Готфрид вильгельм лейбниц. Арифмометр Лейбница: история создания, особенности, описание, фото

Арифмометр (от греч. αριθμός - «число», «счёт» и греч. μέτρον - «мера», «измеритель») - настольная (или портативная) механическая вычислительная машина, предназначенная для точного умножения и деления, а также для сложения и вычитания.

Настольная или портативная: Чаще всего арифмометры были настольные или «наколенные» (как современные ноутбуки), изредка встречались карманные модели (Curta). Этим они отличались от больших напольных вычислительных машин, таких как табуляторы (Т-5М) или механические компьютеры (Z-1, Разностная машина Чарльза Бэббиджа).

Механическая: Числа вводятся в арифмометр, преобразуются и передаются пользователю (выводятся в окнах счётчиков или печатаются на ленте) с использованием только механических устройств. При этом арифмометр может использовать исключительно механический привод (то есть для работы на них надо постоянно крутить ручку. Этот примитивный вариант используется, например, в «Феликсе») или производить часть операций с использованием электромотора (Наиболее совершенные арифмометры - вычислительные автоматы, например «Facit CA1-13», почти при любой операции используют электромотор).

Точное вычисление: Арифмометры являются цифровыми (а не аналоговыми, как например логарифмическая линейка) устройствами. Поэтому результат вычисления не зависит от погрешности считывания и является абсолютно точным.

Умножение и деление: Арифмометры предназначены в первую очередь для умножения и деления. Поэтому почти у всех арифмометров есть устройство, отображающее количество сложений и вычитаний - счётчик оборотов (так как умножение и деление чаще всего реализовано как последовательное сложение и вычитание; подробнее - см. ниже).

Сложение и вычитание: Арифмометры могут выполнять сложение и вычитание. Но на примитивных рычажных моделях (например, на «Феликсе») эти операции выполняются очень медленно - быстрее, чем умножение и деление, но заметно медленнее, чем на простейших суммирующих машинах или даже вручную.

Не программируемый: При работе на арифмометре порядок действий всегда задаётся вручную - непосредственно перед каждой операцией следует нажать соответствующую клавишу или повернуть соответствующий рычаг. Это особенность арифмометра не включается в определение, так как программируемых аналогов арифмометров практически не существовало.

24.Идеи Чарльза Бэббиджа

Ра́зностная маши́на Чарльза Бэббиджа - механический аппарат, изобретённый английским математиком Чарльзом Бэббиджем, предназначенный для автоматизации вычислений путём аппроксимации функций многочленами и вычисления конечных разностей. Возможность приближённого представления в многочленах логарифмов и тригонометрических функций позволяет рассматривать эту машину как довольно универсальный вычислительный прибор.

Первая идея разностной машины была выдвинута немецким инженером Иоганном Мюллером в книге, изданной в 1788 году.

Однако, Чарльз Бэббидж почерпнул идею для своего проекта не у Мюллера, а из работ Гаспара де Прони, занимавшего должность руководителя бюро переписи при французском правительстве с 1790 по 1800 год.

Прони, которому было поручено выверить и улучшить логарифмические тригонометрические таблицы для подготовки к введению метрической системы, предложил распределить работу по трём уровням. На верхнем уровне группа крупных математиков занималась выводом математических выражений, пригодных для численных расчётов. Вторая группа вычисляла значения функций для аргументов, отстоящих друг от друга на пять или десять интервалов. Подсчитанные значения входили в таблицу в качестве опорных. После этого формулы отправляли третьей, наиболее многочисленной группе, члены которой проводили рутинные расчёты и именовались «вычислителями». От них требовалось только аккуратно складывать и вычитать в последовательности, определённой формулами, полученными от второй группы.

Работы де Прони (так и не законченные ввиду революционного времени), с которыми Бэббидж познакомился, находясь во Франции, навели Бэббиджа на мысль о возможности создания машины, способной заменить третью группу - вычислителей. В 1822 году Бэббидж опубликовал статью с описанием такой машины, а вскоре приступил к её практическому созданию. Как математику, Бэббиджу был известен метод аппроксимации функций многочленами и вычислением конечных разностей. С целью автоматизации этого процесса он начал проектировать машину, которая так и называлась - разностная. Эта машина должна была уметь вычислять значения многочленов до шестой степени с точностью до 18-го знака.

