Самая маленькая машина с двигателем внутреннего сгорания. Самый маленький двигатель в мире

Поскольку нефтепродукты постоянно растут в цене (ведь нефти свойственно заканчиваться), стремление к экономии на горючем вполне понятно, и мини-двигатель мог бы стать неплохим решением.

Насколько экономичен мини-двигатель внутреннего сгорания?

Как известно, ДВС делятся на бензиновые и дизельные, причем как первые, так и вторые сегодня претерпевают значительные изменения. Причиной модернизации, как самих механизмов, так и топлива, является значительно ухудшившаяся экология, на состояние которой влияют и выхлопы техники, работающей на жидком горючем. Так, к примеру, появился эко-бензин, разведенный спиртом в пропорции от 8:2 до 2:8, то есть спирта в таком топливе может содержаться от 20 до 80 процентов. Но на этом модернизация и закончилась. Тенденция уменьшения бензиновых двигателей в объеме практически не наблюдается. Самые маленькие образцы устанавливаются в авиамодели, более крупные используются на газонокосилках, лодочных моторах, снегоходах, скутерах и другой подобного рода технике .

Что же касается , сегодня действительно сделано немало для того, чтобы этот двигатель стал по-настоящему микроскопическим. В настоящее время концерном Toyota созданы самые маленькие микролитражки Corolla II, Corsa и Tercel , в них установлены дизельные двигатели 1N и 1NT объемом всего 1.5 литра. Одна беда – срок службы таких механизмов чрезвычайно низкий, и причина тому – очень быстрая выработка ресурса цилиндро-поршневой группы. Существуют и совсем крошечные дизельные ДВС, объемом всего 0.21 литра. Их устанавливают на компактную мототехнику и строительные механизмы, но мощности большой ожидать не приходится, максимум, что они выдают – 3.25 л.с. Впрочем, и расход топлива у таких моделей небольшой, о чем говорит объем топливного бака – 2.5 литра.

Насколько эффективен самый маленький двигатель внутреннего сгорания?

Обычный ДВС, действие которого основано на возвратно-поступательном движении поршня, теряет производительность по мере уменьшения рабочего объема. Все дело в значительной потере КПД при преобразовании этого самого движения ЦПГ во вращательное, столь необходимое для колес. Однако еще до Второй Мировой Войны механик-самоучка Феликс Генрих Ванкель создал первый действующий образец роторно-поршневого ДВС, в котором все узлы только вращаются. Логично, что данная конструкция, очень напоминающая электромотор, позволяет сократить количество деталей на 40 %, по сравнению со стандартными двигателями.

Несмотря на то, что до сегодняшнего дня не решены все проблемы данного механизма, срок службы, экономичность и экологичность соответствуют установленным мировым стандартам. Производительность же превосходит все мыслимые пределы. Роторно-поршневой ДВС с рабочим объемом 1.3 литра позволяет развить мощность в 220 лошадиных сил . Установка же турбокомпрессора увеличивает этот показатель до 350 л.с., что очень даже существенно. Ну, а самый маленький двигатель внутреннего сгорания из серии «ванкелей», известный под маркой OSMG 1400 , имеет объем всего 0.005 литра, однако при этом выдает мощность в 1.27 л.с. при собственном весе 335 граммов.

Основное преимущество роторно-поршневых двигателей – отсутствие шумов, сопровождающих работу механизмов, благодаря низкой массе работающих узлов и точному балансу вала.

Самый маленький дизельный двигатель как источник энергии

Если говорить о полноценном , то на сегодняшний день самые небольшие размеры имеет детище инженера Йесуса Уайлдера. Это 12-цилиндровый двигатель V-образного типа, полностью соответствующий ДВС Ferrar i и Lamborghini . Однако на деле механизм является бесполезной безделушкой, поскольку работает не на жидком топливе, а на сжатом воздухе, и при рабочем объеме в 12 кубических сантиметров имеет очень низкий КПД.

