Уравнение движения электропривода и его элементы. Механика электропривода. Основное уравнение движения. Электрические аппараты и элементы

Механическая часть эл. привода представляет собой систему твердых тел, движущихся с различными скоростями. Уравнение движения ее можно определить на основе анализа запасов энергии в системе двигатель – рабочая машина, или на основе анализа второго закона Ньютона. Но наиблее общей формой записи диф. уравнений, определяющих движение системы, в которой число независимых переменных равно числу степеней свободы системы, является уравнение Лагранжа:

Wk – запас кинетической энергии; – обобщенная скорость; qi – обобщенная координата; Qi – обобщенная сила, определенная суммой элементарных работ DAi всех действующих сил на возможных перемещениях Dqi:

При наличии в системе потенциальных сил формула Лагранжа принимает вид:

2) , где

L=Wk-Wn функция Лагранжа, равная разности запасов кинетической Wk и потенциальной энергии Wn.

В качестве обобщенных координат, т. е. не зависимых переменных, могут быть приняты как различные угловые, так и линейные перемещения в системе. В трехмассовой упругой системе за обобщение координаты целесообразно принять угловое перемещение масс j1,j2,j3 и соответствующие им угловые скорости w1, w2, w3.

Запас кинетической энергии в системе:

Запас потенциальной энергии деформации упругих элементов, подвергающихся скручиванию:

Здесь М12 и М23 – моменты упругого взаимодействия между инерционными массами J1 и J2, J2 и J3, зависящие от величины деформации j1-j2 и j2-j3.

На инерционную массу J1 действуют моменты М и Мс1. Элементарная работа приложенных к J1 моментов на возможном перемещении Dj1.

Следовательно, обобщенная сила .

Аналогично элементарная работа всех приложений ко 2-й и 3-й массам моментам на возможных перемещениях Dj2 и Dj3: , откуда

, откуда

Т. к. ко 2-й и 3-й массам электромагнитный момент двигателя не приложен. Функция Лагранжа L=Wk-Wn.

Учитывая значения Q1`,Q2`и Q3` и подставив их в уравнение Лагранжа, получим уравнения движения трехмассовой упругой системы

Здесь 1-е уравнение определяет движение инерционной массы J1, 2-е и 3-е движение инерционных масс J2 и J3.

В случае двухмассовой системы Мс3=0; J3=0 уравнения движения имеют вид:

В случае жесткого приведенного механического звена ;

Уравнение движения имеет вид

Это уравнение является основным уравнением движения эл. привода.

В системе эл. привода некоторых механизмов содержится кривошипно – шатунные, кулисные, карданные передачи. Для таких механизмов радиус приведения “r” непостоянен, зависит от положения механизма, так для кривошипно шатунного механизма, изображенного на рис.

Получить уравнение движения в этом случае можно также на основе формулы Лагранжа или на основе составления энергетического баланса системы двигатель – рабочая машина. Воспользуемся последним условием.

Пусть J –суммарный приведенный к валу двигателя момент инерции всех жестко и линейно связанных вращающихся элементов, а m – суммарная масса элементов жестко и линейно связанных с рабочим органом механизма, движущаяся со скоростью V. Связь между w и V нелинейна, причем . Запас кинетической энергии в системе:

Т. к. , и .

Здесь - суммарный приведенный к валу двигателя момент инерции системы.

Динамическая мощность:

Динамический момент:

Или т. к. , то

Полученные уравнения движения позволяют анализировать возможные режимы движения эл. привода как динамической системы.

Возможны 2 режима (движения) электропривода: установившийся и переходный, причем установившийся режим может быть статическим или динамическим.

Установившийся статический режим эл. привода с жесткими связями имеет место в случае, когда , , . Для механизмов, у которых Мс зависит от угла поворота (например, кривошипно-шатунных), даже при и статический режим отсутствует, а имеет место установившийся динамический режим.

Во всех остальных случаях, т. е. при и имеет место переходный режим.

