУЛИРУЕМЫЕ и НЕРЕГУЛИРУЕМЫЕ пешеходные переходы.

    Порядок движения пешеходов определяется 4 разделом Правил (и некоторыми пунктами 6 раздела). Порядок движения транспортных средств регламентируется 14 разделом Правил.

    Требования к пешеходам

    На регулируемых пешеходных переходах пешеходы двигаются, исходя из сигналов светофора. При этом, если имеется специальный пешеходный светофор (выполнен в виде силуэта пешехода), пешеходы двигаются, исходя из его сигналов. На транспортный светофор - не обращают внимания. При этом, красный - является ЗАПРЕЩАЮЩИМ сигналом, зеленый – РАЗРЕШАЮЩИМ. Если пешеходного светофора нет – пешеходы двигаются, исходя из сигналов ОСНОВНОГО транспортного светофора. (рис. 2).

    На нерегулируемых пешеходных переходах пешеходы пользуются преимущественным правом на движение. Однако на пешеходов накладывается обязанность – убедиться, что переход будет для них безопасен. Для этого они обязаны ДО ВЫХОДА НА ПРОЕЗЖУЮ ЧАСТЬ оценить расстояние и скорость приближающегося транспорта и не выходить на дорогу, если переход не будет безопасен (рис. 3).

    Вне зависимости от вида перехода, переходя проезжую часть, пешеходы не должны задерживаться.

    Требования к водителям

    Касаемо регулируемых пешеходных переходов. Когда пешеходам горит разрешающий сигнал светофора, а транспортным средствам - запрещающий, они (ТС) должны остановиться либо перед стоп-линией (рис. 4), либо (в случае отсутствия стоп-линии) перед светофором (рис. 5). Наглядным примером может послужить пешеходный переход на улице Кирова возле Горбольницы – стоп-линия имеется, останавливаемся перед ней. Пешеходный переход на Ленинградской напротив "Ленты" – останавливаемся перед светофором (отъезжая от Ленты, водители часто принимают этот участок за перекресток и двигаются через регулируемый пешеходный переход на запрещающий сигнал светофора).

    При включении разрешающего движение сигнала светофора водители должны дать пешеходам закончить маневр (рис. 6).

    Приближаясь к нерегулируемому пешеходному переходу, водитель обязан снизить скорость или остановиться с целью ПРОПУСТИТЬ пешехода. ПРОПУСТИТЬ – означает, что водитель может проехать только за «спиной» у пешехода. Пешеход прошел – водитель проехал. А вот для выполнения требования «пропустить», уже смотрим, что будет достаточно выполнить. Достаточно просто снизить скорость (отпустить педаль газа и/или слегка притормозить) (рис. 7), или потребуется остановка (рис. 8).

    Так же, если перед пешеходным переходом замедлилось или остановилось транспортное средство, то водители других транспортных средств могут продолжить движение (проследовать через пешеходный переход) только убедившись, что перед указанным транспортным средством нет пешеходов. (рис. 9).

    Казалось бы, все просто и понятно, но люди попадают под колеса, получают травмы, а порой и гибнут.

    Чтобы не стать участником подобных происшествий, предлагаю разобрать ряд потенциально опасных ситуаций.

    Сперва хотелось бы обратиться к пешеходам.

    Люди помните, когда Вы погибните или получите серьезные увечья, Вам уже будет все равно - правы Вы были или нет. Поэтому ВСЕГДА, прежде чем переходить дорогу, УБЕДИТЕСЬ В СОБСТВЕННОЙ БЕЗОПАСНОСТИ. Не начинайте переход, если он не будет безопасен для Вас. Помните, автомобиль (даже технически полностью исправный) сразу остановить НЕВОЗМОЖНО! Существует понятие «Остановочный путь» - путь, который проедет транспортное средство с момента обнаружения водителем какой-либо опасности до полной остановки.

    Остановочный путь складывается из «пути за время реакции водителя » и «тормозного пути » (рис. 10).

    Путь за время реакции водителя – путь, который проедет транспортное средство с момента обнаружения водителем опасности до начала действий по ее устранению. Все это время автомобиль двигается без снижения скорости. Никаких шагов водитель еще не предпринял – он увидел опасность и просто перенес ногу с одной педали на другую. Среднее время реакции водителя считают равным 1 секунде. Перед многими пешеходными переходами висит знак, ограничивающий скорость до 40 км/ч. При указанной скорости автомобиль за секунду проезжает порядка 11 метров.

    Тормозной путь – путь, который проедет транспортное средство с момента начала торможения до полной остановки. У технически исправного автомобиля тормозной путь при скорости в 40 км/ч не должен превышать 14.7 метра.

    Несложным математическим действием «сложение» можно получить, что при скорости всего 40 км/ч, остановочный путь технически исправного автомобиля будет равным порядка 26 метров! Это «голая» физика из школьного учебника – раздел динамика. Эти законы пока ни президент, ни премьер не отменили своими указами, значит они легитимны. Отсюда следует, что когда пешеход, не глядя по сторонам, выходит, или того хуже, выбегает, на дорогу в 10 метрах от автомобиля, быть не сбитым шансов НЕТ!
    Как бы парадоксально не звучало, но разметка «зебры» не добавляет +100 брони.

    В марте 2013 года были очевидцами ситуации, когда перед переходом заранее пытается остановиться автомобиль. Март славен тем, что днем теплеет, вечером подмораживает, и на дороге образуются ледяные колеи. Водитель применяет так называемое прерывистое торможение, но автомобиль, попав на лед, скользит вперед. Видя неудачные попытки водителя остановиться, пешеходы тупо шли ему под колеса. Когда все же автомобиль остановился в 50 см от человека, пешеход начал высказывать водителю, насколько тот не прав.

    Вопрос к пешеходу: «Когда тебе сломает позвоночник и дальнейшая жизнь будет в форме «овоща», будешь ли ты жалеть, что мог, но не задержался всего на пару шагов?»

