Как называется турбина в машине. Как работает турбина машины. Принцип действия, а также мое подробное видео. Основные причины выхода из строя турбины

Турбокомпрессор является решением, которое устанавливается как на бензиновый, так и практический на каждый современный дизельный двигатель автомобиля. в обиходе называются турбодизелями. Указанный компрессор представляет собой своеобразный насос для воздуха, который приводится в действие турбиной. Турбину дизельного двигателя вращает энергия выхлопных газов.

Главной задачей устройства является нагнетание воздуха в цилиндры дизельного под давлением. Чем больше воздуха поступит в камеру сгорания, тем большее количество солярки дизель сможет сжечь. Результатом становится значительное увеличение мощности двигателя без необходимости физически увеличивать объем цилиндров.

Читайте в этой статье

Принцип работы и конструкция дизельного турбонагнетателя

Турбокомпрессор дизельного двигателя состоит из двух колес: турбинного и компрессорного. Данные колеса еще могут называться крыльчаткой. Крыльчатка турбины напрямую и жестко соединена с компрессорным колесом посредством оси. Устройство нагнетателя можно разделить на главные составные части:

  • корпус компрессора (1);
  • компрессорное колесо (2);
  • вал ротора или ось (3);
  • корпус турбины (4),
  • турбинное колесо(5);
  • корпус подшипников;

Турбина имеет в основе ротор (крыльчатку), который закреплен на оси и заключен в специальный корпус. Постоянный контакт всех элементов турбины с раскаленными газами обуславливает необходимость изготовления ротора и корпуса турбины из особых жаропрочных материалов.

Крыльчатка и ось вращаются в противоположных направлениях с высокой частотой, в результате чего осуществляется плотный прижим одного элемента к другому. Поток отработавших газов проникает в выпускной коллектор, после чего оказывается в специальном канале. Данный канал находится в корпусе турбонагнетателя. Корпус имеет своеобразную форму-улитку. После прохождения улитки, отработавшие газы разгоняются и подаются на ротор. Так осуществляется вращение турбины.

Конструкция устройства может отличаться на разных типах дизельных двигателей. Главным отличием выступает разное количество каналов для движения выхлопных газов в корпусе. Также могут дополнительно присутствовать решения, которые позволяют управлять потоком отработавших газов внутри корпуса (турбина с изменяемой геометрией) и т.п.

Устройство компрессора

Компрессор имеет корпус и колесо (ротор). Корпус компрессора алюминиевый. Ротор крепится на оси турбины аналогично крыльчатке. Колесо компрессора имеет лопасти, материалом изготовления которых также является алюминий. Задачей компрессорного колеса становится забор воздуха, который проходит через его центр.

Форма лопастей заставляет воздух отбрасываться к стенкам корпуса компрессора, благодаря чему происходит его сжатие. Далее поток сжатого воздуха подается во впускной коллектор двигателя.

Ось турбокомпрессора

Ось является центральной частью турбонагнетателя и закреплена внутри корпуса на подшипниках скольжения. Смазка оси реализована при помощи подачи . С обеих сторон устанавливаются специальные уплотнительные кольца и прокладки.

Данные элементы препятствуют обильным утечкам масла, чтобы смазка не попадала в область нахождения компрессора и турбины. Сами масляные уплотнения не обеспечивают полной герметичности. Данные решения являются уплотнителями, которые функционируют благодаря разнице давлений, которые возникают в процессе работы турбокомпрессора.

Также уплотнения минимизируют прорыв воздуха из компрессора и газов из турбины в корпус оси. Стоит отметить, что полностью исключить попадание выхлопа и сжатого компрессором воздуха не удается. Излишки удаляются по сливному маслопроводу вместе с маслом и оказываются в картере дизельного двигателя.

Турбояма и турбоподхват

Крыльчатка турбины и компрессорное колесо закреплены на одной общей оси. По этой причине наблюдается определенная зависимость, которая заключается в увеличении подачи воздуха компрессором только с ростом оборотов турбины. Специалисты выделяют понятие турбоямы (турболаг), что означает задержку прироста мощности дизеля при резком нажатии на акселератор.

