Разностная машина чарльза бэббиджа год. Аналитическая машина Бэббиджа Чарльза: описание, особенности, история и свойства

Где-то в 1800-х годах Чарльз Бэббидж изобрел первый компьютер, тогда слово «компьютер» имело иное значение, и он назвал свое изобретение Разностной машиной или Аналитической машиной. Гениальный изобретатель опережал свое время, но, к сожалению, не завершил свое изобретение, и лишь спустя сто лет был изобретен первый настоящий компьютер, но это уже другая история. А сегодняшняя статья об Аналитической Машине Бэббиджа.

Согласно чертежам Бэббиджа машина должна была состоять из следующих частей:

1. Склад - жесткий диск, память; 2. Мельница - процессор; 3. Паровой двигатель - блок питания; 4. Принтер - принтер; 5. Карты операций - программы; 6. Карты переменных - система адресации; 7. Числовые карты - для ввода чисел; 8. Управляющие барабаны - микропрограммы.

Самовычисляющая машина

В этой статье мы попробуем выяснить устройство Аналитической Машины, но для начала следует отметить, что она принадлежала к распространенному с 1740-х годов семейству «автоматических» (само-) механизмов.

И хотя Бэббидж избегал использования этого понятия, в новостях и изданиях ее описывали именно так:

За завтраком я имела удовольствие сидеть рядом с мистером Бэббиджем, известным в наших кругах изобретателем самовычисляющей машины. Взгляд его кажется столь проницательным, будто он видит науку - или любой другой предмет, ставший объектом его внимания, - насквозь.
Эди Седжвик, 1841 г.
Центробежный регулятор - первый из «самодействующих» механизмов индустриальной эпохи. Кстати, именно он является одной из самых узнаваемых частей парового двигателя.


При разгоне двигателя шары отклоняются от оси под воздействием центробежной силы, из-за этого муфта сдвигается и ограничивает приток пара, а машина замедляет ход. Замедление машины опускает шары и этим открывает клапан - открывается приток пара, цикл замкнулся.

Сама же конструкция Разностной машины была схожа с арифмометрами, и, как арифмометры, Машина состояла из длинной череды зубчатых колес, которые складывают числа, а потом выдают сумму.

Где-то в 1834 году Бэббидж усовершенствовал конструкцию, и благодаря возврату суммы обратно в машину стали доступны более сложные вычисления.

Работа Аналитической машины основывалась именно на «пожирании своего хвоста», и работала система благодаря сложной цепи шестерней, которые управлялись перфокартами и барабанами, вычисляя суммы и отправляя результаты на склад, который состоял из ряда зубчатых колес.

Примерно все взаимодействовало так:

  1. Карты операций (А) указывают картам переменных (В), что нужно запросить числа для расчетов;
  2. Числа вводятся с числовых карт (С) или со склада (D) и поочередно поступают на ось ввода (Е);
  3. Ось ввода передает числа на центральные колеса (F);
  4. Карта операции дает команду сложения чисел или умножения или иную, а барабаны (G) поворачиваются до положения, в котором их штифты будут соответствовать операции.
  5. Барабаны активируют рычаги, соединяя шестерни мельницы (H) с центральными колесами. А уже в мельнице определенные устройства отвечают за сложение, умножение и иные действия;
  6. Шестерни выполняют умножение исходных чисел;
  7. Мельница при необходимости может зацикливать действия, передавая команды на разные участки перфокарты;
  8. Результат попадает на ось вывода (I).
  9. Ось вывода передает данные на принтер (D) или отправляет на склад согласно картам переменных;
  10. Карты операций подают команду на подачу звонка (J) и на остановку Машины. Всё!

Память: склад

Любому компьютеру, паровому или электронному, необходима возможность хранения данных. В изобретении Бэббиджа он назывался складом, и, как практически вся машина, он состоял из зубчатых колес, расположенных в высоких столбцах. На каждом из столбцов хранилось только одно число не длиннее пятидесяти цифр, а верхнее колесо определяло положительно число или отрицательно.