В том же 1822 году Бэббиджем была построена модель разностной машины, состоящая из валиков и шестерней, вращаемых вручную при помощи специального рычага. Заручившись поддержкой Королевского общества, посчитавшего его работу «в высшей степени достойной общественной поддержки», Бэббидж обратился к правительству Великобритании с просьбой о финансировании полномасштабной разработки. В 1823 году правительство Великобритании предоставило ему субсидию в размере 1500 фунтов стерлингов (общая сумма правительственных субсидий, полученных Бэббиджем на реализацию проекта, составила в конечном счёте 17 000 фунтов стерлингов).

Разрабатывая машину, Бэббидж и не представлял всех трудностей, связанных с её реализацией, и не только не уложился в обещанные три года, но и спустя девять лет вынужден был приостановить свою работу. Однако часть машины все же начала функционировать и производила вычисления даже с большей точностью, чем ожидалось.

Копия разностной машины в лондонском Музее науки

Конструкция разностной машины основывалась на использовании десятичной системы счисления. Механизм приводился в действие специальными рукоятками. Когда финансирование создания разностной машины прекратилось, Бэббидж занялся проектированием гораздо более общей аналитической машины, но затем всё-таки вернулся к первоначальной разработке. Улучшенный проект, над которым он работал между 1847 и 1849 годами, носил название «Разностная машина № 2» (англ. Difference Engine No.

Арифмометр (машина) Лейбница

Аппарат, вошедший в историю под названием «калькулятор Лейбница», можно смело считать прадедушкой современных компьютеров. Различные вычислительные устройства создавались и ранее. Заслуга Лейбница в том, что изобретенные и реализованные им принципы вычислений и их механизации активно применялись на практике в течение трех столетий, до 1970-х годов.

Называть данный механический калькулятор, прообраз будущих арифмометров, предком компьютеров – не преувеличение. В отличие многих от других устройств аналогичного назначения (например, логарифмической линейки), он использовал цифровой принцип – уже в XVII веке. Кроме того, операции умножения и деления были механизированы и производились по тем временам моментально.

Для умножения 9 на 3 в арифмометре Лейбница не нужно было вручную складывать три девятки. Все происходило автоматически. А ведь даже в самых первых электронно-вычислительных машинах XX века результат такого умножения иногда получался путем трехкратного повторения операции сложения.

Имя великого Готфрида Вильгельма Лейбница (1646-1716), однако, известно не благодаря калькулятору, а благодаря работам в области психологии, истории, лингвистики, но главным образом – физики и математики. В математике он заложил основы математического анализа, комбинаторики, а также математической логики. Также он описал двоичную систему счисления, которую использует большинство современных цифровых приборов.

Идея вычислительной машины пришла Лейбницу в голову не сама по себе. Первые наметки появились после того, как он познакомился с другим великим физиком, математиком, изобретателем и астрономом того времени – Кристианом Гюйгенсом. Проводя свои астрономические изыскания, Гюйгенс обнаружил туманность Ориона, описал кольца Сатурна и совершил еще много открытий. В процессе своих исследований он был вынужден делать массу вычислений. Лейбниц пожалел коллегу, сказав, что тот занимается рутинными математическими операциями и сел за создание машины.

Получившееся устройство было не первым в своем роде. Физик, математик, писатель и философ Блез Паскаль представил свою «Паскалину» 30 годами раньше. До этого в разной степени удачные попытки делались еще в Древнем Китае. Лейбниц обо всем этом знал и это учитывал, и его арифмометр, по сравнению со всем, что изобреталось ранее, был почти настолько же более совершенен, насколько современные автомобили совершеннее первых фордовских моделей.