Турбояма возникает в результате инерционности всей системы турбонаддува. Дело в том, что для раскручивания турбинного колеса поступающими на крыльчатку выхлопными газами нужно определенное время. Турбоподхват является резким увеличением оборотов ДВС, который возникает следом за турбоямой.

Крыльчатка турбины раскручивается выхлопными газами для создания эффективного давление наддува турбокомпрессором. При определенных условиях турбина может вращаться с очень большой частотой, что зависит от конструктивных особенностей корпуса устройства и интенсивности потока отработавших газов.

Читайте также

Самостоятельная проверка турбокомпрессора дизельного двигателя. Проверка нагнетателя без снятия. Наличие масла в корпусе турбины, люфт вала, крыльчатка.

  • Когда и почему возникает необходимость настроить актуатор турбокомпрессора. Принцип работы устройства, особенности и доступные способы настройки вестгейта.


  • Часто новички мне задают вопрос – а как работает турбина? Конечно же, это применительно к машинам (однако они применяются много где). Интерес к этому агрегату растет день ото дня, все потому что сейчас на рынок выходит все больше турбированных моторов. Обусловлено это увеличение производительности, а также экологическими нормами. Как не прискорбно, но думаю — через лет так скажем 10 – 15, обычных атмосферников уже и не останется …


    Для начала небольшое определение.

    Турбина автомобиля – это агрегат, который призван повысить производительность двигателя внутреннего сгорания, за счет увеличения крутящего момента – следовательно, и лошадиных сил. Даже при малом объеме такая силовая установка может обойти обычный атмосферный двигатель большего объема.

    Как видите устройство «вроде как» полезное, причем оно поднимает , примерно на 10 – 20%, что очень существенно!

    Если сказать простыми словами — то при малом объеме, мы получаем больше мощности!


    Отличить обычный и турбированный двигатель, можно даже на слух, достаточно запустить их и послушать. Турбина издает небольшой свист, который будет все сильнее, если обороты двигателя растут. Если положить руку на сердце, турбину, возможно установить на любой обычный атмосферный двигатель, главное правильно ее настроить, поэтому для начала давайте вспомним обычный вариант.

    Двигатель внутреннего сгорания – атмосферный

    Принцип давно уже изучен и я бы сказал «избит»! Большинство моторов имеют четырехтактный цикл, конечно есть и двухтактные, но они на автомобилях применяются редко. Как мы можем знать, работа основана на компрессии, вот почему это такой важный показатель, и он должен быть всегда в норме.

    ИТАК (4 такта):

    1 такт – поршень идет вниз, открываются впускные клапана и в цилиндры поступает воздушно-топливная смесь.

    2 такт — сжатие – поршень идет «максимально» вверх, сжимая смесь.

    3 такт – воспламенение – сжатая смесь воспламеняется от свечей зажигания, происходит мини взрыв, который толкает поршень вниз.

    4 такт — выход отработанных газов – открываются другие клапана, которые выводят эти газы, выталкивает их поршень, который также идет наверх.


    Эта «классика» работает вот уже много лет, с момента основания двигателя внутреннего сгорания. Сразу хочется отметить мощность у такого классического строения – повышается за счет увеличения объема цилиндров. ТО есть двигатель объемом в 1,4 литра будет заведомо слабее, чем вариант в 2,0 литра. Но относительно недавно (если брать историю моторостроения), появились первые турбины, которые устанавливаются на этот классический двигатель, и меняют расклад сил.

    Как работает турбина?

    Завораживающее слово «ТУРБО», для многих мальчишек это просто предел мечтаний – некоторые так и хотят прокачать свою ПРИОРУ и «лихачить» по городу. Однако чтобы тюнинговать свой автомобиль, нужно знать устройство турбины.


    Итак – основная задача, этого аппарата нагнетать в двигатель как можно больше воздуха. Я бы даже сказал нагнетать с силой!

    Для чего это делается – как мы уже поговорили сверху, поршни приводятся в движение за счет сжигания воздушно – топливной смеси, которая поступает в цилиндры. Чем больше ее поступило, чем больше мощность может развить силовой агрегат. Сам мотор может засосать ограниченное количество воздуха – вот бы было хорошо, если бы кто-то его туда закачал в большем объеме!