Переходным процессом эл. привода как динамической системы называют режим его работы при переходе от одного установившегося состояния к другому, когда изменяется ток, момент и скорость двигателя.

Переходные процессы всегда связаны с изменением скорости движения масс электропривода, поэтому всегда являются динамическими процессами.

Без переходного режима не совершается работа ни одного эл. привода. Эл. привод работает в переходных режимах при пуске, торможении, изменении скорости, реверсе, свободном выбеге (отключение от сети и движении по инерции).

Причинами возникновения переходных режимов являются или воздействия на двигатель с целью управления им изменением подводимого напряжения или его частоты, изменением сопротивления в цепях двигателя, изменение нагрузки на валу, изменение момента инерции.

Переходные режимы (процессы) возникают также в результате аварии или др. случайных причин, например, при изменении величины напряжения или его частоты, обрыве фаз, возникновении не симметрии питающего напряжения и т. п. Внешняя причина (возмущающее воздействие) является только внешним толчком, побуждающим эл. привод к переходным процессам.

Передаточные функции, структурные схемы и частотные характеристики механической части электропривода как объекта управления.

Сначала рассмотрим механическую часть как абсолютно жесткую механическую систему. Уравнение движения такой системы:

Передаточная функция

Структурная схема механической части в этом случае, как следует из уравнения движения, имеет вид, изображенный на рис.

Изобразим ЛАЧХ и ЛФЧХ этой системы. Т. к. звено с передаточной функцией является интегрирующим, то наклон ЛАЧХ – 20 дб/дек. При приложении нагрузки Mc=const скорость в такой системе нарастает по линейному закону и если М=Мс не ограничить, то она возрастает до ¥. Сдвиг между колебаниями М и w, т. е. между выходной и входной величиной постоянен и равен .

Расчетная схема двухмассовой упругой механической системы, как было показано ранее, имеет вид, изображенный на рис.

Структурная схема этой системы может быть получена на основе уравнений движения ; ;

Передаточные функции

.


Структурная схема, соответствующая этим управлениям, имеет вид:

Для исследования свойств этой системы как объекта управления принимаем МС1=МС2=0 и выполним синтез по управляющему воздействию. Используя правила эквивалентного преобразования структурных схем, можно получить передаточную функцию ,связывающую выходную координату w2 , с входной, которой является w1 и передаточную функцию при выходной координате w1.

;

Характеристическое уравнение системы: .

Корни уравнения: .

Здесь W12 – резонансная частота свободных колебаний системы.

Наличие мнимых корней свидетельствует о том, что система находится на грани устойчивости и если ее толкнуть, то она затухать не будет и на частоте W12 возникает резонансный пик.

Обозначив ; , где

W02 – резонансная частота 2-й инерционной массы при J1 ®¥.

С учетом этого передаточные функции , и будут иметь вид:

Ей соответствует структурная схема:

Для анализа поведения системы построим ЛАХЧ и ЛФЧХ механической части как объекта управления, сначала при выходной координате w2, заменив в выражении Ww2(r) R на jW. Они изображены на рис.

Из него следует, что в системе возникают механические колебания, причем число колебаний доходят до 10-30. При этом колебательность инерционной массы J2 выше, чем Массы J1. При W>W12 наклон высокочастотной асимптоты L(w2) равен – 60 дб./дек. И нет факторов, которые ослабляли бы развитие резонансных явлений при любом . Следовательно, когда важно получить требуемое качество движения инерционной массы J2, а также при регулировании координат системы, пренебрегать влиянием упругости механических связей без предварительной проверки нельзя.

В реальных системах имеется естественное демпфирование колебаний, которое, правда существенно не сказывается на форме ЛАХЧ и ЛФЧХ, однако ограничивает резонансный пик конечным значением, как показано пунктиром на рис.