Согласно моим оценкам, пройдет немало времени, прежде чем эти ограничения перестанут удовлетворять нуждам науки.
Чарльз Бэббидж
На чертежах Бэббиджа склад состоял из двух параллельных рядов высоких числовых столбцов, и в каждом из них хранилось одно число. Одна из сторон склада сообщалась с мельницей.

Кроме зубчатых колес числа могли храниться на числовых картах в виде комбинаций отверстий:

На своих схемах Чарльз изображал ряд столбцов уходящим за край листа и не указывал конечное количество чисел, которые могла бы запоминать заключительная версия Машины.

Рейки и карты переменных для передачи данных

Для передачи чисел со склада в Машину Бэббидж использовал опять зубчатые колеса рейки с длинными зубцами. Каждое из числовых колес склада с помощью шестеренок были связаны с рейками и при их помощи значения передавались на специальный столбец колец, находящийся между мельницей и складом, и таким же образом числа передавались обратно на склад.


Колеса склада А подключено к рейке В с помощью шестеренки. Обнуляясь, колесо слада поворачивает ось ввода до позиции переданного числа.


Для передачи числа с дальнего конца склада требовалась зубчатая рейка длинной в несколько метров.

На картах переменных нанесены адреса на складе, с которых производится выборка чисел. Эти же карты могут быть запрограммированы на получение значений с числовых карт.
Каждый адрес нанесен на карты переменных в виде отверстий, и их сочетание переключает определенные рычаги:


При отсутствии отверстия на перфокарте рычаг не задействован, но как только отверстие появлялось, рычаг соединял шестеренку со скобой. И шестеренка, поднимаясь вместе со скобой, соединяла колесо ввода с зубчатой рейкой.

Мельница вычислений

После попадания чисел в мельницу начинается главная часть работы Машины - арифметические действия, выполняемые снова и снова.

Бэббиджем были разработаны отдельные узлы сложения, вычитания, умножения и деления, а также один из любимых его механизмов - перенос с предварением.

В своих публикациях Бэббидж очеловечивал Машину и про «сквозной перенос» писал:

В случае сквозного переноса Машина способна предвидеть и действовать в соответствии с предвидением.
Чарльз Бэббидж
Конечно, до переноса числа необходимо было сложить, и происходило это примерно так:

Колесо А обнуляется и на нем задается первое число. Второе число задается на колесе В, которое в сцепке с колесом А. Обнуление первого колеса прибавляет число, которое там содержалось, к значению на колесе В.

Возьмем для примера:

Вспомним школьную арифметику, а именно сложение в столбик и перенос единиц. Если расположить цифры обоих чисел по столбцам, как это сделано в Машине, и складывать их по разрядам, то в первом случае не будет переноса, во втором будет перенесена единица, а в третьем сумма будет равна 9, но перенесенная ранее единица инициирует перенос.

Когда Разностная машина работает, можно наблюдать волнообразные движения рычажков переноса в задней части Машины. Волны происходят из-за последовательных переносов единиц снизу вверх с проверкой инициации новых переносов.


Эта штука переносит единицу снизу вверх по одной!

Программы

В то время программ не существовало, ну точнее они уже были придуманы, но тогда они назывались картами операций и выглядели примерно так:


Карта операций

Программами занималась Ада Лавлейс, и, как истинные аристократы, они отдавали приказы барабанам и картам переменных не контактируя с рабочими механизмами. Даже простое сложение задействовало множество деталей, и при помощи большого барабана один рычаг мог задавать любое значение для восьмидесяти других рычагов.

Согласно отверстиям на картах барабан поворачивается к рычагам разными секциями, которые содержат определенный шифр и задействуют разные наборы рычагов.

И хотя барабаны напоминают валики шарманок, действуют они иначе. Вместо непрерывного вращения барабан поворачивается до определенной позиции и затем двигается вперед, толкая и активируя набор необходимых рычагов.