    И этим как раз и занимается турбина. Она раскручивается до безумных значений, порядка 200 – 240 000 оборотов в минуту. И под давлением подает максимально много воздушной смеси в цилиндры двигателя. Это означает что при одинаковом объеме, можно сжигать намного больше этой смеси, что напрямую передается и мощности!

    Если взять строение турбины – то здесь можно выделить две крыльчатки .


    Первая вращается от давления отработанных газов, которые идут через глушитель, к ней жестко подсоединен вал.

    Вторая крыльчатка, также сидит на валу, только с другой стороны и ей передается это вращение. Она начинает засасывать воздух (если хотите как пылесос), и под давлением нагнетать его в двигатель.


    Вал, на котором сидят две крыльчатки (условно назовем их «горячая» и «холодная»), имеет подшипники, которые смазываются маслом двигателя (помимо смазывания, оно забирает и лишнюю температуру), чтобы масло не уходило в отсеки с крыльчатками, за подшипниками есть специальные изоляторы, которые тормозят его расход.


    Как видите принцип работы очень простой. Если все же не поняли, посмотрите мое видео с разъяснением.

    Турбо-яма

    Минусом работы турбированного агрегата, является такое явление как «турбо-яма» (). При низких оборотах турбина раскручивается не сильно, а поэтому не способна нагнетать большое количество воздуха. Если вы резко давите на педаль газа — то нужно какое-то время чтобы отработанные газы дошли до крыльчатки турбины и раскрутили ее! Однако пройдет немного времени, 1 – 2 секунды, прежде чем произойдет «выстрел» динамики.

    В народе это явление называется турбо-ямой, то есть прежде чем резко ускориться, нужно подождать 1 или 2 секунды, пока раскрутится турбина.

    Конечно, сейчас есть такое понятие как – к обычной турбине подсоединяют еще одну, как правило – механическую (а с недавнего времени и ), которая работает на низких оборотах, нагнетая нужное количество воздуха на низах, затем когда обороты вырастают, включается основная. Таким образом, турбо – яма побеждается.


    Про него также у меня есть статья (). Воздух, который нагнетается в цилиндры, под «бешеными» оборотами крыльчатки – нагревается. А при нагреве падает плотность и концентрация кислорода. Чтобы его охладить применяется такое устройство как – интеркуллер, он охлаждает поток, делая его более плотным, что положительно сказывается на производительности.


    Минусы турбин

    Минусы у этого агрегата также существенны:

    1) Это более частая замена масла, потому как подшипники очень требовательны к качеству смазки (все же там просто огромные обороты).

    2) Ресурс не такой большой, обычно ходят по 150 000 километров.

    3) Дорогостоящий ремонт, если менять на немецком автомобиле, то это примерно от 70 000 рублей.

    4) Топливо – с турбиной нужно заправляться высокооктановыми бензинами, не ниже 95, что «бьет» по кошельку.

    5) Охлаждение турбины – старые варианты таких устройств, нужно было правильно охлаждать. Иначе если вы просто заглушите машину, то от перепада температур, крыльчатку просто может «покоробить», далее ремонт. Поэтому, они не дают двигателю сразу заглохнуть, а несколько минут работают на низких оборотах – охлаждая крыльчатку.

    Вот такой вот агрегат эта турбина, из сегодняшней статьи вы поняли – как она работает, теперь вы «подкованы».

    НА этом заканчиваю, думаю было интересно.

    Статья о том, что такое турбонаддув, как он работает, его основные плюсы и минусы. В конце статьи - видео об особенностях и принципах работы турбонаддува.

    Поэтому весьма неплохим решением является использование системы принудительного нагнетания воздуха в камеру сгорания. Самые последние инженерные конструкции охватывают не только улучшение принудительного нагнетания воздуха в топливную систему, но и установку такого же устройства в систему выхлопа отработанных газов.