    И еще очень важный момент – пешеходный переход – ЭТО ВЫДЕЛЕННЫЙ УЧАСТОК проезжей части. Когда пешеход переходит дорогу в двух, трех, пяти (нужную цифру поставить самим) метрах перед или после пешеходного перехода – это переход В НЕПОЛОЖЕННОМ МЕСТЕ (рис. 12)

    Отдельно хотелось бы затронуть переход дороги на перекрестках «по диагонали» . Уважаемые пешеходы. Пункт 4.3 Правил гласит: переходить дорогу на перекрестках допускается ТОЛЬКО ПО ЛИНИИ ТРОТУАРОВ ИЛИ ОБОЧИН. Никаких диагональных пересечений быть не должно! Транспортные средства НЕ ДОЛЖНЫ из-за Вас (Вашего диагонального перехода) менять траекторию своего движения.

    Теперь к водителям

    Самая частая ситуация наезда на пешехода - это ограниченная видимость перехода (припаркованный транспорт, сугробы, насаждения и прочее) и не снижение скорости.

    Поэтому, увидев знак или разметку, ВСЕГДА ПОВЫШАЙТЕ ВНИМАНИЕ, осмотритесь по сторонам. Пешехода, намеривающегося переходить дорогу, видно сразу. Если видимость ограничена – СНИЖАЙТЕ скорость движения.

    Помните, касаемо пешеходных переходов, Правила запрещают ряд маневров. А именно:

    1.​ Разворот. Разворот запрещен только на переходе. Перед или после перехода (если нет иных запрещающих факторов – например сплошная линия разметки) разворот не запрещен. В школах учат – посмотри налево, дойди до середины - посмотри направо. Водителю при движении в направлении разворота (траектория движения налево) видимость закрывает боковая стойка лобового стекла. Таким образом, пешеход и водитель выполняющий маневр разворота могут просто не увидеть друг друга. (рис. 13).

    2.​ Движение задним ходом . Движение задним ходом таит в себе много опасностей. Недаром в Правилах прописано даже обращение за помощью к другим людям. Двигаясь задним ходом, водитель может контролировать только ОДНО направление (либо смотрим в правое, либо в левое зеркало. Либо повернули голову через правое плечо, либо через левое). Сразу два контролировать НЕВОЗМОЖНО (рис. 14).

    3.​ Остановка . Остановка, т.е. кратковременное прекращение движения, запрещена, как на пешеходном переходе, так и ближе 5 метров перед ним. Остановившимся автомобилем Вы закрываете видимость и пешеходам и другим водителям. Даже, если Вам надо «всего на секундочку». Возможно некоторые не поверят, но даже включенная «аварийка» не дает права на «да я быстро высажу и уеду» (рис. 15).

    4.​ Стоянка. Если у нас запрещено кратковременное прекращение движения, то вполне логично, что также запрещено и долговременное. Как на пешеходном переходе, так и ближе 5 метров перед ним.

    5.​ Обгон . Несмотря на тот факт, что согласно Правил обгон запрещен только при наличии пешеходов на переходе, лучше от этого маневра на переходе воздержаться. Помните, что обгоняемый транспорт может закрывать Вам видимость, и пешеход может неожиданно появиться перед Вами. Хотя еще раз оговорюсь, что запрещен обгон только при наличии пешеходов на переходе.

    Потенциально опасные ситуации

    Перед переходом замедляет движение транспортное средство. Особенно, если это крупногабаритный автомобиль (рис. 16).

    Опасностей в этой ситуации несколько:

    1.​ Из-за габаритов ни водитель, двигающийся по соседней полосе (в соседнем ряду), ни пешеход, друг друга не видят. Их, как бы, друг для друга не существует.

    2.​ Замедление грузового автомобиля, с точки зрения водителя легковушки, не всегда явно выражено. В моей жизни был период, когда я управлял 30-тонной Сканией. В груженом состоянии первые пять передач разгоняли автомобиль всего до 20 км/ч. Это означает, что едешь, давишь педаль газа, работаешь рычагом коробки передач, а скорости нет. И если попадаешь в ситуацию с пешеходом, то порой достаточно просто убрать ногу с педали газа. С позиции водителя легковушки, грузовик и так не разгонялся вовсе, т.к. динамика разгона разная.

    3.​ «Психология пешехода». С точки зрения пешехода, основную опасность представляет для него тот, кого он видит (ближний к нему транспорт). И опасный участок пешеход стремиться преодолеть как можно быстрее... И неожиданно выбегает под колеса. Примеров таких наездов немало, множество роликов с видеорегистраторов размещенных в сети.

    Поэтому, еще раз. Если перед пешеходным переходом снизило скорость (замедлилось) или остановилось транспортное средство, особенно крупногабаритное, приготовьтесь также ОСТАНОВИТЬСЯ перед переходом.

    Пешеход дошел до середины дороги, но со встречного направления двигается транспорт, который его (пешехода) явно не намерен пропускать (рис. 17).

    Также распространенная ситуация. Заложником ее могут стать и водитель и пешеход.

    4.​ Психология пешехода - "на участке, который я преодолел (тот который остался за спиной) со мной ничего не случилось – значит там безопасно"

    5.​ Психология водителя - "мою полосу (сторону дороги, ряд и т.д.) пешеход преодолел – значит его можно «выключить» из поля внимания".

    По итогу, пешеход делает шаг (а то, и не один) назад, туда, где по его мнению безопасно (он ведь уже это прошел и ничего с ним не произошло). Водитель уже на пешехода внимания не обращает (он же преодолел мою сторону дороги). Как результат, пешеход шагает в аккурат под колеса проезжающего автомобиля.

    Подъезжающие к пешеходному переходу водители не смотрят заранее по сторонам.

    Очень распространенная картина, влекущая создание ДТП в попутном направлении.

    6.​ Пешеходные переходы устраивают в местах с хорошей видимостью дороги в обе стороны. Это означает, что и пешеход, и водитель, будь они внимательны, могут заранее друг друга увидеть. Водитель, приближаясь к пешеходному переходу, ЗАРАНЕЕ посмотри по сторонам. Пешехода, намеревающегося переходить дорогу видно сразу. Не тяни до последнего. Если ты отпускаешь педаль газа, то перенеси ногу и поставь ее на педаль тормоза. Сзади загорятся стоп-сигналы и двигающиеся позади тебя водители будут готовы к остановке ЗАРАНЕЕ!