Для анализа поведения системы при выходной координате w1 также построим ЛАХЧ и ЛФХЧ механической части как объекта управления. Структурная схема, вытекающая из передаточной


функции имеет вид:

Частотные характеристики приведены ниже:

Движение инерционной массы J1, как следует из характеристики и структурной схемы, при небольших частотах колебаний упругого взаимодействия определяется суммарным моментом инерции , причем механическая часть ведет себя как интегрирующее звено, т. к. характеристика L(w1) асимптотически приближается к асимптоте, имеющий наклон – 20 дб/дек. При M=const скорость w1 изменяется по линейному закону, на который накладываются колебания, обусловленные упругой связью. При приближении частоты колебаний момента М к W12 амплитуда колебаний скорости w1 возрастает и при W=W12 стремиться к бесконечности. Отсюда следует, что чем ближе к 1, т. е. при J2< можно считать как функцию интегрирующего звена (в структурной схеме во втором звене числитель и знаменатель выражения сократятся) и механическую часть эл. привода можно рассматривать как абсолютно жесткое механическое звено.

При g>>1, т. е. J2>J1 и если частота среза , механическую часть эл. привода также можно считать абсолютно жесткой (С12=бесконечности).

Как уже сказано выше, обычно g=1,2¸1,6, но вообще то g=1,2¸100. Величина 100 характерна для редукторных тихоходных электроприводов, например, для механизма поворота стрелы шагающего экскаватора с емкостью ковша 100м3 и длиной стрелы 100м.

Основное уравнение движения электропривода связывает между собой электромагнитный момент двигателя, момент статистический, момент интеграции и скорость вала двигателя.

Разность, записанная в левой части выражения, представляет собой динамический момент

Если динамический момент не равен 0, то электропривод работает в динамическом режиме т.е. имеет место изменение скорости.

Если или то электропривод работает в статическом (т.е. устанавливается) режиме работы.


ПОТЕРИ В МЕХАНИЧЕСКОЙ ПЕРЕДАЧЕ. КПД ПЕРЕДАЧИ

Потери энергии (мощности) в передаче учитывают двумя способами:

1) приближенным, т.е. с помощью КПД и 2) уточненным, т.е. непосредственным вычислением составляющих потерь. Рассмотрим эти способы.

А. Учет потерь в передачах с помощью КПД.

Механическая часть электропривода (рис.1.17) включает ротор электродвигателя ЭД с угловой скоростью w и моментом М, передаточный механизм ПМ, имеющий КПД h п и передаточное число j, и исполнительный механизм ИМ, на валу которого приложен момент М м и скорость вала w м. Для наглядности обозначим статический момент в двигательном режиме , а в тормозном - . Для двигательного режима работы, исходя из закона сохранения энергии, можно записать равенство

,
, где ,

- момент механизма, приведенный к валу электродвигателя.

Для тормозного режима будем иметь такое равенство

,
,

Но КПД является переменной величиной, зависящей от постоянных и переменных потерь в передаче. Определим потерю момента в передаче для двигательного режима

,

Примем допущение, что в тормозном режиме будет такая же потеря момента. Тогда статический момент в тормозном режиме можно записать в таком виде:

1) , тогда , что соответствует тормозному режиму, когда двигатель развивает тормозной момент. Применительно к грузоподъемному механизму это будет опускание тяжелого груза, когда момент от действия груза на валу двигателя М г превышает момент потерь DМ в передаче. Получаем так называемый тормозной спуск;

2) , тогда , что соответствует не тормозному, значит, двигательному режиму. Для грузоподъемного механизма это эквивалентно опусканию крюка, когда момент от его веса на валу двигателя М К меньше момента потерь DМ в передаче. Имеем так называемый силовой спуск.

Потери момента в передаче приближенно выражаются через две составляющие, одна из которой для данной передачи является постоянной величиной, а вторая – пропорциональна передаваемому моменту:

где – коэффициент постоянных потерь;

b – коэффициент переменных потерь;

М с.ном – номинальный статический момент передачи;

М перед – передаваемый момент, который равен моменту на выходном (по направлению передачи энергии) валу передачи.