Карты операций управляют и барабанами, и картами переменных, и выглядят примерно так:

Перфокарты

Первой системой, построенной на перфокартах, был жаккардов станок, и именно им вдохновлялся Бэббидж.


Карта Жаккара, 1850 г.

Принцип их работы прост и гениален одновременно: удерживающий перфокарты рычаг опускается, прижимая карту к набору подпружиненных горизонтальных штырьков. Если под штырьком отсутствует отверстие, то карта сдвигает штырек и наклоняет стержень с крючком так, что он цепляется за штифт. Затем штифты движутся вверх вместе с зацепившимися за них крючками.

Логика и циклы

Перфокарты и шестеренки - это великолепно, но не они делают Разностную машину компьютером. Из устройства для обсчета десятичной арифметики Машина превращается в компьютер благодаря небольшой детали - условному рычагу.

Этот рычаг автоматически опускается, если результат вычислений требует дальнейших действий со стороны программы. И если на определенной позиции барабана стоит штифт, а затем рычаг опускается - запускается новый цикл вычислений.

Таким образом, условный рычаг замыкает цикл, и Машина «поедает собственный хвост»: перфокарты управляют барабанами, барабаны Машиной, Машина барабанами, а барабаны перфокартами.

На этом я закончу сегодняшнюю статью. Если у вас есть какие-то дополнения, то я буду рад обсуждениям в комментариях.

Всем хорошего дня и точных вычислений!

Литература:
«Невероятные приключения Лавлейс и Бэббиджа. Почти правдивая история первого компьютера»

В истории вычислительной техники самыми длительными были : домеханический и механический. Они продолжались вплоть до середины 20 века.

Каким же образом человечество совершило переход к электронно-вычислительному этапу, т.е. к электронно-вычислительным машинам или к компьютерам? Как обычно, все начинается с идеи, а точнее, с мечты, после которой уже приходят и идеи.

Мысль о создании такой машины, которая работала бы без участия человека, впервые была высказана английским математиком Чарльзом Бэббиджем (1791-1871).

Но сначала была работа над созданием разностной машины , в ходе которой Бэббиджу и пришла мысль о разработке полностью автоматической машины с программным управлением. Последнюю он назвал . Впрочем, обо всем по порядку.

Как решить проблему ошибок людей в вычислениях

В 18 веке возникла большая потребность в вычислениях для составления различных таблиц, которые широко использовались в астрономии, землемерном, страховом и банковском деле, мореплавании, кораблестроении, строительстве и т.д.

Люди, проводившие подобные вычисления, делали ошибки при составлении таблиц. Это приводило к еще более серьезным ошибкам при последующем использовании данных из таких таблиц, в том числе, в мореплавании, в строительстве и т.д.

В начале 19 века логарифмические и тригонометрические таблицы содержали множество ошибок. Решая проблему их исправления, Бэббидж пришел к выводу о необходимости создания машины для автоматических расчетов.

С 1812 г. профессор Кембриджского университета Чарльз Бэббидж приступил к работе над созданием разностной машины.

Почему машина называется разностной

Название «разностная машина» связано с тем, что в основу ее работы положен метод разностей, разработанный Исааком Ньютоном. Он основан на получении последовательности промежуточных величин.

По существу, метод разностей основывается на том, что уже вычислено значение произведения 5 на 5, и этот результат может быть использован для получения произведения 5 и следующих чисел (6, 7) путем прибавления 5 к известной сумме. Выглядит это следующим образом:

5 x 6 = 30
5 x 7 = 35 получается путем прибавления 5 к полученному произведению (30+5),
5 x 8 = 40 получается путем прибавления 5 к предыдущему произведению (35+5).

Таким образом, умножения заменяются на последовательные сложения.

В разностной машине Бэббиджа данный принцип применен для решения степенных уравнений. Они состоят из переменных и констант, в них используются только операции сложения, вычитания и умножения.

Трудности Беббиджа при создании машины

При создании разностной машины перед Ч.Бэббиджем встали технологические проблемы в большем количестве.