    7.​ Водители, двигающиеся в потоке, не забывайте также смотреть по сторонам. Вы тоже можете увидеть пешехода. Но очень часто люди смотрят только перед собой, на заднюю часть впереди едущего авто, и что творится по сторонам, они не видят. Если впереди едущий тормозит в последний момент, то как раз аварии в попутном направлении и случаются.

    Пешеходы носите одежду со светоотражающими вставками

    Применение светоотражающих вставок на одежде позволяет ГОРАЗДО раньше ОБНАРУЖИТЬ пешехода в темное время суток.

    Также помните, в условиях Карелии, днем случаются ситуации, когда солнце «висит» на уровне глаз водителя и видимость дороги затруднена.

    Интегрированный урок по физике.

    Урок проведен в 10 классе.

    Учитель физики Л.А.Гуменная



    ТЕМА УРОКА:

    « Физика

    и безопасность

    дорожного движения»


    Цели урока:

    • Опираясь на знание физических законов, выработать осознанную необходимость соблюдения Правил дорожного движения;
    • Воспитывать законопослушность, ответственность за свою жизнь и жизнь людей, живущих рядом.

    « Солнце не всходит

    два раза в день,

    а жизнь не дается

    дважды…»

    А.П.Чехов


    Проблема безопасного движения сложна и многогранна, вы каждый день идете в школу, т.е. являетесь участником дорожного движения.

    Давайте посмотрим на фотографии, и наверное тогда станет ясно, почему мы сегодня говорим о безопасности дорожного движения.






    Сведения о ДТП

    За 2008 год в России в ДТП погибло 29936 человек и 270883 человека получили ранения.

    На первое августа в крае совершено 104 ДТП с участием детей. В результате три ребенка погибли, 117 получили ранения.

    За девять месяцев текущего года в Апанасенковском районе произошло 18 аварий, в которых 27 человек получили ранения, а десять человек погибло.



    • Наименьшее расстояние, которое пройдет автомобиль до остановки с момента появления препятствий в поле зрения водителя, называется дистанцией безопасности.

    Формулы тормозного пути и времени торможения


    • Определим тормозной путь при экстренном торможении. Пешеход пересекает улицу в неположенном месте. Водитель замечает пешехода за 20 м и начинает тормозить. Произойдет ли авария, если скорость автомобиля 60 км/ч? Коэффициент трения 0,7.
    • Решить эту же задачу с учетом того что за 5 мин до этого прошел дождь. Коэффициент трения 0,5.

    На участке дороги, где

    установлен этот знак,

    водитель применил

    аварийное торможение. Инспектор обнаружил по следу колес, что тормозной путь равен 12 м. Нарушил ли водитель правила, если коэффициент трения 0,6?


    Скорость, Тормозной путь (м)

    км/ч Сухой Мокрый

    асфальт асфальт

    40 8 12,5

    60 18 28

    80 32 50

    120 72 112,5





    Ребята. Мы с вами изучаем физику уже четвертый год. Физика – это не просто сухие законы и четкие формулы. Физика помогает вам ориентироваться в окружающем мире, физика должна сделать вашу жизнь безопасной.

    Давайте проверим с помощью теста, как вы усвоили тему урока.


    А. Так положено. Б. При больших скоростях легко остановиться перед пешеходным переходом или на перекрестке. В. При больших скоростях трудно остановиться перед пешеходным переходом или перекрестке.

    2. Какие места на дорогах требуют особого внимания от водителя?

    А. Дворовые территории. Б. Места около школ, детских садов и пр. В. Нерегулируемые перекрестки.

    3. Как зависит длина тормозного пути от скорости движения?

    А. Чем больше скорость, тем меньше тормозной путь.

    Б. Чем больше скорость, тем больше тормозной путь.

    В. Тормозной путь от скорости не зависит.

    4. По какой стороне должен двигаться пешеход по дороге, где нет тротуара?

    А. По правой, в сторону движения транспорта.

    Б. По левой, навстречу транспорту. В. Не имеет значения.


    5. С какого возраста можно ездить на велосипеде по улицам и дорогам?

    А. С 12 лет. Б. С 14 лет. В. С 16 лет.

    6. Почему нельзя перебегать дорогу перед близко идущим транспортом?

    А. Можно перебегать, если быстро бегаешь.

    Б. Ни одна машина мгновенно остановиться не может.

    7. Вы вышли из автобуса, как вы будете переходить дорогу?

    А. Обойдете автобус впереди.

    Б. Обойдете автобус сзади.

    В. Дождетесь, когда автобус уедет, и только тогда перейдете дорогу.

    8. Какое правило нужно соблюдать, находясь в автомобиле в качестве пассажира?

    А. При движении можно открывать дверь автомобиля.

    Б. При движении автомобиля нельзя отвлекать водителя разговорами.

    В. При движении автомобиля нельзя открывать окна.


    Правильные ответы:

    2 - А,Б,В



    ИТОГ УРОКА.

    Должны помнить, что пройденный до остановки путь пропорционален квадрату начальной скорости. Если увеличить скорость автомобиля вдвое, то потребуется вчетверо больший путь до остановки. Это следует знать и помнить всем, кто управляет транспортными средствами. Об этом нужно помнить и пешеходам, пересекающим улицу: для остановки движущихся тел нужны время и пространство.


    В жизни много опасностей и одна из них – дорога , чтобы уберечь свою жизнь, мы должны знать Правила дорожного движения и выполнять их, ведь жизнь самое ценное, что есть у человека.



    Д/З

    § 38, 39. Роль сил трения, от

    чего зависит сила

    трения.