Для установившегося двигательного режима . КПД передачи можно представить отношением мощностей в установившемся режиме.

Рабочий орган производственного механизма (валок про­катного стана, подъемный механизм и т.п.) потребляет ме­ханическую энергию, источником которой является электро­двигатель. Рабочий орган характеризуется моментом нагруз­ки М при вращательном движении и усилием F при поступа­тельном. Моменты нагрузки и усилия совместно с силами трения в механических передачах создают статическую на­грузку (момент Мс или силу Fc). Как известно, механичес­кая мощность Вт и момент Нм на валу механизма связаны соотношением

где (2)

Угловая скорость вала механизма, рад/с; - частота вращения (внесистемная единица), об/мин.

Для тела, вращающегося с угловой скоростью , запас кинетической энергии определится из выражения

где - момент инерции, кг м 2 ; - масса тела, кг; - радиус инерции, м.

Момент инерции определяется также формулой

где - маховой момент, приводимый в каталогах на электродвигатели, Нм 2 ; - сила тяжести, Н; - диаметр, м.

Направление вращения электропривода, при котором вращающий момент, развиваемый двигателем, совпадает с направлением скорости, считают положительным. Соответственно, момент статического сопротивления может быть либо отрицательным, либо положительным в зависимости от того, совпадает он с направлением скорости или нет.

Режим работы электропривода может быть установившимся, когда угловая скорость неизменна (), или переходным (динамическим), огда происходит изменение скорости - разгон, либо торможение ().

В установившемся режиме вращающий момент электродвигателя М преодолевает момент статического сопротивления и движение описывается простейшим равенством .

В переходном режиме в системе действует (наряду со статическим ) также динамический момент, определяемый запасом кинетической энергии движущихся частей:

Таким образом, при переходном процессе уравнение движения электропривода имеет вид

(6)

При , - движение привода будет ускоренным (переходный режим); при , - движение будет замедленным (переходный режим); при , - движение будет равномерным (установившийся ре­жим).

Приведение моментов и сил

Уравнение движения привода (6) справедливо при условии, что все элементы системы: двигатель, передаточное устройство и механизм имеют одну и ту же угловую скорость. Однако при наличии редуктора их угловые скорости будут различными, что затрудняет анализ системы. Для упро­щения расчетов реальный электропривод заменяют простейшей системой с одним вращающимся элементом. Такая замена производится на основании приведения всех моментов и сил к угловой скорости вала двигателя .



Приведение статических моментов основано на том условии, что передаваемая мощность без учета потерь на любом валу системы остается неизменной.

Мощность на валу механизма (например, барабана лебедки):

,

где и - момент сопротивления и угловая скорость на валу механизма.

Мощность на валу двигателя:

где - статический момент механизма, приведенный к валу двигателя; - угловая скорость вала двигателя.

На основании равенства мощностей с учетом к. п. д. передачи можно записать:

откуда приведенный статический момент:

где - передаточное отношение от вала двигателя к механизму.

При наличии нескольких передач между двигателем и рабо­чим органом приведенный к валу двигателя статический момент определяется выражением:

где - передаточные числа промежуточных передач; - к. п. д. соответствующих передач; , и - общее передаточное отношение и к. п. д. механизма.

Выражение (9) справедливо лишь тогда, когда электрическая машина работает в двигательном режиме и потери в передачах покрываются двигателем. В тормозном режиме, когда энергия передается от вала рабочего механизма к двигателю, уравнение (9) примет вид:

. (10)

При наличии в механизме поступательно движущихся элементов приведение моментов к валу двигателя производится аналогично:

,

где - сила тяжести поступательно движущегося элемента, Н; - скорость, м/с.