    Для чего нужен турбонаддув


    Чтобы понимать важность работы турбонаддува и принцип его действия, необходимо знать, что двигатель не может потреблять топливо в чистом виде. Для вспышки бензина в герметичной емкости нужен воздух, иначе двигатель работать не будет.

    То есть, в камеру сгорания должна поступать смесь, состоящая из топлива и воздуха в нужной пропорции. В цилиндре эта смесь сгорает. Появившиеся в результате сгорания газы совершают свою главную работу и затем удаляются через систему выхлопа.

    Обычный турбонагнетатель дает возможность увеличить мощность двигателя путем нагнетания дополнительного давления воздуха в цилиндре. За счет этого воспламеняемость смеси многократно увеличивается, и мощность мотора, разумеется, тоже повышается.


    Проще говоря, с помощью турбонаддува воздух сжимается, и в камеру сгорания он поступает в большем количестве, нежели при атмосферном давлении.

    Устройство и принцип работы турбонагнетателя


    Главная деталь нагнетателя, выполняющая основную функцию – это крыльчатка с лопастями. Вращаясь с огромной скоростью (200 тыс. оборотов в минуту) и действуя как компрессор, она закачивает воздух в турбинную камеру.

    После этого происходит сжатие воздуха, за счет чего объем, который этот воздух занимает, уменьшается. Однако давно известно, что по законам физики во время сжатия воздух имеет свойство нагреваться. И это является главным недостатком системы турбонаддува.

    Разумеется, эта проблема не могла пройти мимо внимания конструкторов. Решая эту задачу, специалисты попробовали использовать промежуточное охлаждение воздуха на пути его перехода в двигатель.

    В результате появился интеркулер. В этом устройстве применяется эффект теплообменника, который имеет свойство охлаждать воздух за счет хладагента. Интеркулер способен увеличить мощность мотора до 20%, и при этом он еще снижает вероятность детонации выхлопных газов.

    Особой разницы между турбонаддувом бензиновых и дизельных двигателей почти нет. Отличие лишь в степени наддува. Дизельные двигатели требуют большего давления, и поэтому они оснащены более мощными нагнетателями воздуха. В бензиновых моторах установлены нагнетатели меньшей мощности, потому что при слишком большом давлении в камере сгорания может возникнуть детонация.

    Преимущества турбонаддува


    «Дармовая» дополнительная мощность. Существует расхожее мнение: наличие добавочной турбины на выхлопном коллекторе мотора порождает добавочную энергию, которая должна вращать точно такую же турбину на впуске, в результате чего выхлопные газы становятся бесплатным источником энергии для нагнетателя.

    Однако эта концепция весьма спорная, потому что существует так называемое сопротивление выпуска. Автомобильные конструкторы многие десятилетия добивались снижения этого сопротивления, потому что именно в этом случае повысится мощность двигателя.

    Для этого в систему монтируется специальное генерирующее устройство, которое значительно снижает выходное сопротивление. Поэтому было бы неправильным считать работу турбонаддува на дармовой энергии. «Дешевая придаточная энергия» - это будет звучать более точно.

    В техническом отношении этот процесс не представляет ничего сложного. Нагнетатель представляет собой устройство, состоящее из двух колес – компрессорного и турбинного. Турбинное колесо захватывает выхлопные газы, приводящие его в движение. В результате начинает вращаться и компрессорное колесо, которое и служит для сжатия воздуха.

    Компрессор в обязательном порядке контактирует с системой охлаждения, потому что в процессе действия его температура поднимается довольно высоко. Сила наддува регулируется с помощью перепускного клапана. В случае необходимости он может переводить часть выхлопа мимо турбины, чтобы понизить внутрисистемное давление.

    Повышение мощности двигателя без увеличения его объема и массы. Технология турбонаддува позволяет повышать мощность двигателя без увеличения объема цилиндров и их количества. В результате легкие и небольшие по размеру моторы приобретают отличные характеристики, и, кроме этого, сокращается общая масса автомобиля, уменьшаются тормозной путь и время разгона.