Дебютная публичная демонстрация «арифметического инструмента» состоялась в 1673 году на заседании Лондонского королевского общества. Лейбниц признавал определенное несовершенство нового прибора, но обещал его улучшить, чем с перерывами занимался на протяжении почти 40 лет своей жизни. В конце концов он добился того, что на его калькуляторе можно было практически мгновенно перемножать 12-разрядные числа. Но и обошлась эта затея дорого даже для небедного ученого. В общей сложности сумма была эквивалентной зарплате министра того времени почти за четверть века.

В 1697 году Лейбниц познакомился с Петром I. Первоначально их отношения были довольно прохладными. Лейбниц даже написал стихотворение, в котором желал побитому Петром Карлу XII завоевать Россию «от Москвы до самых до окраин». Однако со временем они подружились, и первый российский император назначил ученому изрядную пенсию и сделал тайным советником юстиции. В благодарность Лейбниц подарил Петру экземпляр своего арифмометра, который, по некоторым данным, Петр передарил китайскому императору.

Лейбниц утверждал, что ему со всех сторон поступают заказы на его машину, однако реальные запросы удалось удовлетворить довольно быстро. Не вполне известно, по какой цене, но можно смело предположить, что по немаленькой. Оказалось, что XVII и даже XVIII век был еще не готов к массовому производству и внедрению подобных устройств.

Главным новшеством в калькуляторе Лейбница было использование ступенчатого валика особой конструкции. Он применялся в счетных устройствах даже в середине двадцатого столетия и лежал в основе конструкции арифмометра Томаса – первой счетной машины массового производства. Другой важной новацией в машине Лейбница было наличие подвижной части. Эта подвижная часть затем получила название каретки и стала непременной составляющей любого механического и электрического арифмометра.

По мнению отца кибернетики Норберта Винера, если бы кибернетика нуждалась в святом покровителе, им должен был бы стать Лейбниц. Конечно, Винер имел в виду в первую очередь работы Лейбница по математической логике и двоичной системе счисления. Однако в те далекие времена ученые были замечательны своей многогранностью и редко оказывались чистыми теоретиками. Поэтому калькулятор Лейбница, хоть и был десятичным, стал вехой в истории кибернетики и информатики.

Добавить комментарий

Имя: E-mail:

Защита от спама: одна тысяча шестьсот девяносто два (число):*

Счетный аппарат Лейбница – это открытие ХVII века, аппарат, с помощью которого можно было выполнять четыре арифметические операции механическим путем. Вскоре изобретение получило название «калькулятор Лейбница» и за короткий срок распространилось, как по Германии – родине открытия, так и по всей Европе. Этот вычислительный аппарат стал не только одним из истоков механизированной вычислительной техники, а и прообразом калькулятора.

История возникновения «калькулятора Лейбница»

Вильгельм Лейбниц решил создать механический суммирующий аппарат после знакомства с известным на то время математиком и физиком Христианом Гюйгенсом. После того, как Лейбниц более детально ознакомился со сложными, трудоемкими расчетами, с которыми Гюйгенсу приходилось иметь дело, ученому пришла идея создать механизм, который смог бы облегчить процесс вычисления.

В 70-х годах Лейбниц приводит первое описание своего изобретения. В 1672 году исследователь создал усовершенствованный эскиз аппарата, а через год уже представил общественности новый механизм. Лейбниц, говоря свою речь, отметил, что аппарат еще не совершенен, однако он будет и далее заниматься его модернизацией.

С 1674 под 1676 год велась работа над улучшением аппарата, и в Лондоне прошла презентация обновленной версии. Существующий вариант был лишь макетом нужного механизма и пока еще не мог работать на полную мощность. «Калькулятор Лейбница» в том смысле, в котором о нем говорит история, уже был разработан в середине 90-х годов. Это был двенадцатиразрядый механизм, который впоследствии все равно поддался изменениям. Последний и окончательный вариант аппарата был сделан в 1710 году. На свое изобретение ученый затратил 24 000 талеров, тогда как зарплата министра за год в те времена была не больше 2000 талеров.

«Калькулятор Лейбница» - что это?

Сначала Лейбниц хотел лишь усовершенствовать устройство Паскаля, однако ознакомившись с механизмом более детально, понял, что следует создавать нечто совершенно новое.