Приходилось не только изобретать узлы и механизмы, но также и способы их изготовления с достаточной точностью, что не позволяли технологии того времени.

Не было станков, соответствующих инструментов. Найти квалифицированных рабочих и инженеров было трудно и дорого. Проблемой было и соблюдение требуемой точности обработки металла.

Тем не менее, к 1822 г. Бэббидж сумел построить действующую модель разностной машины, состоящую из валиков и шестерней, вращаемых вручную при помощи рычага. На этой машине он рассчитал, в частности, таблицу квадратов.

Большая разностная машина

После чего он приступил к созданию большой машины, позволяющей с достаточной точностью вести расчет навигационных, астрономических и тригонометрических таблиц.

Эта машина по замыслу Бэббиджа должна была состоять из 25000 деталей, ее высота 2,4 метра, длина 2,1 метра, вес несколько тонн.

Все детали для машин должны были создаваться вручную и требовали очень большой точности, так как малейшие отклонения в каждой из деталей могли вызвать значительные ошибки и погрешности при вычислениях.

В 1832 году ученый посетил ряд промышленных центров в Англии и Шотландии. Постоянно изучая новое в промышленности, он посещал все, какие только мог, заводы и фабрики в Британии и на континенте.

В результате Бэббидж сам стал отличным механиком и провел ряд усовершенствований по инструментам, станкам и методам обработки.

Однако из-за разногласий с исполнителем, выпускающим детали для разностной машины, проект закрылся в 1833 г. с прекращением государственного финансирования.

Разностная машина Ч.Бэббиджа, 1991 г.

У Ч.Бэббиджа было много последователей из разных стран, создававших разностные вычислительные машины вплоть до середины XX века.

Заработала через 200 лет

Долгие годы шли споры по поводу того, реально ли было Бэббиджу построить работающую разностную машину. К 200-летию рождения Бэббиджа Лондонский музей науки в 1991 г. запустил разностную машину по чертежам Бэббиджа с небольшими простейшими изменениями.

Она состоит из 4000 деталей и весит около 3 тонн; выполнена из бронзы, стали и железа, может вычислять разности 7 порядка.

Машина работает при помощи поворота рукоятки, является действующим экспонатом Лондонского научного музея.

В 2000 году к экспозиции добавилось спроектированное Бэббиджем печатающее устройство – принтер весом 3,5 тонны. Оба устройства, изготовленные по технологиям середины XIX века, превосходно работают - в расчётах Бэббиджа было найдено всего две ошибки. Так что, если будете в Лондоне, можете зайти в музей полюбоваться на это чудо техники.

Разностная машина Бэббиджа, США

Если Вы думаете, что лондонская разностная машина является единственной во всем мире, то Вы ошибаетесь.

В 2005 г. мультимиллионер и бывший технический директор Натан Мирвольд заказал специалистам музея вторую копию знаменитого механического вычислителя. Она была доставлена в США.

В специальной экспозиции Музея компьютерной истории эта машина была ровно год. После этого Мирвольд установил ее у себя дома.

Чарльз Беббидж считается основателем современной вычислительной техники. В работе Чарльза Бэббиджа прослеживается два направления: разностная и аналитическая вычислительная машины. Аналитическая машина Чарльза Бэббиджа использует принцип программного управления и является предшественницей современных ЭВМ.

Первая небольшая модель аппарата Чарльза Бэббиджа

В 1822 году Чарльз Бэббидж создал первую небольшую модель своего аппарата, получившего название "разностная машина". Механизм разностной машины состоял из валиков и шестерней, вращаемых вручную при помощи специального рычага. Разностная машина могла управлять шестизначными числами и выражать в числах любую функцию, которая имела постоянную вторую разность. Ценность разностной машины Чарльза Бэббиджа в том, что она могла не только производить один раз заданное действие, но и осуществлять целую программу вычислений. Сам Бэббидж достаточно ясно представлял назначение своей машины. Он пропагандировал использование математических методов в различных областях науки и предсказывал при этом широкое применение вычислительных машин.