Другое дело – самый маленький дизельный двигатель, разработанный учеными Великобритании. Правда, в качестве горючего для него требуется не солярка, а особая самовозгорающаяся при увеличении давления смесь метанола с водородом. При тактовом движении поршня в камере сгорания, объем которой не превышает одного кубического миллиметра, возникает вспышка, приводящая механизм в действие. Что любопытно, микроскопических размеров удалось добиться путем установки плоских деталей, в частности, те же поршни являются ультратонкими пластинами. Уже сегодня в ДВС с габаритами 5х15х3 миллиметра крошечный вал вращается со скоростью 50.000 об/мин, вследствие чего производит мощность порядка 11,2 Ватта.

Пока перед учеными стоит ряд проблем, которые необходимо решить перед тем, как выпускать дизельные мини-двигатели на поточное производство. В частности, это колоссальные теплопотери из-за чрезвычайно тонких стенок камеры сгорания и недолговечность материалов при воздействии высоких температур. Однако, когда все-таки крошечные ДВС сойдут с конвейера, всего нескольких граммов топлива хватит, чтобы заставить механизм при КПД в 10 % работать в 20 раз дольше и эффективнее аккумуляторов таких же размеров.

Самый маленький дизельный двигатель, может разместиться на кончике пальца…

Жидкие углеводороды содержат в 100 раз больше энергии на единицу веса, чем литий-ионные батареи, и в 300 раз больше, чем никель-кадмиевые. Поэтому в последние годы вырос интерес к топливным элементам для электроники. Однако есть и другой подход к производству энергии для миниатюрной аппаратуры. Уже не первый год исследователи в США и Европе говорят о появлении микроскопических двигателей, которые питались бы различным углеводородным топливом и приводили бы в движение крошечные генераторы.

самый большой в мире дизельные двигатель,самый маленький в мире дизельный двигатель, биодизель, жидкое биотопливо

В различных экспериментах учёные уже показывали нам крошечные газовые турбинки и, скажем, двигатели Ванкеля. А вот специалисты из Великобритании полагают, что массу преимуществ можно получить, если сделать микроскопический поршневой ДВС. Эта работа ведётся под руководством профессора Симоны Хохгреб (Simone Hochgreb) из Центра исследования горения (Combustion Research Centre) университета Кембриджа (Cambridge University) и доктора Кили Цзян (Kyle Jiang) из Центра микроинжиниринга и нанотехнологий (Micro-Engineering and Nano-Technology Research Centre) университета Бирмингема (University of Birmingham). Они проектируют двигатели с объёмом камеры сгорания порядка одного кубического миллиметра. Есть и первые образцы, правда, из опубликованных материалов не вполне ясно – работают ли они так, как задумано. По всей видимости – ещё нет. Однако сама идея весьма любопытна. Прежде всего, нужно сказать, что детали этих двигателей – плоские. Те же поршни – это крошечные пластинки, выполненные методом ультрафиолетовой литографии. Поршни движутся, будучи закрытыми с краёв фигурной пластиной, играющей роль корпуса, а сверху и снизу – такими же плоскими крышками. Интересно, что ДВС, создаваемые британцами – это дизели. Только вот работают они не на солярке, а на неких метаноловых смесях (с добавкой водорода), способных самостоятельно вспыхивать при такте сжатия.