    Для желающих упр.7(3)


    • С какой скоростью двигались аэросани, если после выключения двигателя они прошли путь 250 м? коэффициент трения 0,02.
    • Шофер выключил двигатель и резко затормозил при скорости автомобиля 72 км/ч. Сколько времени будет двигаться автомобиль до остановки, если коэффициент трения 0,60? Какой путь он при этом пройдет?

    Урок окончен!

    До свидания!

    ФИЗИКА И ПРАВИЛА ДОРОЖНОГО ДВИЖЕНИЯ ИЛИ О ТОМ КАК ФИЗИЧЕСКИЕ ЯВЛЕНИЯ ЗАСТАВИЛИ ЛЮДЕЙ ПРИДУМАТЬ ПРАВИЛА ДОРОЖНОГО ДВИЖЕНИЯ. Каких только движений нет в мире: от повторяющихся тысячелетиями движений звезд до прихотливого, почти непредсказуемого падения листочка березы в порыве осеннего ветра; от суеты пылинок, поблескивающих в солнечном луче, до определенных разумом и волей человека движений рукотворных тел: поездов, автомобилей, роботов. Работа многих людей связана с движением: шоферы, машинисты поездов, пилоты, диспетчеры и др. Правила дорожного движения описывают одновременно движения нескольких тел: автомобилей, велосипедистов, пешеходов. Первые известные попытки упорядочить городское движение были предприняты ещё в Древнем Риме Гаем Юлием Цезарем. По его указу в 50-х годах до н. э. на некоторых улицах города было введено одностороннее движение. С восхода солнца и до конца «рабочего дня» (примерно за два часа до его захода) был запрещён проезд частных повозок, колесниц и экипажей. Приезжие были обязаны оставлять свой транспорт за чертой города и передвигаться по Риму пешком, либо наняв паланкин. Тогда же была учреждена специальная служба надзора за соблюдением этих правил, в неё набирали в основном бывших пожарных, из числа вольноотпущенников. Основные обязанности таких регулировщиков заключались в предотвращении конфликтов и драк между владельцами транспортных средств. Многие перекрёстки оставались нерегулируемыми. Знатные вельможи могли обеспечить себе беспрепятственный проезд по городу - они высылали впереди своих экипажей скороходов, которые расчищали улицы для проезда хозяина. История современных правил дорожного движения берёт своё начало в Лондоне. 10 декабря 1868 года на площади перед Парламентом был установлен механический железнодорожный семафор с цветным диском. Его изобретатель - Джон П. Найт (John Peake Knigh) - был специалистом по железнодорожным семафорам. Устройство управлялось вручную и имело два семафорных крыла. Крылья могли занимать разные положения: горизонтальное - сигнал «стоп»; опущенные под углом 45 градусов - можно двигаться с осторожностью. С наступлением темноты включали вращающийся газовый фонарь, который подавал сигналы красным и зелёным светом. К семафору был приставлен слуга, в обязанности которого входило поднимать и опускать стрелу и поворачивать фонарь. Однако скрежет цепи подъёмного механизма был настолько сильным, что проезжавшие лошади шарахались и вставали на дыбы. Не проработав и месяца, семафор взорвался, находившийся при нём полицейский был ранен. Каждый из нас является участником дорожного движения, регулярно пользуется транспортом. Любое транспортное средство движется и придерживается определенной траектории под влиянием многих физических сил. Все эти силы делятся на два противоположных вида: одни содействуют движению автомобиля, другие сопротивляются этому движению. Сила тяжести - главная физическая сила, воздействующая на автомобиль. Сила тяжести всегда устремлена вертикально вниз, при этом она равномерно рассредоточивается по всем осям и колесам транспортного средства. Вес машины давит на поверхность проезжей части, и с увеличением этого веса пропорционально увеличивается сила сцепления колес с дорожным покрытием. Эта сила особенно заметно действует, когда машина трогается с места. При движении по наклонной дороге сила тяжести распадается на две составляющие. Одна давит на машину и прижимает ее к поверхности проезжей части, а вторая стремится опрокинуть ее по направлению движения или в поперечном направлении дороги (это зависит от направления уклона). Чем выше центр тяжести и чем больше угол наклона автомобиля, тем больше опрокидывающая сила, следовательно, выше вероятность опрокидывания. Помимо силы тяжести и силы опрокидывания на любое транспортное средство оказывает влияние ряд других физических сил, среди которых можно отметить следующие: сила сопротивления качению возникает при трении шины о дорогу; сила сопротивления подъему определяется массой автомобиля и углом подъема; сила инерции покоя, когда автомобиль трогается с места и разгоняется, направлена против движения; сила инерции движения направлена по ходу движения; центробежная сила направлена по радиусу от центра кривой поворота и стремится снести автомобиль с дороги; подъемная сила возникает при движении с большой скоростью от давления потока воздуха, попадающего под передок автомобиля, стремится оторвать колеса от дороги, ухудшая сцепление колес с дорогой и управляемость; сила сцепления зависит от нагрузки на ведущие колеса, состояния и качества дорожного покрытия, скорости; сила торможения возникает при торможении автомобиля. Интересно! При качении колесу всегда приходится преодолевать бугорок перед ним. Чем дорога тверже, тем бугорок ниже и сопротивление качению меньше. Поэтому автомобильные заезды на скоростные рекорды проводят обычно по дну высохших соляных озер, которые обладают очень твердой поверхностью. Транспортное средство будет двигаться только при условии, что сила тяги превышает силу инерции покоя, но при этом уступает силе сцепления ведущих колес с дорогой. Инерция движения позволяет транспортному средству ехать на большой скорости с незначительной подачей топлива (поэтому движение с постоянной скоростью 80– 90 км/ч считается самым экономичным) Силе торможения оказывают содействие силы сопротивления качению, подъему, воздуха и центробежная сила. Препятствует процессу торможения сила инерции движения. Чтобы сдвинуть с места и разогнать автобус, требуется большая сила, чем для автомобиля, потому что из-за большей массы его инерция выше. Величина центробежной силы определяется скоростью и весом транспортного средства, а также радиусом поворота. Следовательно, влияние этой силы можно уменьшить, зная, чем она вызвана. Для этого необходимо заблаговременно, до входа в поворот, уменьшить скорость движения до безопасной, а поворот проходить по более пологой кривой, уменьшив угол поворота управляемых колес. Не только вы управляете автомобилем - законы физики и механики исправно работают при движении автомобиля, и следует представлять себе действие различных сил, чтобы использовать их для управления или препятствовать их нарастанию. Для того, чтобы водитель правильно смог оценить обстановку и своевременно принять правильное решение знаки дорожного движения информируют и предупреждают о приближении к опасному участку, вводят ограничения Законы движения надо знать и помнить всем: и водителям, и пешеходам. Ведь для остановки движущихся тел нужны время и пространство. Автомобиль резко трогается с места. Куда вы отклонитесь? (назад) Автобус поворачивает налево. (вправо) Теперь направо. (налево) Автобус резко останавливается. (вперёд) Речь идет об инерции. Это явление необходимо учитывать, особенно на дороге, так как из-за инерции транспорт мгновенно остановить нельзя. Пункт 2.1.2 «Правил дорожного движения» обязывает при движении на транспортном средстве, оборудованном ремнями безопасности, быть пристегнутым водителю и не перевозить людей, не пристегнутых ремнями. Большая часть аварий случается из-за несоблюдения элементарных правил дорожного движения. Очень часто аварии происходят при обгоне, из-за того, что водитель не смог правильно рассчитать тормозной путь В процессе торможения на автомобиль действуют сила тяжести, сила реакции опоры и сила трения. При резком торможении автомобиля его колеса начинают скользить по дороге. Возникающая при этом сила трения скольжения тормозит автомобиль. Если Вы тормозите скольжением (юзом), намертво закрепляя колеса, то тормозной путь будет длиннее, чем при торможении качением (колеса заторможены, но проворачиваются), зато скорость вначале будет резко падать. Поэтому при опасности наезда на препятствие надо тормозить юзом лучше удариться с меньшей скоростью. Во всех остальных случаях надо тормозить качением: тормозной путь короче. От чего зависит длина тормозного пути? -От скорости автомобиля (Чем больше скорость машины, тем больше тормозной путь); -От массы машины (Чем больше масса машины, тем больше тормозной путь) -От состояния дороги, шин (Мокрая дорога тоже увеличивает тормозной путь. А зимой в гололёд машину остановить ещё трудней) Правила дорожного движения описывают одновременно движения нескольких тел: автомобилей, велосипедистов, пешеходов. Все они должны учитывать законы физики и совершать движения с учетом этих законов. В несчастных случаях на дорогах есть доля случая, но чаще в дорожно-транспортных происшествиях виноваты невнимательные пешеходы и нерадивые водители. ИСПОЛЬЗУЕМАЯ ЛИТЕРАТУРА festival.1september.ru›articles/597696/ obrbratsk.ru›upload/39.4.doc ru.wikipedia.org treniye.ru class-fizika.narod.ru ru-cars.net Энциклопедический словарь юного физика Большая иллюстрированная энциклопедия школьника, 2008г. Imajes.yandex.ru