Бэббидж обратился к правительству Великобритании с просьбой о финансировании полномасштабной разработки. Правительство Великобритании, заинтересовавшись идеей, выделило деньги на дальнейшее развитие проекта. В 1834 году Бэббидж занялся разработкой еще более сложного агрегата - аналитической машины, способной выполнять определенные действия в соответствии с инструкциями, задаваемыми оператором. Модель аналитической машины фактически можно считать прообразом современного компьютера. Главное отличие аналитической машины от разностной заключается в том, что она программируемая и может выполнять любые заданные ей вычисления.

Принцип аналитической машины Чарльза Бэббиджа

Аналитическая машина Чарльза Бэббиджа использует принцип программного управления и является предшественницей современных ЭВМ.

Основные части аналитической машины

Аналитическая машина состояла из следующих четырех основных частей:

  • блок хранения исходных, промежуточных данных и результатов вычислений. (состоял из набора зубчатых колес, идентифицирующих цифры подобно арифмометру);
  • блок обработки чисел из склада, названный мельницей (в современной терминологии - это арифметическое устройство);
  • блок управления последовательностью вычислений (в современной терминологии - это устройство управления УУ);
  • блок ввода исходных данных и печати результатов (в современной терминологии - это устройство ввода/вывода).

Аналитическая машина так и не была изготовлена Чарльзом Бэббджем. Кроме хронической нехватки финансовых средств, важнейшая из причин - технологическая. Тогда не умели обрабатывать металл с высокой степенью точности и с высокой производительностью - а для реализации проекта требовались тысячи одних только зубчатых колес.

Большое влияние на посмертную судьбу машины оказал генерал Бэббидж, сын изобретателя. Выйдя в отставку в 1874 году, он несколько лет посвятил изучению отцовского наследия, а в 1880 году начал работу по восстановлению Difference Engine в «железе». Работа продолжалась с переменным успехом до 1896 г. В конце концов к 1904 году был создан небольшой фрагмент машины, который печатал результаты вычислений. Кроме того, Бэббидж-младший сделал несколько мини-копий Difference Engine и разослал их по всему миру.

В 1991 году, к двухсотлетию со дня рождения ученого, сотрудники лондонского Музея науки воссоздали по его чертежам 2,6-тонную «разностную машину № 2», а в 2000 году - еще и 3,5-тонный принтер Бэббиджа. Оба устройства, изготовленные по технологиям середины XIX века, превосходно работают - в расчётах Бэббиджа было найдено всего две ошибки.

В 1822 г. англичанин Чарльз Бэббидж построил счетное устройство, которое назвал разностной машиной. В эту машину вводилась информация на картах. Для выполнения ряда математических операций в машине применялись цифровые колеса с зубьями. Десять лет спустя Бэббидж спроектировал другое счетное устройство, гораздо более совершенное, которое назвал аналитической машиной. В первой половине XIX века английский математик Чарльз Бэббидж попытался построить универсальное вычислительное устройство - Аналитическую машину, которая должна была выполнять вычисления без участия человека. Для этого она должна была уметь выполнять программы, вводимые с помощью перфокарт (карт из плотной бумаги с информацией, наносимой с помощью отверстий, как в ткацких станках), и иметь “склад” для запоминания данных и промежуточных результатов (в современной терминологии - память). Бэббидж не смог довести до конца работу - она оказалась слишком сложной для техник того времени. Друг Бэббиджа, графиня Ада Августа Лавлейс, показала, как можно использовать аналитическую машину машину для выполнения ряда конкретных вычислений. Чарльза Бэббиджа считают изобретателем компьютера, а Аду Лавлейс называют первым программистом компьютера. Даже одини из компьютерных языков был официально назван в честь графини – ADA. В 1985 г. сотрудники Музея науки в Лондоне решили выяснить наконец, возможно ли на самом деле построить вычислительную машину Бэббиджа. После нескольких лет напряженной работы старания увенчались успехом. В ноябре 1991 г. незадолго до двухсотлетия со дня рождения знаменитого изобретателя, разностная машина впервые произвела серьезные вычисления. После смерти Бэббиджа умер и его сын, но перед этим он успел построить несколько миникопий разностной машины Бэббиджа и разослать их по всему миру, дабы увековечить эту машину. В октябре 1995 года одна из тех копий была продана на лондонском аукционе австралийскому музею электричества в Сиднее за $200,000.