Сам создатель этого механизма всегда отмечал, что его изобретение кардинально отличается от механизма Паскаля, так как оно может делить и умножать огромные числа в считанные минуты, не используя метод поочередного сложения и вычитания. Такое кардинальное различие возникло, благодаря специальному цилиндру, сбоку которого находились зубцы разного размера. Вскоре эта деталь стала называться «ступенчатым валиком». С помощью этого нововведения при процессе умножения не нужно было несколько раз набирать множимое, следовало набрать число один раз и провернуть ручку, находившуюся на основном приводном колесе, на столько вращений, на сколько нужно умножить число. Если же число при умножении было слишком велико, то операция занимала немного больше времени. Лейбниц придумал передвигать множимое, то есть можно было умножать на единицу, десяток, сотню и т.д.

Также, чтобы механизм работал более слаженно и быстро, ученый создал дополнительный счетчик, который был разделен на три части. На наружной части находились числа от нуля до девяти, предназначенные для того, чтобы можно было посчитать количество прибавлений множимого при процессе умножения. Эта часть счетчика была статична.

С помощью средней части дополнительного механизма можно было рассчитать количество проведенных операций сложения при умножении и количество операций вычитания при делении. Эта часть была подвижной.

Внутренний механизм также служит для подсчета количества раз операций вычитания при делении.

Хотя о «калькуляторе Лейбница» было известно во всей Европе, этот аппарат не был достаточно распространен из-за высокой цены и ряда ошибок, появляющихся при сдвиге разряда. Однако такие нововведения, как ступенчатый валик и перенос множителя внесли свой вклад в развитие вычислительной техники.

Лейбниц Готфрид Вильгельм

Лейбниц Готфрид Вильгельм – это одна из ведущих фигур в Европе ХVII века, способствующая развитию науки. Свою исследовательскую деятельность будущий ученый начинает во время службы при герцогском дворе, где создает новый механизм арифмометра, который в несколько раз по своим способностям превосходил паскалевский вариант. Аппарат с легкостью производит операции умножения, деления, а также способен извлекать корни из чисел.

У Лейбница есть целая череда научных достижений, которые несут определенную ценность. Одним из самых значительных вкладов в исследовательскую деятельность стало создание математического анализа, без ранее изложенных основ Ньютона. В работе «Новый метод максимумов и минимумов» Вильгельм излагает принципы исчисления с помощью дифференциалов.

В конце 80-х ХVII века ученый классифицирует вещественное число на алгебраическое и трансцендентное, а несколькими годами ранее проделывает ту же операцию с кривыми линиями. Также благодаря Лейбницу появляется такой символ как интеграл, который исследователь определяет, как операцию противоположную дифференцированию.

Также Вильгельм исследует вопрос линейных систем и фактически, благодаря ему появляется значение определителя. Однако в то время это достижение не вызвало интереса в научной сфере, поэтому линейная алгебра начала свое существование лишь спустя более 50 лет.

Система, которая лежит в основе современной компьютерной техники, обязана изобретению Лейбница, который создал двоичную систему исчисления от нуля до одного.
Лейбниц сделал огромный вклад в развитие разных отраслей науки,что привело Германию к большому скачку вперед после упадка, в котором пребывала Германия после 30-летней войны.

Калькулятор Лейбница

История создания

Идея создания машины, выполняющей вычисления, появилась у выдающегося немецкого математика и философа Готфрида Вильгельма Лейбница после его знакомства с голландским математиком и астрономом Христианом Гюйгенсом . Огромное количество вычислений, которое приходилось делать астроному, навело Лейбница на мысль о создании механического устройства, которое могло бы облегчить такие расчёты («Поскольку это недостойно таких замечательных людей, подобно рабам, терять время на вычислительную работу, которую можно было бы доверить кому угодно при использовании машины»).