Цель текущей работы: создать работоспособный двигатель с габаритами 5 х 15 х 3 миллиметра и выходной мощностью в 11,2 ватта при частоте вращения коленчатого вала 50 тысяч оборотов в минуту. Можно пофантазировать, как такую крошку можно удачно вписать в самые разные приборы. Но прежде, чем эти моторы смогут стать массовыми, авторам проекта нужно будет преодолеть ряд трудностей. Например, компоненты на базе кремния плохо сочетаются с высокими температурами в зоне сгорания. Выход тут видится в переходе на керамику, над чем авторы и работают. Вторая проблема – это огромные теплопотери через стенки. Для двигателя размером в считанные миллиметры они (потери) оказываются куда большими, относительно энергии, получаемой от сгорания топлива, чем для обычных ДВС. Здесь пока разработчики идут по пути наращивания частоты вращения вала и, соответственно, сокращения времени рабочего такта. Причём, как показали исследования, желая сократить потери в десять раз, нужно и скорость увеличивать также вдесятеро. Зато, если задуманное удастся, то такие ДВС миллиметрового масштаба пригодятся в микроскопических летательных аппаратах (разведка, анализ атмосферы), в миниатюрных полевых датчиках (как военных, так и научных), разбрасываемых чуть не горстями (их сейчас часто называют "умной пылью"), КПК и плеерах, ноутбуках и даже игрушках. Ведь даже при скромном КПД в 10% эти движки смогут увеличить время работы миниатюрной техники, как рассчитали учёные, раз в 20, по сравнению с использованием аккумуляторных батарей того же вес

Самый большой же мире дизельный двигатель размером с многоподъездный дом!

Wartsila-Sulzer RTA96-C является самым мощным дизельным двигателем на сегодняшний день. Двухтактный дизельный двигатель в 108920 лошадиных сил весит 2300 тонн, и имеет две модификации - 6 и 14-целиндровый. Размер двигателя, сопоставим с двухподъездным трехэтажным домом!

В последнем варианте двигатель потребляет 6280 литров топлива в час. Создан двигатель для торговых судов, которые перевозят большое количество тяжелых контейнеров.

самый большой в мире дизельные двигатель,самый маленький в мире дизельный двигатель, биодизель, жидкое биотопливо

Толчком к этой публикации послужило письмо в редакцию отца и сына Рогоновых - наших читателей из г. Похвистнево Самарской области. Они прислали газетную статью под заголовком «Курочкин изобрел двигатель. «Тойота», «Форд» и «Крайслер» в панике» и попросили подробнее рассказать об этом двигателе. Публикации об этом двигателе были не только в региональной, но и центральной прессе. Из них можно узнать о том, что изобретение защищено пятью патентами России, что международное патентное бюро в Женеве уведомило А.Г.Курочкина о регистрации его заявки и временной защите авторских прав в 31 стране, в том числе Канаде, США, Южной Корее, Японии; что некоторые зарубежные автомобильные концерны предлагали изобретателю продолжить работы над двигателем у них, но он отказался, мотивировав отказ желанием оставить свое изобретение на Родине, в России.

Технические данные модуль-двигателя Курочкина сегодня известны многим. Однако до сих пор мало кто даже из ведущих инженеров Рыбинского авиамоторостроительного завода, где работал Андрей Геннадьевич, знает, как конкретно устроен его МД15-70. Журнал «Моделист-конструктор» - первое в мире издание, которое, с разрешения изобретателя, открыто публикует конструкцию нашумевшего мотора.

Изобретатели давно ищут возможность уйти от классической компоновки двигателей внутреннего сгорания, основанной на принципе перевода возвратно-поступательного движения поршня во вращение вала.

Один из вариантов нашел когда-то Ван-кель, создав роторно-поршневой двигатель. Однако «ванкель» не получил широкого распространения из-за свойственных ему кинематических недостатков.

Практически по той же причине не первенствуют и пластинчатые роторные машины, обладающие низким механическим КПД.

А. Курочкин сумел «нащупать» свой путь.

Во-первых, он предложил нечто среднее между ротором и турбиной. Рабочий цикл в его МД 15-70 походит на цикл в газотурбинном двигателе (ГТД) процессом непрерывной подачи топлива, горения и продувки (к слову, и на цикл Отто тоже - условиями теплоподвода при горении); но одновременно и отличается, поскольку используется не кинетическая энергия струи, а потенциальная энергия давления газа на рабочие лопатки ротора.