    Экономичность. Расход топлива у двигателей, оснащенных системой турбонаддува, в разы меньше, нежели расход топлива у мотора такой же мощности с простым атмосферным нагнетанием воздуха. Это объясняется тем, что в цилиндрах с турбонаддувом на один ход поршня тратится намного меньше топлива за счет полного его сгорания. То есть, бедная смесь компенсируется дополнительным напором воздуха, и в результате мощность увеличивается.

    Недостатки


    Зависимость от оборотов. «Турбояма». Проблема заключается в следующем: нет активного ускорения при разгоне на малых оборотах. Динамика разгона слабая, уступающая даже машинам с атмосферным нагнетанием. А все дело в том, что при малых оборотах энергия выхлопных газов слабая, и, соответственно, турбина нагнетателя тоже вращается слабо, создавая минимальное давление смеси в камере сгорания. То есть, нужный эффект от турбонаддува возникает только при высоких оборотах двигателя.

    Кроме этого, есть еще одна проблема: медленность процесса нагнетания воздуха. Действительно, для того, чтобы создать нужное давление на впуске, необходимо некоторое время. Специалисты проводят инженерные исследования в этой области, и уже в какой-то степени удалось уменьшить этот интервал в динамике работы нагнетателя.

    Помимо этого, наличие вариатора или автоматической трансмиссии дает возможность машине во время разгона автоматически переключаться на пониженную передачу. За счет этого вредные последствия от инертности нагнетателя ликвидируются.

    Сегодня имеются следующие способы решения проблемы инертности турбонаддува:

    • битурбонаддув (двойной наддув);
    • турбина с адаптивной геометрией;
    • комбинированный наддув.
    При двойном турбонаддуве применяются две небольшие турбины, которые в совокупности работают намного быстрее, чем одна с номинальным размером. Число цилиндров распределяется между этими турбинами поровну. Аналогом такой системы может быть применение нескольких компрессоров, которые приходят в движение на разных оборотах мотора, каждый в своем режиме.

    Турбина с адаптивной геометрией способна изменять размер впускного канала и тем самым регулировать силу потока выхлопных газов, что также повышает эффективность работы системы.

    Комбинированный наддув состоит из турбокомпрессора и механического нагнетателя. Нагнетатель создает нужное давление на малых оборотах, но как только обороты возрастают до определенной величины, в работу включается турброкомпрессор.

    Высокая температура. Как уже было сказано, сжатие воздуха влечет за собой его нагрев, что отражается на работе мотора не самым лучшим образом. Поэтому зачастую приходится подключать дополнительное охлаждение, и на это уходит часть энергии.

    Однако несмотря на перечисленные недостатки, турбонаддув – это отличное средство для повышения мощности и эффективности ДВС, а также его экономичности. Кроме того, многолетний опыт специалистов показывает, что варианты усовершенствования этой системы еще не исчерпаны.

    Должен обладать внушительным набором выдающихся показателей, которые традиционным конструктивным путём достигнуть всё сложнее. Именно поэтому даже в семейных автомобилях всё чаще применяется система принудительного нагнетания, или турбонаддув.

    Передовые конструкторские разработки уже направлены не только на совершенствование наддува системы питания двигателя, которая была изобретена более ста лет назад, но и на оснащение аналогичной системой автомобильного выхлопа. Всё это должно вывести характеристики скромных по рабочему объёму моторов на небывалый уровень.

    Для того чтобы понять, для чего нужен турбонаддув, а также как он действует, необходимо знать, что для полноценной работы двигателю внутреннего сгорания нужно не только топливо, но и воздух, который обеспечит его горение. Фактически, в камеру сгорания должна поступать топливовоздушная смесь в определённой пропорции. После этого происходит сгорание смеси и по завершении рабочего цикла - удаление выхлопных газов.

    Классический турбонагнетатель позволяет добиться увеличения мощности двигателя за счёт создания избыточного давления воздуха в камере сгорания, таким образом повышая воспламеняемость смеси. Турбонаддув фактически создаёт давление, достаточное для того, чтобы сжать воздух и закачать в большее его количество, чем при атмосферном давлении.