    Текст работы размещён без изображений и формул.
    Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

    Введение

    Актуальность

    В связи с ростом численности автопарка и увеличивающейся интенсивностью движения на дорогах Российской Федерации особо остро стоит проблема дорожно-транспортного травматизма. Анализ аварийности убедительно показывает, что наиболее уязвимыми участниками дорожного движения являются дети, поскольку в большинстве случаев их безопасность зависит от действий или бездействия взрослых. Смертность и травматизм в результате дорожно-транспортных происшествий сегодня являются серьезнейшей проблемой мирового здравоохранения. Госавтоинспекция службы общественной безопасности МВД России представила сводку общего количества дорожно-транспортных происшествий (ДТП) в 2015 году в РФ И Московской области указанием числа погибших и раненых. Основной лидирующей позицией по видам ДТП являются наезды на пешеходов (приложение1). Многие школьники имеют своим первым транспортным средством велосипед. Каждое восьмое происшествие происходит с участием молодых граждан страны. Половину всех пострадавших в ДТП детей составляют юные пешеходы и велосипедисты, из которых подавляющее большинство (89%) составляют школьники. Но чтобы уберечь свою жизнь, мы, школьники, должны знать Правила дорожного движения и выполнять их. Из отчетов ГИБДД мы выяснили, что число аварий в снежную или дождливую погоду говорит о большом влиянии этого фактора на аварийность(приложение2). Из курса физики мы уже знаем, что трение влияет на движение транспорта. Машины едут по дороге из-за возникновения силы трения между поверхностью автомобильных шин и покрытием дороги. От трения зависит тормозной путь автомобиля. И часто юные водители, пешеходы не «рассчитывают» путь, который автомобиль проходит до полной остановки при торможении. Что это, пренебрежение или незнание основных законов физики? И мы решили изучить законы движения при торможении и практически исследовать зависимость тормозного пути от различных факторов. Наша работа носит прикладной характер. Результаты нашей работы и ознакомления с ней широкого круга учащихся помогут нам внести вклад в дело уменьшения количество ДТП с участием школьников. Для нашего исследования нам не хватило знаний по физике за курс 7 и 9 классов и нам пришлось искать теоретическое обоснование законов движения в журналах для автолюбителей, специальных справочных материалах. Для постановки эксперимента обращались к книге А.Д.Солодушко, статистику ДТП выясняли на сайтах ГИБДД.

    Проблема

    Незнание школьниками физических факторов, влияющих на тормозной путь транспорта, ведёт к роковым ошибкам на дороге, что приводит к увеличению детского ДТП и травматизму.

    Гипотеза : тормозной путь автомобиля зависит от скорости автомобиля и от состояния дорожного покрытия.

    Цель работы: исследовать влияние физических факторов на движение транспорта для предотвращения ДТП.

    Предмет: безопасность на дороге.

    Объект исследования: тормозной путь, как физический фактор безопасного поведения на дрогах.

    Задачи

    1.Поиск информации для изучения теоретических основ природы силы трения, тормозного пути, безопасного движения.