Таким образом, организацией своего функционирования модуль-двигатель напоминает ГТД, а способом использования энергии - поршневой ДВС. Этим он принципиально разнится с роторно-поршневым «ванкелем», где рабочий процесс полностью совпадает с тем, что происходит в поршневом двигателе.

1-диффузор воздухозаборника; 2 - сетка мелкоячеистая; 3 - шпильки стяжные; 4 - переходник; 5 - крыльчатка вентилятора; 6 - статор генератора; 7 - ротор генератора; 8 - фланец передний; 9 - зона сепарации воздуха; 10 - кожух двигателя; 11 - цапфа ротора передняя с валом привода вентилятора, генератора и насосов систем смазки и охлаждения; 12 - крышки торцевые; 13 - цилиндр; 14 - ребро радиатора; 15-гильза цилиндра; 16 - винт крепления гильзы; 17 -лопатка рабочая; 18 - фланец стыковочный; 19 - цапфа ротора задняя с валом отбора мощности; 20 -ротор; 21 - подшипник задний; 22 - одно из сопел выхлопного аппарата; 23 - глушитель; 24 - окно выпускное; 25 - полость рабочая; 26 - канал охлаждения (с метрической резьбой - для интенсификации охлаждения ротора); 27 - окно впускное; 28 - подшипник передний; 29 - насос системы смазки и охлаждения; 30 - штепсельный разъем системы управления; 31 - окно для электропроводки управления; 32 - стенка передняя; 33 - храповик ручного запуска; 34 - вкладыш компрессионный (аналог поршневого кольца); 35 - вкладыш антифрикционный (бронза); 36 - впрыск топлива; 37 - втулка центральная; 38 - уплотнитель лопатки графитовый.

I - продувка чистым воздухом от вентилятора; II - частичное сжатие воздуха и впрыск топлива; III - начальное сжатие топливовоздушной смеси; IV - дальнейшее сжатие смеси и ее воспламенение продуктами сгорания, проникающими из предыдущей полости по перепускной канавке в торцевой крышке (начальный розжиг - пусковой свечой); V - начальное расширение продуктов сгорания и частичное их перетекание в последующую полость; VI,VII - дальнейшее расширение продуктов сгорания и совершение ими полезной работы; VIII - выпуск продуктов сгорания и начало продувки полости чистым воздухом от вентилятора.

Во-вторых, он сумел обойти кинематические проблемы, разработав и запатентовав оригинальный механизм под названием «роторная машина Курочкина». Ее рабочий цилиндр имеет восьмигранную внутреннюю поверхность и объединенные в одну деталь противоположные рабочие лопасти. Таких деталей четыре, они имеют небольшую радиальную подвижность относительно ротора и работают скорее как уплотнительные кольца в обычном поршневом двигателе. Конструкция получилась очень герметичной. За счет этого удалось минимизировать потери давления в «камере сгорания», что в том же «ван-келе» так и не было реализовано.

В МД немало и других остроумных находок. Вкупе со сверхплотной компоновкой они позволили изготовить двигатель с уникальными конструктивными и эксплуатационными свойствами. Вот лишь некоторые из них: предельная компактность; пыле-, грязе- и водозащищенность; самоуравновешенность кинематического механизма; пространственная неориентированность систем смазки, охлаждения и питания; незначительность пульсации крутящего момента; низкая удельная масса; высокая экономичность; малая токсичность; пологость дроссельных характеристик; потенциальная возможность работы на любом углеводородном топливе.

Внешне МД 15-70 напоминает большой термос. И поначалу трудно поверить, что за гладкой цилиндрической поверхностью его кожуха скрываются все необходимые любому двигателю системы. А именно: стартер, генератор, радиатор, воздухоочиститель, несколько насосов и даже глушитель. В конструкции широко применены различные конструкционные материалы: от высоколегированных сталей до обыкновенного дюралюминия. При этом деталей в МД раз в десять меньше, чем в обычном ДВС!