Отсюда приведенный момент в двигательном режиме электропривода:

. (11)

В режиме торможения:

(12)

Приведение моментов инерции

Приведение моментов инерции осуществляют исходя из того, что запас кинетической энергии в реальной и приведен­ной системах сохраняется неизменным. Для вращающихся ча­стей электропривода, кинематическая схема которого показана на рис. 1.1, запас кинетической энергии определяется выра­жением:



, (13)

где , - соответственно момент инер­ции и угловая скорость двигателя вместе с ведущей шестерней; , - то же, для промежуточного вала с шестернями; , - то же, для механизма, барабана с валом и шестерней, - приведенный момент инерции. Разделив уравнение (13) на , получим:

где , - передаточные отношения.

Приведенный к валу двигателя момент инерции поступательно движущегося элемента определяется также из усло­вия равенства запаса кинетической энергии до и после приведения:

,

откуда: , (15)

где m - масса поступательно движущегося тела, кг.

Полный момент инерции системы, приведенный к валу дви­гателя, равен сумме приведенных моментов вращающихся и поступательно движущихся элементов:

. (16)

Нагрузочные диаграммы

Большое значение имеет правильный выбор мощности электродвигателей. Для выбора мощности двигателя задается график изменения скорости производственного механизма (рис. 1.2, а) - тахограмма и нагрузочная диаг­рамма производственного механизма, представляющая собой зависимость приведенного к валу двигателя статического момента или мощности Рс от времени. Однако при пере­ходных режимах, когда скорость привода изменяется, на­грузка на валу двигателя будет отличаться от статической на величину ее ди намической составляющей. Динамическая составляющая нагрузки [см. формулу (5)] зависит от момен­та инерции движущихся частей системы, в том числе и от момента инерции двигателя, который пока не известен. В связи с этим в тех случаях, когда динамические режимы привода играют заметную роль, задача решается в два эта­па:

1) предварительный выбор двигателя;

2) проверка дви­гателя по перегрузочной способности и по нагреву.

Предварительный выбор мощности и угловой скорости дви­гателя проводится на основании нагрузочных диаграмм рабочей машины или механизма. Затем, с учетом момента инер­ции предварительно выбранного двигателя, строят нагрузоч­ные диаграммы привода. Нагрузочная диаграмма двигателя (привода) представляет собой зависимость вращающего момента, тока или мощности двигателя от времени M, Р, I=f(t). Она учитывает как статические, так и динамические нагрузки, преодолеваемые электроприводом в течение цикла работы. На основании на­грузочной диаграммы привода двигатель проверяется по до­пустимому нагреву и перегрузке и в случае неудовлетвори­тельных результатов проверки выбирается другой двигатель большей мощности. На рис. 2 представлены нагрузочные ди­аграммы производственного механизма (б), электропривода (г), а также диаграмма динамических моментов (в).

Нагрев электродвигателей

Процесс электромеханического преобразования энергии всегда сопровождается потерей части ее в самой машине. Преобразуясь в тепловую энергию, эти потери вызывают нагрев элек­трической машины. Потери энергии в машине могут быть по­стоянными (потери в железе, на трение и т. п.) и переменными. Переменные потери являются функцией тока нагрузки

где -ток в цепи якоря, ротора и статора; - сопротивление обмоток якоря (ротора). Для номинального режима работы

где , - номинальные значения соответственно мощности и к. п. д. двигателя.

Уравнение теплового баланса двигателя имеет вид:

, (19)

где - тепловая энергия, выделившаяся в двигателе за время ; - часть тепловой энергии, выделяющаяся в окружающую среду; - часть тепловой энергии, аккумулируемая в двигателе и вызывающая его нагрев.

Если уравнение теплового баланса выразить через тепловые параметры двигателя, то получим

, (20)

где А - теплоотдача двигателя, Дж/(с×°С); С - теплоемкость двигателя, Дж/°С; - превышение температуры двигателя над температурой окружающей среды

.

Стандартное значение температуры окружающей среды принимается 40 °С. =1–2 ч); закрытых двигателей 7 - 12 ч ( = 2 – 3 ч).