    2.Проведение серии экспериментов с целью исследования силы трения.

    3.Экспериментальная проверка зависимости тормозного пути от факторов, влияющих на безопасность на дорогах.

    4.Обобщения полученных знаний и ознакомления с ними широкого круга школьников.

    Методы исследования

    1. Анализ и синтез.

    2. Моделирование.

    2.Эмпирический метод.

    3.Графический метод.

    Глава 1. Трение

    1.1 История изучения силы трения

    Трение настолько необходимо и мы настолько сжились с ним, что мир без трения показался бы нам просто фантастическим. Трение может быть полезным и вредным - эту аксиому человек освоил еще на заре цивилизации. Ведь два самых главных изобретения - колесо и добывание огня - связаны именно со стремлением уменьшить и увеличить эффекты трения. Однако понимание природы трения и законов, которым подчиняется это явление, возникло не так уж давно и, к сожалению или к счастью, еще далеко от совершенства. Первое исследование законов трения принадлежит знаменитому итальянскому ученому и художнику Леонардо да Винчи (15 век): сила трения, возникающая при контакте тела с поверхностью другого тела, пропорциональна силе прижатия, направлена против направления движения и не зависит от площади контакта соприкасающихся поверхностей. Он измерял силу трения, действующую на деревянные бруски, скользящие по доске, причем, ставя бруски на разные грани, определял зависимость силы трения от площади опоры. Но, к сожалению, работы Леонардо да Винчи не были опубликованы. Только в конце 18 века законы трения скольжения были сформулированы французскими физиками Гильомом Амонтоном (1663г-1705г) и независимо от него Шарлем Кулоном (1736г- 1806г) (приложение3). Кулон экспериментально установил, что сила трения Fтр не зависит от площади поверхности, вдоль которой тела соприкасаются, и пропорциональна силе нормального давления N, с которой одно тело действует на другое.

    Закон Амонтона — Кулона —закон, устанавливающий связь между поверхностной силой трения, возникающей при относительном скольжении тела, с силой нормальной реакции, действующей на тело со стороны поверхности.

    Сила трения максимальная прямо пропорциональна силе нормальной реакции .

    Fтр. max= μN(1), где

    μ -коэффициент трения,

    N - сила нормальной реакции

    1.2 Причина возникновения силы трения и ее виды

    Сила трения — это сила взаимодействия между соприкасающимися телами, препятствующая перемещению одного тела относительно другого.

    Причиной возникновения трения является шероховатость трущихся поверхностей и взаимодействие молекул этих поверхностей.

    Трение покоя- сила, возникающая между двумя контактирующими телами и препятствующая возникновению относительного движения. Эту силу необходимо преодолеть для, того чтобы привести два контактирующих тела в движение друг относительно друга. Возникает при деформации контактирующих тел. Она действует в направлении, противоположном направлению возможного относительного движения.

    Трение скольжения - сила, возникающая при поступательном перемещении одного из взаимодействующих тел относительно другого и действующая на это тело в противоположном направлении скольжения.

    Трение качения - сопротивление движению, возникающее при перекатывании тел друг по другу. Причина трения качения - деформация тела и опорной поверхности. В большинстве случаев величина трения качения гораздо меньше величины трения скольжения при прочих равных условиях, и потому качение является распространенным видом движения в технике.

    При движении твёрдого тела, соприкасающегося с жидкостью или газом, тоже возникает сила, параллельная поверхности соприкосновения и направленная против движения, т. е. против относительной скорости тела. Этим она напоминает силу трения скольжения. Её часто называют: «сила жидкого трения».

    Сила жидкого трения намного меньше, чем сила сухого трения. Например, находясь на плоту, можно с помощью шеста сравнительно небольшим усилием привести плот в движение. Но не «стоит» и пытаться на плоту таким же способом передвигаться по суше. Именно поэтому смазка уменьшает силу трения между твёрдыми телами - трение перестаёт быть сухим.

    В жидкости и газе нет силы трения покоя. Даже самая малая сила, приложенная к телу в жидкости или газе, сообщает ему ускорение. Это легко наблюдать на опыте. Положим небольшой деревянный брусок на воду в широком сосуде. Брусок легко привести в движение, если подуть на него или толкнуть бумажной полоской.

    Глава 2. Безопасность на дорогах

    2.1 Тормозной путь

    Сила трения отличается от других сил тем, что она всегда направлена в сторону, противоположную направлению вектора скорости движения тела. Это значит, что и ускорение, которое она сообщает телу, направлено против скорости. Это приводит к ее уменьшению и, если на тело не действуют другие силы, оно, в конце концов, останавливается. Представим себе, что перед движущимся автомобилем возникло препятствие, и водитель нажал на тормоз. За счет явление инерции автомобиль мгновенно остановиться не может. Он обязательно пройдет некоторый путь до остановки. Инерция - это физическое явление сохранения скорости тела постоянной, если на него не действуют другие тела или их действие скомпенсировано. Наименьшее расстояние, которое пройдёт автомобиль до остановки с момента появления препятствия в поле зрения водителя, называется дистанцией безопасности. Это понятие имеет большое значение в технике работы автомобильного транспорта и для безопасности перехода автомобильных дорог пешеходами. Также она зависит от времени реакции водителя на препятствие. Оно колеблется у водителей в пределах от 0,5 до 1,2 с. Расстояние, проходимое автомобилем с момента действия тормозной системы в полную силу до остановки автомобиля, называется тормозной путь автомобиля.

    С помощью знаний по физике выясним, от чего зависит тормозной путь автомобиля. Начиная с того момента, как водитель нажал на тормоза, на тело действует только постоянная сила трения, силой сопротивления воздуха можно пренебречь. Определим тормозной путь.

    Модуль силы трения по второму закону Ньютона равен:

    гдеа- ускорение автомобиля;

    с другой стороны, по закону Амонтона — Кулона

    Fтр. = μN= μmg.