    Основной рабочий элемент нагнетателя - лопастная крыльчатка, которая выполняет двойную функцию: засасывает воздух в камеру турбины, а затем, благодаря огромной скорости вращения в 150-200 тысяч оборотов в минуту, создаёт давление, способное уменьшить объём, занимаемый этим воздухом. Как известно из курса физики, в процессе сжатия происходит нагревание воздуха, что можно уже отнести к недостаткам этой системы. Именно необходимость решения данной проблемы вынудила конструкторов прибегнуть к использованию промежуточного охлаждения воздуха, перекачиваемого из турбины в мотор.

    Устройство для такого охлаждения получило название «интеркулер» и использует принцип теплообменника, понижающего температуру воздуха с помощью охлаждающей жидкости.

    Кардинальных отличий между системами турбонаддува, устанавливаемыми на бензиновых и дизельных двигателях, нет, всё зависит только от степени наддува. Как правило, оснащаются более производительными конструкциями, а бензиновые - создающими небольшое давление наддува. Это обусловлено тем, что при существенном повышении оборотов, происходящем при наличии турбокомпрессора, бензиновые моторы склонны к возникновению детонации, поэтому их системы не столь эффективны.

    Преимущества турбонаддува:

    Дополнительная «бесплатная» мощность

    Принято считать, что установка дополнительной турбины на выпускном коллекторе двигателя внутреннего сгорания даст дополнительную энергию для вращения аналогичного устройства на впуске, что позволит вместо простого выброса выхлопных газов получить дополнительный источник энергии для турбонаддува.

    Утверждение это довольно спорное, поскольку на протяжении десятилетий автомобильные инженеры боролись за снижение сопротивления выпуска, что в свою очередь снижает внутренние потери и повышает мощность мотора. Если вмонтировать в эту систему генерирующее устройство, то мы получим существенный рост сопротивления на выходе из мотора. Таким образом, - это не бесплатная дополнительная энергия, уместнее использовать понятие «дешёвая дополнительная энергия».

    Механика этого процесса предельно проста. Турбокомпрессор, создающий избыточное давление на впуске, состоит из двух основных элементов - турбинное и компрессорное колесо. Турбинное колесо использует энергию выхлопных газов для того, чтобы создавать крутящий момент для компрессорного, которое и сжимает воздух. Сам компрессор встраивается в контур системы охлаждения двигателя, поскольку в процессе работы его температура достигает высоких величин. Для регулирования степени наддува используется перепускной клапан, который при необходимости может пускать часть выхлопных газов в обход турбины, чтобы снизить давление внутри системы.

    Оптимизация соотношения массы двигателя и его веса

    Переход на технологию турбонаддува позволил отказаться от необходимости увеличения рабочего объёма и количества цилиндров для повышения мощности двигателя. Это позволяет получить хорошие показатели от небольших и, соответственно, лёгких моторов, в результате чего уменьшается и снаряженная масса автомобиля, и, как следствие, возрастает динамика разгона и сокращается тормозной путь.

    Экономичность

    Если сравнивать показатели удельного турбированного мотора и атмосферного двигателя аналогичной мощности, то разница в пользу первого будет очевидна. Это обусловлено тем, что на один рабочий цикл затрачивается меньше топлива, за счёт повышения полноты его сгорания. Фактически мы имеем обеднённую смесь, негативные факторы которой полностью компенсируются избыточным давлением воздуха.

    Недостатки турбонаддува:

    Провал в разгонной динамике или «турбояма»

    Суть этого явления заключается в том, что при разгоне с малых оборотов, вместо интенсивного ускорения, мы получаем вялую динамику, зачастую уступающую атмосферным аналогам. Дело в том, что работа турбонаддува напрямую связана с частотой вращения коленвала двигателя (при этом механической связи между этими элементами нет), и если эта величина невелика, то и эффективности от наддува не будет.

    Кроме того, определённое влияние на этот процесс оказывает и большая инертность системы надува, поскольку для создания необходимого давления на впуске требуется определённое время. Для решения этой задачи проводится огромная работа, результаты которой уже позволили минимизировать продолжительность такого провала в динамике. Кроме того, переход на автоматическую трансмиссию или использование вариатора позволяет автомобилю автоматически при разгоне переходить на пониженную передачу, что сводит негативное явление к нулю.