Тем не менее это полноценный двигатель внутреннего сгорания, причем мощностью 70 л.с. и массой всего 15 кг! Он пригоден для легких воздушных, водных, наземных транспортных средств и мобильных энергетических установок. Может использоваться в качестве одиночного или блокированного из нескольких МД силового привода на один вал. Возможно также (с целью дальнейшего наращивания мощности) параллельное или последовательное соединение нескольких таких блоков.

Принцип действия модуль-двигателя следующий.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ МД15-70

Мощность

максимальная, кВт…………50

Масса, кг………………………………..15

Удельная масса, кг/кВт…………….0,3

Частота вращения выходного вала, об/мин:

минимальная…………….2000

максимальная……………8500

Крутящий момент, Н-м……………..58

Удельный расход топлива,

г/(кВт ч)……………………..240

Мощность встроенного

электростартера, кВт……..0,1

Мощность встроенного

электрогенератора, кВт….0,7

Основное топливо…………….бензин,

дизельное

Ресурс, моточасы…………………3000

Габаритные размеры, мм:

длина………………………..354

диаметр……………………..193

Центробежный вентилятор засасывает сквозь мелкоячеистую сетку воздух, закручивает его и подает в зону сепарации. В этой зоне единый поток воздуха разделяется: одна его часть вместе с отброшенной к периферии пылью поступает в радиатор на охлаждение двигателя и затем выходит наружу; другая же часть, очищенная, через впускное окно направляется в рабочие полости (проточную зону), где происходят процессы, типичные для двухтактных ДВС. Последовательность этих процессов одномоментно отражена на рисунке.

Выпуск происходит через специальное окно в глушитель, где отработанный газ смешивается с охлаждающим воздухом из радиатора и выбрасывается в атмосферу сквозь кольцевой диффузорный выхлопной аппарат. Цвет выхлопного пламени - однотонно голубой, что свидетельствует о полном сгорании топливной смеси. И это на холостом ходу, когда традиционные двигатели наиболее токсичны!

Пластинчатые роторные машины также в принципе обладают высокой экономичностью. Однако свойственные им кинематические недостатки - заклинивание и большой износ ответственных деталей - сдерживали до недавнего времени их развитие. Преодоление этих недостатков в конструкции МД15-70 позволило новому мотору иметь показатель экономичности примерно равный соответствующему показателю дизельного двигателя, но в 1,22 раза лучше четырехтактного карбюраторного и роторного «ванкеля» и в 1,9 раза - двухтактного поршневого.

Вместе с тем сравнения показывают, что габаритный объем МД в 70 раз меньше дизельного, в 20 раз - четырехтактного ив 10-12 раз - роторного или двухтактного поршневого ДВС. Меньше и его масса (металлоемкость): соответственно в 30, 10 и 4 раза. И все это, заметим, при равной мощности.

Внешние скоростные характеристики модуль-двигателя протекают более полого, чем у двигателей других типов. Это делает его привлекательным для применения в автомобилях, поскольку позволяет снижать количество ступеней в коробках передач, а также эксплуатационные расходы топлива. Подсчитано, что при установке МД15-70, к примеру, на «Москвич-2141» расход топлива не превысит 3 л на 100 км пути. Кроме того, роторная машина Курочкина может быть использована и в качестве гидравлического или пневматического мотора или насоса.

А.ТИМЧЕНКО,

г. Р ы б и н с к, Ярославская обл.

Заметили ошибку? Выделите ее и нажмите Ctrl+Enter , чтобы сообщить нам.

Испанский инженер по имени Патело собрал 12-цилиндровый V-образный двигатель, который, как он считает, является самым маленьким подобным двигателем в мире
Имея под рукой небольшое количество алюминия, бронзы и нержавеющей стали, он провел более 1200 часов времени, проектируя, вычерчивая, сверля и обрабатывая миниатюрные детали.