Наиболее чувствительным элементом к повышению температуры является изоляция обмоток. Изоляционные материалы, которые применяют в электрических машинах, разделяются по классу нагревостойкости в зависимости от предельной допустимой температуры. Правильно выбранный по мощности электро­двигатель нагревается при работе до номинальной темпера­туры, определяемой классом нагревостойкости изоляции (табл. 1). Помимо температуры окружающей среды на процесс нагрева двигателя большое влияние оказывает интенсивность теплоотдачи его поверхности, которая зависит от способа охлаждения, в частности от скорости потока охлаждающего воздуха. Поэтому у двигателей с самовентиляцией при снижении скорости теплоотдача ухудшается, что требует снижения его на­грузки. Например, при длительной работе такого двигателя со скоростью, равной 60 % от номинальной, мощность должна быть снижена вдвое.

Номинальная мощность двигателя повышается с увеличе­нием интенсивности его охлаждения. В настоящее время для мощных приводов прокатных станов разрабатываются так на­зываемые криогенные двигатели, охлаждаемые сжиженными газами.Таблица 1.1

Классы нагревостойкости изоляции двигателей

  • Тепловые режимы работы электропривода. Расчет и выбор мощности электродвигателей для кратковременного режима работы.
  • Расчет нагрузочных диаграмм и тахограмм.
  • Способы проверки двигателей на нагрев и перегрузочную способность, пересчет мощность двигателей на стандартную пв.
  • Расчет и выбор мощности двигателей при длительном режиме работы
  • Продолжительность включения (пв). Пересчет мощности двигателя на стандартную пв. Проверка двигателя на нагрев и перегрузочную способность.
  • Механические характеристики двигателей постоянного тока последовательного возбуждения.
  • Способы торможения двигателей постоянного тока последовательного возбуждения.
  • Способы регулирования скорости двигателей постоянного тока независимого возбуждения.
  • Способы регулирования скорости двигателей постоянного тока независимого возбуждения.
  • Основные показатели регулирования скорости электродвигателей. Способы регулирования скорости электродвигателей постоянного тока последовательного возбуждения.
  • Расчет тормозных сопротивлений двигателя постоянного тока независимого возбуждения (rдт, rп).
  • Расчет пусковых сопротивлений в приводах с двигателями постоянного тока последовательного возбуждения.
  • Расчет пусковых сопротивлений в приводах с двигателями постоянного тока независимого возбуждения.
  • Регулирование скорости двигателей постоянного тока независимого возбуждения при шунтировании обмотки якоря и включении последовательного сопротивления.
  • Каскадные схемы включения ад. Регулирование скорости асинхронных двигателей в системе авк.
  • Расчет ступени противовключения для асинхронного двигателя.
  • Торможение асинхронного двигателя противовключением.
  • Регулирование скорости асинхронных двигателей.
  • Расчет пусковых сопротивлений асинхронных двигателей.
  • Регулирование скорости электродвигателей в системе г-д. Механические характеристики системы г-д. Диапазоны регулирования.
  • Динамическое торможение электродвигателей постоянного и переменного тока. Расчет механических характеристик.
  • Регулирование скорости путем шунтирования обмотки якоря.
  • Расчет и выбор основного электрооборудования вентильного электропривода.
  • Механические характеристики вентильного электропривода.
  • Основные характеристики вентильного электропривода. Расчет сквозных (регулировочных) характеристик тиристорных преобразователей.
  • Выпрямительный и инверторный режим работы тиристорного электропривода постоянного тока.
  • Управление выпрямленным напряжением в системе тп-д.
  • Регулирование скорости двигателей в системе тп-д. Расчет механических характеристик.
  • Регулирование выпрямленного напряжения в системе тп-д.
  • Энергетические характеристики системы тп-д
  • Системы тпч-ад
  • Регулирование скорости в системе тпч-ад
  • Регулирование скорости в системе тпч-сд.
  • Переходные процессы при пуске двигателя
  • Механические характеристики синхронных двигателей. Пуск в ход и торможение синхронных двигателей.
  • Особенности пуска синхронных двигателей. Разновидности схем пуска синхронных двигателей.
  • Литература
    1. Основное уравнение движения электропривода.