1.2.5. Герман Холлерит

В конце XIX в. были созданы более сложные механические устройства. Самым важным из них было устройство, разработанное американцем Германом Холлеритом. Исключительность его заключалась в том, что в нем впервые была употреблена идея перфокарт и расчеты велись с помощью электрического тока. Это сочетание делало машину настолько работоспособной, что она получила широкое применение в своё время. Например, при переписи населения в США, проведенной в 1890 г., Холлерит, с помощью своих машин, смог выполнить за три года то, что вручную делалось бы в течении семи лет, причем гораздо большим числом людей.

1.2.6. Конрад Цузе

Лишь спустя 100 лет машина Бэбиджа привлекла внимание инженеров. В конце 30-х годов 20 века немецкий инженер Конрад Цузе разработал первую двоичную цифровую машину Z1. В ней широко использовались электромеханические реле, то есть механические переключатели, приводимые в действие электрическим током. В 1941 г. Конрад Цузе создал машину Z3, полностью управляемую с помощью программы.

1.2.7. Говард Айкен

Большой толчок в развитии вычислительной техники дала вторая мировая война: американским военным понадобился компьютер. В 1944 г. американец Говард Айкен на одном из предприятий фирмы ІВМ построил довольно мощную по тем временам вычислительную машину «Марк-1». В этой машине для представления чисел использовались механические элементы – счетные колеса, а для управления применялись электромеханические реле. Программа обработки данных вводилась с перфоленты. Размеры: 15 X 2,5 м., 750000 деталей. "Марк-1" мог перемножить два 23-х разрядных числа за 4 с.

2. Электронно-вычислительный период

Из всех изобретателей прошлых веков, которые внесли свой вклад в развитие вычислительной техники, к созданию компьютера в сегодняшнем его понимании, ближе всех подошел английский математик и изобретатель Чарльз Бэббидж.

Он родился в графстве Девоншир в 1792 году в богатой семье банкира. С детства славился остротой ума и выделялся своими чудачествами. В 1827 году стал заведующим кафедрой математики Кембриджского университета, и занимал этот пост 13 лет, не прочитав ни одной лекции.

Чарльз Бэббидж также участвовал в основании Королевского астрономического общества, был автором работ на различные темы – от технологии производства до политики.

Чем только не занимался этот эксцентричный гений. Он создал такие приборы как тахометр и спидометр, придумал множество полезных приспособлений, например, предохранительную решетку для железнодорожного локомотива, которая отбрасывала с пути случайные предметы. Также занимался расчетами смертности населения и реформой почтовой службы.

Главной страстью Бэббиджа была постоянная борьба за математическую точность. Он боролся с ошибками в таблицах логарифмов, которыми тогда пользовались математики, астрономы и штурманы. Однажды его возмутили строки поэта А. Теннисона – «Каждый миг какой-то человек умирает, каждый миг рождается другой», и математик поправил их – «Каждый миг один человек умирает, каждый миг рождается один и одна шестнадцатая другого».

Важнейшее достижение Бэббиджа – разработка принципов, которые легли в основу современного компьютера. Несколько десятилетий жизни, тысячи фунтов стерлингов субсидий правительства и собственных сбережений были потрачены на попытки создания вычислительной машины.

В 1822 г. в своей научной статье Чарльз Бэббидж описал машину, которая способна рассчитывать и воспроизводить большие математические таблицы. Он анонсировал ее как «Разностную машину», и уже построил пробную модель. Модель состояла из валиков и шестеренок, которые вращались вручную при помощи рычага. Получив поддержку Королевского общества, он обратился к правительству за финансированием на создание машины.