Поршни цилиндров двигателя имеют диаметр 11.3 мм, а рабочий объем двигателя составляет около 12 кубических сантиметров. Весь двигатель состоит из 261 детали, каждую из которых Пэтело создал своими собственными руками. Все детали соединены в единую конструкцию с помощью 222 винтов, которые являются единственными покупными изделиями.

К сожалению, этот двигатель не является полноценным двигателем внутреннего сгорания, он приводится в действие сжатым воздухом, которые подается по трубкам под давлением 0.1 атмосферы. Но он все равно работает и это можно увидеть на видео.

Пэтело создал этот двигатель, не преследуя никаких коммерческих целей. Создание этого двигателя он посвятил своим четырем внукам и использует его в образовательных целях.

А вот действительно самый маленький двигатель в мире придумали еще в 2009 году.

Алекс Зеттл (Alex Zettl) и его коллеги из университета Калифорнии в Беркли (University of California, Berkeley) построили самый маленький в мире двигатель, поперечник которого составляет всего 200 нанометров — в тысячи раз меньше толщины человеческого волоса.

Двигатель эксплуатирует тот факт, что на масштабах в нанометры силы поверхностного натяжения играют большую роль, чем в «обычном» мире.

Полное название устройства — «Наноэлектромеханический осциллятор релаксации, приводимый силами поверхностного натяжения» (surface-tension-driven nanoelectromechanical relaxation oscillator).

Он состоит из двух мельчайших жидких капель металла индия, лежащих рядом друг с другом на подложке, составленной из углеродных нанотрубок.

Одна из капель меньше другой. Когда через подложку пропускают слабый постоянный ток (десятки микроампер при напряжении 1,3-1,5 вольта), он провоцирует убегание атомов из большой капли в меньшую.

Так как диаметр меньшей капли при этом растёт быстрее, чем уменьшается диаметр большой капли, наступает момент, когда меньшая капля соприкасается с большей, хотя по-прежнему уступает ей в размере.

В это мгновение силы поверхностного натяжения заставляют убежавшие атомы быстро вернуться к большей капле через точку контакта, и так восстанавливается первоначальное положение. Цикл начинается заново. Меняя напряжение можно регулировать частоту колебаний в системе.

Этот двигатель при соответствующих изменениях можно было бы применять в нанороботах для движения и привода исполнительных механизмов, в микроэлектромеханических схемах, микроскопических датчиках и так далее.

К сожалению, принцип, положенный в основу установки, работает только при таком масштабе. Ведь у этого нанодвигателя необычайно высокое отношение мощности к размерам.

Если бы его можно было бы увеличить до размеров автомобильного двигателя, то мощность осциллятора оказалась бы в сто миллионов раз больше.

А вот самый маленький звездообразный двигатель от нашего первого героя репортажа.


http://youtu.be/ITUZeNcxy3k

Теперь опять переключаемся в микромир.


В 2011 году ученые Штутгартского университета вместе с исследователями Института интеллектуальных систем Макса Планка испытали самый маленький паровой двигатель в мире. И хотя его пока нельзя использовать, эксперимент доказал, что подобное устройство, в принципе, может работать.

Физики не были уверены, что созданный ими двигатель Стирлинга придет в движение, поскольку из-за микроскопических размеров этому могли помешать различные процессы, не оказывающие влияния в макромире. В изобретенном 200 лет назад Робертом Стирлингом двигателе наполненный газом цилиндр периодически нагревается и охлаждается, в результате чего газ расширяется и сжимается. Благодаря этому поршень выполняет движение.

Ученым удалось уменьшить размер поршня и цилиндра до нескольких микрометров (тысячных миллиметра), а затем собрать все детали. Посему газ был заменен плавающим в воде пластиковым шариком размером 0,003 миллиметра. Благодаря тому, что эта коллоидная частица в 10 тысяч раз больше атома, за ее участием в броуновском движении можно было наблюдать в микроскоп.