Механический калькулятор был создан Лейбницем в году. Сложение чисел выполнялось при помощи связанных друг с другом колёс, так же как на вычислительной машине другого выдающегося учёного-изобретателя Блеза Паскаля - «Паскалине ». Добавленная в конструкцию движущаяся часть (прообраз подвижной каретки будущих настольных калькуляторов) и специальная рукоятка, позволявшая крутить ступенчатое колесо (в последующих вариантах машины - цилиндры), позволяли ускорить повторяющиеся операции сложения, при помощи которых выполнялось деление и перемножение чисел. Необходимое число повторных сложений выполнялось автоматически.

Машина была продемонстрирована Лейбницем во Французской академии наук и Лондонском королевском обществе. Один экземпляр калькулятора попал к Петру Первому , который подарил её китайскому императору, желая удивить последнего европейскими техническими достижениями.

Были построены два прототипа, до сегодняшнего дня только один сохранился в Национальной библиотеке Нижней Саксонии (нем. Niedersächsische Landesbibliothek ) в Ганновере , Германия. Несколько поздних копий находятся в музеях Германии, например, один в Немецком музее в Мюнхене.

Описание

Доступные операции

Машина Лейбница уже умела проводить операции умножения, деления, сложения и вычитания в десятичной системе счисления.

Наследие

Несмотря на недостатки калькулятора Лейбница, он дал изобретателям калькуляторов новые возможности. Привод, изобретённый Лейбницем - шагающий цилиндр или колесо Лейбница - использовался во многих вычислительных машинах на протяжении 300 лет, до 1970-х годов.

См. также

Литература

  • Знакомьтесь: компьютер = Understanding computers: Computer basics: Input/Output ; Пер. с англ. К.Г.Батаева; Под ред. и с пред. В.М.Курочкина - Москва: Мир, 1989. - 240 с., ил. ISBN 5-03-001147-1 (русск).

Wikimedia Foundation . 2010 .

Смотреть что такое "Калькулятор Лейбница" в других словарях:

    У этого термина существуют и другие значения, см. Калькулятор (значения). Современный инженерный калькулятор Калькулятор … Википедия

    В показанном положении, счётное колесо входит в зацепление с тремя из девяти зубъев колеса Лейбница. Колесо Лейбница или шаговый барабан было цилиндром с набором зубьев увеличивающейся длины, которые затем входили в зацепление со счётным колесом … Википедия

    1932 года выпуска. Арифмометр (от греч. αριθμός «число», «счёт» и греч … Википедия

    Запрос «АВМ» перенаправляется сюда; для просмотра других значений см. АВМ (значения). Аналоговый компьютер аналоговая вычислительная машина (АВМ), которая представляет числовые данные при помощи аналоговых физических переменных (скорость,… … Википедия - О романе Брюса Стерлинга и Уильяма Гибсона см. Машина различий. Часть разностной машины … Википедия

    Общее название для средств автоматизации расчётов, использующих механизмы. Примерами механических вычислительных машин являются: Антикитерский механизм Калькулятор Лейбница Считающие часы Шикарда Суммирующая машина Паскаля Арифмометры Суммирующие … Википедия

    Здесь представлен список изобретателей, которые обогатили мир, сделали изобретения, которыми пользуется всё человечество. Помимо имени изобретателя даются годы его жизни и страна (или страны), в которой он жил и работал, а также наиболее значимые … Википедия

Можно понять гордость Лейбница, писавшего тогда Томасу Бернету: “Мне посчастливилось построить такую арифметическую машину, которая совершенно отлична от машины Паскаля, поскольку дает возможность мгновенно выполнять умножение и деление над огромными числами”. Арифметическая машина Лейбница была первой в мире машиной, предназначенной для выполнения четырех действий арифметики.