    Конструктивное решение вышеописанной проблемы инертности наддува сводится к внедрению одного из следующих механизмов:

    - битурбонаддув (двойной наддув);
    - турбина с адаптивной геометрией;
    - комбинированный наддув.

    Двойной турбонаддув (битурбонаддув) заключается в применении двух параллельных систем наддува и базируется на том принципе, что две небольшие турбины обладают меньшей инерцией, чем одна полноразмерная. Количество цилиндров, для которых каждая из этих турбин создаёт необходимое давление, делится между ними поровну. Разновидностью этой системы является использование нескольких компрессоров, активируемых на разных оборотах двигателя (каждый в своём рабочем диапазоне).

    Турбина с адаптивной геометрией позволяет повысить эффективность системы за счёт оптимизации потока выхлопных газов путём изменения площади впускного канала.

    Комбинированный наддув представляет собой систему, состоящую из механического нагнетателя, обеспечивающего необходимое давление на малых оборотах, и турбокомпрессора, включающегося в работу по достижении определённой частоты вращения коленвала.

    Повышенная температура

    Как уже упоминалось выше, сжатие воздуха неразрывно связано с его нагревом, что негативно сказывается на работе двигателя. Ввиду этого, необходимо вводить дополнительную систему охлаждения, которая также является потребителем вырабатываемой энергии.

    На мощностные характеристики, которые демонстрирует автомобиль, непосредственно влияет показатель наполнения цилиндров воздушно-топливной смеси. В целях увеличения степени обогащения этой смеси компании-производители оборудуют транспортные средства турбокомпрессорами . Вместе с тем, далеко не каждая модель и модификация той или иной марки автомобиля имеет под капотом турбированный мотор. Это первая причина, по которой владельцы устанавливают турбину на авто. Кроме того, турбонагнетатель имеет свойство со временем изнашиваться. В этом случае нужна замена турбины.

    В чем преимущества турбин на автомобиле?

    Турбированный силовой агрегат приобретает все большую популярность, и для этого есть множество причин, поскольку перечень преимуществ турбонагнетателя весьма обширен. Привлекательность турбины состоит в следующем:

    • значительное увеличение мощности транспортного средства;
    • существенное снижение топливного расхода;
    • быстрая окупаемость турбины, что зависит от частоты использования автомобиля;
    • экономия, поскольку имеющийся в машине двигатель не требуется менять на более мощную версию, что достаточно дорого;
    • стабильность функционирования двигателя;
    • экологичность - у авто с турбированным двигателем наблюдается меньшая степень токсичности выхлопных газов.

    Как правильно выбрать турбину?

    Турбина и двигатель должны функционировать сбалансировано, и каждый тип мотора требует определенной турбины. Разумеется, лучше всего приобретать оригинальный турбонаддув , в этом случае производитель учитывает все особенности двигателей своих же автомобилей и выпускает турбины под конкретные силовые агрегаты, которые идеально им подходят. Поскольку такие турбины стоят недешево, стоит обратить внимание на неоригинальные модели, но выпускаемые известными изготовителями, имеющими лицензии на такое производство. В этом случае турбины на каждом этапе производства проходят тщательное тестирование.

    Каковы критерии выбора?

    При выборе турбины следует определиться с тремя основными факторами:

    1. как планируется эксплуатировать автомобиль - для гонок или простых повседневных поездок;
    2. каковы характеристики мотора - чем меньше рабочий объем двигателя, тем меньшая турбина требуется, и наоборот. Для двигателей с объемом 3 и более литра понадобится сдвоенная или большая турбина;
    3. какой тип мотора планируется оснащать ей - от этого зависит материал, из которого она изготовлена. Дизельные и бензиновые агрегаты работают в разном температурном режиме, и турбина должна обладать соответствующей жароустойчивостью.

    Не следует переоценивать возможности автомобиля и «вешать» на него силовые нагрузки, к которыми он может не справиться. Чтобы не ошибиться в выборе, лучше проконсультироваться со специалистом.