Поршень заменили сфокусированным лазерным лучом переменной интенсивности. Это дало возможность ограничивать движение шарика в большей или меньшей степени - аналогично с расширением и сжатием газа в обычном двигателе. Необходимым условием было изменение температуры: для этого использовался другой лазер, который включался и моментально отключался, поскольку из-за маленького количества вода быстро нагревалась и охлаждалась.

Работа двигателя была нестабильной из-за того, что молекулы воды пребывают в постоянном движении и все время сталкиваются с микрочастицей. При этом масштабы обмена пластикового шарика энергией с окружающими молекулами были приблизительно сравнимы с количеством энергии, получаемой от луча. В макромире, например, энергия сталкивающихся частиц настолько мала, что совсем не влияет на работу двигателя. Тем не менее, эксперимент оказался успешным.

источники

Двигатели бывают разные. Некоторые из них имеют размер пятиэтажного дома, в то время как для того, чтобы увидеть другие, придется поискать микроскоп. Недавно мы представили вам список самых крупных двигателей в мире, теперь пришло время броситься в другую крайность.

DKW 49cc

Несмотря на то, что этот одноцилиндровый двигатель от DKW покажется гигантским, в сравнении с другими участникам этого хит-парада, 49сс всё-таки является особенным, поскольку он используется в автомобилестроении. А точнее, в автомобиле Peel P50. Самый маленький в мире двигатель, используемый в производстве серийных автомобилей, имеет лишь 4 л.с. Да и этого, в общем-то, достаточно, ведь автомобиль весит всего 56 кг.

Smalltoe motorcycle – этаноловый двигатель

К сожалению, данных об объеме двигателя у нас не имеется, но есть данные о мощности: 0.3 л.с. Этот двигатель используется в самом маленьком в мире мотоцикле Smalltoe, колёсная база которого составляет лишь 80мм. Этот мощнейший движок разгоняет мотоцикл до невероятной скорости в 2км/ч. И да, на нем можно ездить. Посмотрите видео.


Самый маленький V12 в мире


Мануэль Хермо Баррьеро, механик ВМФ Испании в отставке, занимается постройкой маленьких, рабочих двигателей. Неплохое занятие для пенсионера, не так ли? Этот двигатель V12 признан самым маленьким в мире. Его постройка заняла у Мануэля 1220 часов кропотливой работы.

Самый маленький W32 в мире


Если вас шокировал предыдущий двигатель, то приготовьтесь увидеть еще одно творение господина Баррьеро – самый маленький W32 в мире. Работа над двигателем заняла 2520 часов, и в процессе постройки было использовано 850 различных деталей. Как и V12, этот двигатель идеально сбалансирован, и в доказательство этого факта инженер предлагает посмотреть видеозапись.

Nanobee


Рональд Валентин занимается постройкой маленьких двигателей для своих моделей самолётов уже 30 лет. Самый маленький из них – Nanobee – существует пока лишь в форме прототипа. Объем двигателя составляет 0.006мл. Самым удивительным фактом является то, что этот двигатель реально работает! Он признан самым маленьким в мире дизельным двигателем.


Самый маленький паровой двигатель в мире

На изображении вы видите полностью рабочий паровой двигатель, вот только размеры его не совсем привычны. Индийскому инженеру Икбалу Ахмеду удалось создать функционирующий паровой двигатель, который имеет высоту 6.8мм, длину 16.24мм и весит 1.72гр.

Микроскопический двигатель внутреннего сгорания

Что, вы все еще не удивлены? Ну, хорошо. Взгляните на этот двигатель. Кстати, чтобы на него взглянуть, потребуется микроскоп, поскольку его диагональ составляет лишь 0.0001мм. Двигатель состоит из резервуара с водой, через который проходит два электрода. Ток подается на электроды, благодаря чему кислород и водород распадаются. В результате образуются нанопузыри газа, увеличивается объем и вырабатывается энергия. Ох уж эта наука!