Счетная машина, над которой Лейбниц начал работать в 70-е годы, представляла шаг в направлении поиска "универсального языка". Первое описание "арифметического инструмента" сделано Лейбницем в 1670 году. Через два года он составил новое эскизное описание, на основе которого был, по-видимому, изготовлен тот экземпляр, который ученый демонстрировал в феврале 1673 г. на заседании Лондонского Королевского общества. Лейбниц заявил, что новый арифметический инструмент придуман им с целью механически выполнять все арифметические действия надежно и быстро, особенно умножение. Под конец своего выступления он признал, что инструмент несовершенен, обещав его улучшить, как только вернется в Париж, где им нанят с этой целью мастер, которому он даст распоряжение изготовить полный инструмент для нужд Общества. Последнее поблагодарило его за такое проявление уважения и щедрости. Действительно, в 1674-1676 гг. Лейбниц внес существенные усовершенствования в машину, а в 1676 г., выполняя данное им Королевскому обществу обещание, привез в Лондон новый вариант счетной машины. Однако это была модель с малой разрядностью чисел, а не арифмометр, пригодный для практических вычислений. Такой арифмометр был построен под руководством Лейбница только в 1694 г. в Ганновере, где после возвращения из Парижа он прожил почти всю жизнь. Впоследствии Лейбниц еще несколько раз возвращался к своему изобретению; последний вариант был предложен им в 1710 г.

Хотя работа Лейбница над арифмометром была и длительной, но отнюдь не непрерывной, поскольку автор машины одновременно трудился в самых различных областях науки. "Уже свыше двадцати лет назад, - писал он в 1695 г., - французы и англичане видели мою счетную машину... с тех пор Ольденбург, Гюйгенс и Арно, сами или через своих друзей, побуждали меня издать описание этого искусного устройства, а я все откладывал это, потому что я сперва имел только маленькую модель этой машины, которая годится для демонстрации механику, но не для пользования. Теперь же с помощью собранных мною рабочих готова машина, позволяющая перемножать до двенадцати разрядов. Уже год, как я этого достиг, но рабочие еще при мне, чтобы можно было изготовить другие подобные машины, так как их требуют из разных мест" (стоит упомянуть, что по признанию самого Лейбница, работа над машиной обошлась ему в 24 000 талеров - огромную по тем временам сумму, если учесть, что годовая зарплата министра в немецком герцогстве или королевстве составляла 1000-2000 талеров.).

Интересно, что один из первых экземпляров "арифметического инструмента" конструкции 1694 г. Лейбниц намеревался подарить Петру I, но машина оказалась неисправной, а механик ученого не смог ее починить в короткий срок. Лейбница интересовал молодой царь далекой Московии, которого он считал выдающимся реформатором. Начиная с 1711 г. Лейбниц несколько раз встречался с Петром I, был принят на русскую службу в звании тайного советника юстиции и составил для русского правительства план организации Академии наук, а также ряд других проектов и докладных записок. "Я не принадлежу к числу тех, - писал Лейбниц Петру I, - которые питают страсть к своему отечеству или к какой-либо другой нации, мои помыслы направлены на благо всего человеческого рода... и мне приятнее сделать много добра у русских, чем мало у немцев..."

Лейбниц с полным основанием высоко отзывался о собственном изобретении. "Наконец я окончил свой арифметический прибор, - сообщал он в одном из писем Р. Вагнеру. - Подобного прибора до сих пор еще никто не видел, так как он чрезвычайно оригинален". Другому своему корреспонденту, Т. Бернету, он пишет: "Мне посчастливилось построить такую арифметическую машину, которая бесконечно отличается от машины Паскаля, так как моя машина дает возможность совершать умножение и деление над огромными числами мгновенно, притом не прибегая к последовательному сложению и вычитанию".

Упоминание машины Паскаля является не случайным, так как сначала Лейбниц пытался лишь улучшить машину великого француза, но понял, что для выполнения операций умножения и деления необходим совершенно новый принцип, который позволил бы:

    обойтись одной установкой множимого;

    вводить множимое в счетчик (т. е. получать кратные и их суммы) одним и тем же движением приводной ручки.