    Из раздела кинематики мы узнали, что

    а путь, пройденный телом до остановки,

    S= (V 2 -V 0 2)/2a

    С учетом всех формул и того, что V=0 получаем:

    S = V 0 2 / 2gµ ,(2)

    где: S — тормозной путь;

    V — скорость движения машины;

    µ — коэффициент трения шины о дорогу;

    g — ускорение свободного падения.

    Из приведенной формулы видно, что пройденный до остановки путь пропорционален квадрату начальной скорости. Если увеличить скорость вдвое, то потребуется вчетверо больший путь для остановки. Это следует иметь в виду водителям транспортных средств. Об этом полезно помнить и прохожим, пересекающим оживленную улицу.

    Вывод: для остановки движущимся телам нужно время и пространство. Тормозной путь прямо пропорционален квадрату скорости и обратно коэффициенту трения. Можно с уверенностью говорить о независимости тормозного пути от массы машины, если она соответствует общепринятым нормам безопасности

    2.2 Сцепление - основабезопасного вождения.

    Сцепление шины с дорогой —чем оно выше, тем безопаснее вы можете вести машину. Шина под действием силы тяжести автомобиля деформируется, образуя так называемое пятно контакта (приложение 4). Среди автолюбителей принято считать, что чем шире шина, тем больше площадь пятна контакта шины с дорогой и тем лучше сцепление с дорогой, тем короче тормозной путь, тем лучше управляемость машины. А еще иногда думают, что если машина тормозит не прямо, а боком, то тормозной путь будет короче, потому что шире пятно контакта. Это не так. Приведем доказательства из механики. Как видно из формулы(2), тормозной путь не зависит от ширины профиля шины и площади пятна контакта шины с дорогой. В этой формуле есть единственный показатель — это коэффициент трения, который зависит от природы соприкасающихся тел. В данном случае — от типа дорожного покрытия и от химического состава протектора шины. Соответственно, и сцепление шины с дорогой зависит от состава резиновой смеси протектора.

    Почему же пятно контакта не влияет на силу сцепления? С одной стороны, чем больше его площадь, тем большим числом «щупальцев» шина цепляется за дорогу. Этот факт лежит на поверхности, и люди охотно думают, что сцепление пропорционально ширине шины. Но есть и другая сторона медали, о которой многие забывают: от размера пятна контакта напрямую зависит вес шины, приходящийся на единицу площади, то есть давление, которое она оказывает своим весом на дорогу. Чем больше площадь контакта, тем меньше давление шины на дорогу. По этой причине, зимние шины всегда уже летних — чтобы увеличить давление на дорогу и лучше «вгрызаться» в снежно-ледяную корку. В итоге, если мы увеличиваем площадь пятна контакта, то мы уменьшаем давление на дорогу. Получается, во сколько раз мы увеличиваем площадь сцепления с дорогой, ровно во столько же раз мы уменьшаем давление на дорогу.

    Что говорят о сцеплении законы механики? Если снова прибегнуть к помощи формул, то сила трения сцепления (она же сила трения покоя) в отсутствии адгезии (эффекта приклеивания соприкасающихся поверхностей) определяется законом Амонтона — Кулона по формуле (1)

    Как видно, площадь пятна контакта в силу трения покоя вклада не вносит, как и в длину тормозного пути. Можно закон переписать иначе, с учетом площади пятна контакта и отразить влияние пятна на давление. Давление тела на опору или, в нашем случае, шины на асфальт равно весу тела (шины), деленному на площадь контакта:

    p = N/S = mg/S, (3)

    где p — давление шины на дорогу,

    Тогда отсюда можно выразить вес через давление:

    Подставив эту формулу в закон Кулона, получим:

    Сила сцепления шины с дорогой пропорциональна коэффициенту сцепления, давлению шины на дорогу и площади пятна контакта. Это именно то, как воспринимает силу сцепления большинство людей. Но давление напрямую зависит от площади пятна контакта и обратно пропорционально ему. Об этом говорит формула (3). Поставляя сюда выражение для давления, получим:

    Тогда площадь мы успешно сокращаем и приходим к закону Кулона (1) и силе сцепления, не зависящей от площади пятна контакта. Некоторые водители прохладно относятся к тому, какие шины стоят на их машинах, и думают, что это неважно. Мы считаем, что это важно! Чуть ли не самое важное, что есть в машине. Но среди тех водителей, которые ценят безопасность, встречаются те, которые думают, что они улучшат сцепление, если поставят на свой автомобиль более широкие шины. Если бы было все так просто и широкие шины тормозили бы лучше узких, то производитель шин могли бы легко решить проблему зимы — делали бы очень широкие зимние шины. Однако этого не происходит и, более того, происходит обратное: зимние шины, как правило, «уже» летних. Чтобы улучшить сцепление шин с дорогой, нужно установить шины, сделанные из резины более высокого качества. Машина тормозит не тормозами, а шинами. Если на автомобиле стоят изношенные или дешевые или просто не соответствующие сезону шины, автомобиль тормозит плохо, и хорошие тормоза ему не помогут .

    Вывод: сцепление шины с дорогой не зависит от ширины шины и площади пятна контакта, а зависит от материала шин. Чем больше сцепление шины с дорогой, тем безопаснее вести машину.

    Практическая часть

    1. Исследование зависимости силы трения от веса тела и вида поверхности (приложение 5)

    Оборудование: динамометр, брусок деревянный с отверстиями и с крючком, набор грузов по 50 г, направляющие рейки (деревянные, пластиковые).

    Измерение силы трения, веса бруска с грузами с помощью динамометра.

    Вычисление коэффициента трения μ по формуле μ= Fтр/Р

    Таблица1 Дерево по дереву.

    Таблица 2 Дерево по пластику.

    Вывод: мы убедились в том, что сила трения зависит от веса тела и от материала поверхности. Самая наименьшая сила трения и коэффициент трения у поверхностей дерево-пластик. Коэффициент трения не зависит от веса тела.

    2. Исследование зависимости силы трения от площади поверхности

    Двигали брусок по поверхности дерева тремя разными сторонами, тем самым меняли площадь соприкосновения бруска с поверхностью. Измеряли силу трения динамометром.