    Для электромеханической системы в любой момент времени должно выполняться условие баланса мощностей:

    где
    - мощность, отдаваемая двигателем на вал;

    - мощность статических сил сопротивления;

    - динамическая мощность, идет на изменение кинетической энергии
    в процессах, когда изменяется скорость двигателя.

    В свою очередь уравнение для кинетической энергии запишется:

    Или для динамической мощности:

    Если именяются во времени, то получим:

    Приравняв значения мощностей, получим:

    Эта зависимость является уравнением движения электропривода. Для большинства механизмов
    . Тогда уравнение примет вид:

    Проанализируем это уравнение:

    Основное уравнение движения электропривода является основой всех инженерных расчетов. На его основе производится расчет, например, диаграммы двигателя, выбирается двигатель, рассчитываются пусковые моменты и токи, оценивается динамика электропривода.

    1. Основные понятия об устойчивости электропривода.

    Устойчивость электропривода определяется при сравнении механической характеристики двигателя и механической характеристики исполнительного механизма (
    и
    ). Рассмотрим на примере АД.

    Рассмотрим для трех механических характеристик исполнительных механизмов:


    В этом режиме двигатель преодолевает момент нагрузки и момент механических потерь. Режим работы устойчивый.


    В таком режиме мы имеем две точки пересечения (2 и 3). Устойчивой является скорость . Потому, что небольшое отклонение скорости компенсируется изменением момента противоположного знака (wMилиwM).

    Для точки 3 wM.

    1. Определение времени пуска и торможения электропривода

    Время пуска можно определить исходя из основного уравнения движения электропривода:

    .

    Выделим из этого уравнения составляющую времени:

    ;

    Проинтегрировав это выражение получим:

    .

    Данным уравнением определяется время нарастания скорости от 0 до конечной (установившейся).

    Время торможения может быть вычислено по следующей формуле:

    1. Тепловые режимы работы электропривода. Особенности расчета и выбора мощности электродвигателей в различных тепловых режимах.

    Режим работы электрической машины – это установленный порядок чередования периодов, характеризуемых величиной и продолжительностью нагрузки, отключений, торможения, пуска и реверса во время ее работы.

    1. Продолжительный режим S 1 – когда при неизменной номинальной нагрузке
    работа двигателя продолжается так долго, что температура перегрева всех его частей успевает достигнуть установившихся значений
    . Различают продолжительный режимнеизменной нагрузкой (рисунок 1) и сизменяющейся нагрузкой (рисунок 2).

    2. Кратковременный режим S 2 – когда периоды неизменной номинальной нагрузки чередуются с периодами отключения двигателя (рисунок 3). При этом периоды работы двигателянастолько кратковременны, что температуры нагрева всех частей двигателя не достигает установившихся значений, а периоды отключения двигателя настолько продолжительны, что все части двигателя успевают охладиться до температуры окружающей среды. Стандартом установлены длительность периодов нагрузки 10, 30, 60 и 90 минут. В условном обозначении кратковременного режима указывается продолжительность периода нагрузки, напримерS2 – 30 мин.

    3. Повторно-кратковременный режим S3 – когда кратковременные периоды работы двигателячередуются с периодами отключения двигателя, причем за период работыпревышение температуры не успевает достигнуть установившихся значений, а за время паузы части двигателя не успевают охладиться до температуры окружающей среды. Общее время работы в повторно-кратковременном режиме разделяются на периодически повторяющиеся циклы продолжительностью
    .

    При повторно-кратковременном режиме работы график нагревания двигателя имеет вид пилообразной кривой (рисунок 4). При достижении двигателем установившегося значения температуры перегрева, соответству­ющего повторно-кратковременному режиму
    ,температура перегрева двигателя продолжает колебаться от
    до
    . При этом
    меньше установившейся температуры перегрева, которая наступила бы, если режим работы двигателя был продолжитель­ным (
    <
    ).