Лейбниц блестяще разрешил эту задачу, предложив использовать цилиндр, на боковой поверхности которого, параллельно образующей, расположено девять ступенек различной длины. Этот цилиндр впоследствии получил название "ступенчатого валика". Валик S насаживался на четырехгранную ось с нарезкой типа зубчатой рейки (рис. 1). Эта рейка входила в зацепление с десятизубым колесом E, по окружности которого были нанесены цифры 0, 1...9. Поворачивая это колесо так, чтобы в прорези крышки (не указанной на рисунке) появлялась та или другая цифра, перемещали ступенчатый валик параллельно оси зубчатого колеса F основного счетчика. Если теперь повернуть валик на 360 градусов, то в зацепление с колесом F войдут одна, две... наиболее длинные ступеньки, в зависимости от величины сдвига. Соответственно колесо F повернется на 0, 1...9 частей полного оборота; также повернется и связанный с ним цифровой диск или ролик R. Со следующим оборотом валика на счетчик вновь перенесется то же число.

Рис. 1. "Ступенчатый" валик Лейбница

"Арифметический инструмент" состоит из двух частей - неподвижной (Pars immobilis) и подвижной (Pars mobbilis)(одвижная часть машины впоследствии получила название каретки и стала непременной принадлежностью каждого механического (и электромеханического) арифмометра). В неподвижной части помещаются 12-разрядный основной счетчик и ступенчатые валики устройства ввода. Установочная часть этого устройства, состоящая из 8 малых цифровых кругов, расположена в подвижной части машины (рис. 2).

Рис. 2. Принцип действия арифмометра Лейбница

В центре каждого круга есть ось, на которую под крышкой машины насажено зубчатое колесо (колесо Е на рис. 1), а поверх крышки установлена стрелка, которая вращается вместе с осью. Конец стрелки может быть установлен против любой цифры круга.

Вспомогательный счетчик в машине Лейбница выполнен следующим образом.

В подвижной части расположено большое колесо (Rota Majuscula), которое состоит из трех частей: наружной, неподвижной части в виде кольца с десятью цифрами от 0 до 9, средней, вращающейся части кольца с десятью отверстиями, и внутренней, неподвижной части, где цифры от 0 до 9 расположены в обратном, нежели во внешнем кольце, порядке; между цифрами 0 и 9 внешнего кольца имеется такой же, как в машине Паскаля, упор, обращенный к центру колеса.

При повороте главного приводного колеса (Маgna Rota) среднее кольцо большого колеса поворачивается на одно деление по часовой стрелке. Если предварительно вставить штифт в отверстие этого кольца против, скажем, цифры 5 на внешнем кольце, то после пяти оборотов приводного кольца этот штифт наткнется на неподвижный упор и тем самым остановит вращение приводного колеса.

Заметим, что внешнее кольцо большого колеса используется при выполнении операции сложения и умножения, а внутреннее - при выполнении вычитания и деления.

Для сдвига 8-разрядного множимого подвижная часть вращением рукоятки К может смещаться влево (на рис. 2 она смещена влево на два разряда).

Внешний вид "арифметического инструмента" показан на рис. 3.


Рис. 3. Внешний вид арифмометра Лейбница

Машина Лейбница, несмотря на все остроумие ее изобретателя, не получила широкого распространения по двум причинам. Первая и основная заключалась в том, что в конце XVII - начале XVIII века не существовало сколько-нибудь устойчивого спроса на столь сложную и заведомо дорогую машину. Другая причина заключалась в некоторой неточности конструкции, в результате которой передача десятков в арифмометре не всегда происходила удовлетворительно.

Но основная идея Лейбница - идея ступенчатого валика - осталась действительной и плодотворной не только в XVIII, но и в XIX и даже в XX столетиях. На принципе ступенчатого валика был построен и арифмометр Томаса - первая в мире счетная машина, которая изготовлялась промышленно. Ее автором был Карл Ксавье Томас (1785-1870), уроженец городка Кольмар в Эльзасе. Получив в 1820 г. патент на свое изобретение, Томас сумел организовать производство машин: за первые 50 лет было продано около 1500 арифмометров.

Впоследствии арифмометр Томаса был усовершенствован многими изобретателями, в частности немцем Бурхгардтом (1884) и англичанином С. Тейтом (1903). Счетные машины, основанные на принципе "ступенчатого валика", длительное время выпускались в России (например, автоматический арифмометр ВММ-2 курского завода "Счетмаш").