    Вывод: сила трения не зависит от площади поверхности, что подтверждает независимость сцепления от ширины шины.

    3.Расчет коэффициента трения тормозного пути велосипеда при различных покрытиях дороги (приложение 6).

    Мы разогнали велосипед до определенной скорости и резко затормозили.

    При помощи измерительной ленты мы измерили длину тормозного пути.

    и по формуле µ = V 0 2 / 2Sg

    Рассчитали коэффициент трения покрытия дороги. Эксперимент проводился при разных покрытиях дороги и несколько раз для более точного расчета. Вычисляли среднее значение коэффициент трения.

    Таблица 5

    Поверхность

    Скорость, V 0 м/с

    Тормозной путь(м)

    Коэффициент

    трения, μ

    Среднее значение коэффициента

    Сухой асфальт

    5,6 м/с

    Мокрый асфальт

    Рыхлый снег

    5,6 м/с

    Мы построили график зависимости тормозного пути от скорости велосипеда при различных физических параметрах дороги (приложение 6).

    Вывод: тормозной путь автомобиля зависит от скорости автомобиля и от состояния дорожного покрытия. При одних и тех же скоростях движения тормозной путь больше на заснеженной дороге, чем на чистой асфальтированной дороге. Коэффициент трения минимален при движении по льду.

    Заключение

    Физика - это не просто сухие законы и четкие формулы. Знание законов механики движения автомобиля, понятия величины тормозного пути и его зависимость от трения и скорости позволят предупредить аварийные ситуации на дорогах и сделать нашу жизнь безопасной. Правила дорожного движения описывают одновременно движения нескольких тел: автомобилистов, велосипедистов, пешеходов. Все они должны учитывать законы физики и совершать движения с учетом этих законов.

    Проведя практические исследования, мы пришли к выводу, что наиболее безопасным покрытием для движения транспорта является сухой асфальт. Наименее безопасным является лед. Анализируя результаты теоретических и практических исследований, мы убедились, что наша гипотеза подтвердилась: длина тормозного пути зависит от скорости движения и трения . Чем больше скорость транспорта, и меньше коэффициент трения шин о дорогу тем больше тормозной путь.

    Запомните:

    Не перебегайте дорогу перед близко движущимся транспортом - это очень опасно для жизни;

    Тормозной путь увеличивается на мокром асфальте и при гололеде;

    Если на улице гололед, а у вас “лысая резина”, то длина тормозного пути, независимая от ширины шин, может оказаться непредсказуемой

    Новизна нашей работы заключается в том, что мы проверили непосредственно значение тормозного пути при разных покрытиях дороги и скорости для велосипеда - самого популярного транспорта школьников. Свою работу мы представляли на лицейской и районной научно-практической конференциях для широкого круга школьников. Наши исследования можно применять как на уроках физики, так и на уроках ОБЖ и мы надеемся, что наша работа внесет вклад в пользу уменьшения ДТП с участием школьников. В дальнейшем мы планируем изучить и исследовать законы безопасного движения воздушного транспорта.

    Библиографический список

    1. Перышкин А.В. Физика - 7. - М.: «Просвещение».2015

    2. Перышкин А.В. Физика - 9. - М.: «Просвещение».2015

    3. «Наука и техника в дорожной отрасли», журнал № 2-2014

    4.Солодушко А.Д. Эксперимент при изучении силы трения. //Физика в школе. №5.2001

    5. Практическое пособие «Комментарии к правилам дорожного движения РФ и Основным положениям по допуску транспортных средств к эксплуатации и обязанностям должностных лиц по обеспечению безопасности дорожного движения» - журнальное издательство «За рулем», 2002 г.

    6.http://pandia.ru/text/78/420/5362.php

    8.http://www.gibdd.ru

    9.http://www.preciouspassenger.org

    10.http://moto.59442s003.edusite.ru/p16aa1.html

    11.https://www.drive2.ru/b/65558/

    Приложение 1

    Общий коэффициент смертности детей в результате ДТП в России в 2013 г. составил 36,1 на 1 млн. населения в возрасте до 16 лет, что более чем в три раза превышает таковой в странах ЕС. Только за 7 месяцев 2015г. зарегистрировано 13 324 ДТП с участием детей и подростков, в них погибли 750 и получили ранения 13 543 детей. Ежедневно в дорожных происшествиях погибают 3 и получают ранения 70 несовершеннолетних жителей страны. 58% от общего количества ДТП составляют случаи, когда пострадавшие были пешеходами, а 32% - пассажирами. Эти цифры, учитывая масштабы и тяжесть травм, соответствуют всем признакам национальной катастрофы. С начала года в Московской области осложнилась обстановка с детским дорожно-транспортным травматизмом среди детей и подростков в возрасте до 16 лет. В 1-м квартале 2015 года было зарегистрировано 186 ДТП, в результате которых 13 детей погибли и 184 получили травмы различной тяжести. В сравнении с аналогичным периодом прошлого года количество ДТП, погибших и раненых детей возросло, соответственно, на 0,5; 44 и 1%.

    Приложение 2

    Погодный фактор может быть довольно значимым и влияющим на результат; действительно, на мокром или обледеневшем покрытии или же в дождь столкновения более реальны. Доля ДТП с мокрым покрытием достаточно велика.

    Сводки ГИБДД. Круговая диаграмма отражает погодные условия, сложившиеся на момент ДТП.

    Приложение 3

    Гильом Амонтон и Шарль Кулон.

    Гильом Амонтон Шарль Кулон

    Приложение 4

    Протектор велосипедной шины.

    Приложение 5

    Измерение силы трения на различных поверхностях с помощью динамометра.

    Дерево по дереву Дерево по пластику

    Приложение 6 Замер тормозного пути велосипеда на разных покрытиях дороги.

    Мокрый асфальт

    Рыхлый снег

    Сухой асфальт

    Приложение 7

    Спидометр для велосипеда.

    Приложение 8

    График зависимости тормозного пути от скорости при различных состояниях покрытия дороги.