    Повторно-кратковременный режим характеризуется относительной продол­ жительностью включения:
    .
    Действующим стандартом преду­смотрены номинальные повторно-кратковременные режимы с ПВ 15, 25, 40 и 60 % (для продолжительного ре­жима ПВ=100%). В условном обозна­чении повторно-кратковременного ре­жима указывают величину ПВ, напри­мер, S3-40%.

    При выборе двигателя, в паспорте которого, указана мощность при ПВ=100% пересчет следует делать по формуле:

    .

    Рассмотренные три номинальных режима считаются основными. Также стандартом предусмотрены дополнительные режимы:

      повторно-кратковременный режим S4 с частыми пусками, с числом включений в час 30, 60, 120 или 240;

      повторно-кратковременный режим S5 с частыми пусками и электрическим торможением в конце каждого цикла;

      перемещающийся режим S6 с частыми реверсами и электрическим торможением;

      перемещающийся режим S7 с частыми пусками, реверсами и электрическим торможением;

      перемещающийся режим S8 с двумя и более разными частотами вращения;

    Рисунок 1 Рисунок 2


    Рисунок3 Рисунок 4

    "

    Электродвигатели, преобразующие электрическую энергию в механическую, создают вращательное движение; значительная часть машин-орудий также имеет вращающиеся рабочие органы; поэтому представляется целесообразным вывод уравнения движения сделать сначала для случая вращательного движения .

    В соответствии с основным законом динамики для вращающегося тела векторная сумма моментов, действующих относительно оси вращения, равна производной момента количества движения:

    В системах электропривода основным режимом работы электрической машины является двигательный. При этом момент сопротивления имеет тормозящий характер по отношению к движению ротора и действует навстречу моменту двигателя. Поэтому положительное направление момента сопротивления принимают противоположным положительному направлению момента двигателя, в результате чего уравнение (5.1) записывается в виде:

    (5.2)

    Уравнение движения привода (5.2) показывает, что развиваемый двигателем вращающий момент уравновешивается моментом сопротивления на его валу и инерционным или динамическим моментом . Где ω - угловая скорость этого звена, рад/с.

    Отметим, что угловая скорость (рад/с) связана с частотой вращения n (об/мин) соотношением

    В уравнении (5.2) принято, что момент инерции привода является постоянным, что справедливо для значительного числа производственных механизмов. Здесь моменты являются алгебраическими, а не векторными величинами, поскольку оба момента и действуют относительно одной и той же оси вращения. Правую часть уравнения (5.2) называют инерционным (динамическим) моментом (), т.е.

    Этот момент проявляется только во время переходных режимов, когда изменяется скорость привода. Из (5.3) следует, что направление динамического момента всегда совпадает с направлением ускорения электропривода. В зависимости от знака динамического момента различают следующие режимы работы электропривода:

    1) , т.е. , имеет место ускорение привода при , и торможение привода при .

    2) , т.е. , имеет место замедление привода при , и ускорение при .

    3) , т.е. , в данном случае привод работает в установившемся режиме, т.е. .

    Выбор знаков перед значениями моментов зависит от режима работы двигателя и характера моментов сопротивления.

    Наряду с системами, имеющими только элементы, находящиеся во вращательном движении, иногда приходится встречаться с системами, движущимися поступательно . В этом случае вместо уравнения моментов необходимо рассматривать уравнение сил, действующих на систему.

    При поступательном движении движущая сила всегда уравновешивается силой сопротивления машины и инерционной силой , возникающей при изменениях скорости. Если масса тела выражена в килограммах, а скорость - в метрах в секунду, то сила инерции, как и другие силы, действующие в рабочей машине, измеряются в ньютонах ().

    В соответствии с изложенным уравнение равновесия сил при поступательном движении записывается так:

    . (5.4)

    В (5.4) принято, что масса тела является постоянной, что справедливо для значительного числа производственных механизмов.