Бэббидж предполагал, что машина будет способна выполнять утомительную работу многократно повторяющихся математических расчетов. Через год на реализацию проекта было выделено 1500 фунтов стерлингов. Следующие десять лет он посвятил работе над своим изобретением, но его Разностная машина в процессе работы и модификации становилась все сложнее. В то же время Бэббиджа стали преследовать личные проблемы, болезни и недостаток финансов.

Сумма правительственных субсидий возросла до 17000 фунтов стерлингов, было потрачено 6000 личных сбережений, а работа все еще не была закончена. Через несколько лет, разочаровавшись в проекте, правительство приостановило выделение средств на ее создание.

Бэббидж хотел отказаться от своих планов, но в 1833 году его осенила идея создания еще более сложной и мощной установки – Аналитической машины Бэббиджа. Она-то и стала прототипом современного компьютера, так как должна была не только решать однотипные математические задачи, но и выполнять более сложные вычислительные операции, заданные оператором.

Аналитическая машина должна была быть оснащена «мельницей» и «складом», которые состояли из механических рычажков и шестеренок – то, что мы сегодня называем арифметическим устройством и памятью. Склад вмещал до 100 сорокаразрядных чисел, которые там хранились и ждали своей очереди в арифметическом устройстве. Все проведенные операции должны были либо храниться в памяти, либо распечатываться. Команды вводились в машину с помощью перфокарт.

Графиня Лавлейс – единственный законный ребенок известного поэта лорда Байрона, незаурядный математик и литератор, ярая поклонница идей Бэббиджа, сравнивала Аналитическую машину с ткацким станком Жаккарда , которая плетет алгебраические узоры так же, как станок цветы и листья. Она одна из немногих понимала принцип работы машины и представляла ее революционную сущность.

Графиня лучше самого Беббиджа могла формулировать его идеи, воодушевляла математика и заражала своим энтузиазмом. Но всех совместных усилий не хватило для того, чтобы довести до конца создание Аналитической машины.

Внешне механизм должен был получиться размером с железнодорожный локомотив, внутренние конструкции представляли собой нагромождение деталей из стали, меди и дерева, часовых механизмов, которые приводились в действие с помощью парового двигателя.

Она так и не была построена. До наших дней сохранились чертежи и рисунки, небольшая часть арифметического и печатного устройств, которые создал уже сын Чарльза Бэббиджа.

Как ни странно, но первое изобретение Бэббиджа – Разностная машина была, все же, воплощена в жизнь шведским издателем, изобретателем и переводчиком Пером Георгом Шойцом. Он, воспользовавшись работами Бэббиджа, построил свой вариант машины. Бэббидж, испытал смешанные чувства, наблюдая за успешными испытаниями Разностной машины Шойца. По иронии судьбы, британское правительство, которое остановило финансирование машины Бэббиджа, заказало для своей канцелярии одну из таких машин.

Алан Тьюринг считал аналитическую машину Бэббиджа таким же компьютером, как и современные, только реализованную с помощью механических устройств: «Часто предают значение тому обстоятельству, что современные цифровые машины являются электронными устройствами. Но поскольку машина Бэббиджа не была электрическим аппаратом и поскольку в известном смысле все цифровые машины эквивалентны, становится ясно, что использование электричества в этом случае не может иметь теоретического значения».

Современная копия разностной машины Бэббиджа экспонируется в Лондонском музее науки. Этот экспонат весит 3 тонны, его размеры – 2,1х3,4х0,5 м. Копия была построена инженерами Р. Криком и Б. Холловеем. На машине можно распечатать сувенир – решение уравнения.

Демонстрация работы машины на странице www.youtube.com/embed/qctHEGKr9Zs :

Небольшое видео о работе Бэббиджа на странице www.youtube.com/watch?v=QVxbNZWLP60 :