Гидравлическая коробка передач. Кроме того, есть и другие минусы. Устройство роботизированной акпп

История создания гидромеханической коробки передач может быть использована для иллюстрации титанических усилий автопроизводителей, постаравшихся сделать комфорт автомобиля, оснащенного автоматической КПП, одним из основных преимуществ.

В первой половине прошлого века, даже после получения легковым автомобилем мягкой пневматической резины, более или менее рациональной компоновки и распределения массы машины, езда, особенно в городских условиях, по-настоящему «выматывала душу». Что лучше всего чувствуют пассажиры - это рывки и дерганье автомобиля из-за резкой смены крутящего момента на колесах.

На полки истории был отправлен не один десяток всевозможных приспособлений, делающих момент переключения передачи менее болезненным, пока в 50-х годах прошлого века не появился гидротрансформатор, лежащий в основе принципа работы гидромеханической коробки передач. По-настоящему новая конструкция коробки передач начала массово применяться в 60-е на дорогих и тяжелых лимузинах и машинах представительского класса.

Помимо дискомфорта для пассажиров, скачкообразное изменение вращающего момента разрушает узлы и детали трансмиссии. Для тяжелых магистральных грузовиков можно использовать повышенное число передач, позволяющих сглаживать перегрузки трансмиссии. Но для легковых автомобилей гидромеханическая коробка передач была реальным способом улучшить условия управления.

С внедрением гидромеханической передачи автомобиль получил неоспоримые преимущества:

  • появилась возможность трогаться с места настолько плавно, что момент начала движения можно было просто не уловить визуально;
  • при движении и маневрировании на малых скоростях, сопоставимых со скоростью движения пешехода, управление машиной осуществляется легко и точно, что практически невозможно при механической КПП из-за ее очень длинной первой передачи;
  • ударные колебания и крутящие нагрузки практически не оказывают негативного воздействия на элементы трансмиссии.
  • для водителя комфорт управления машиной увеличился как минимум вдвое.

К сведению! Вопрос обеспечения надлежащего уровня плавности и комфорта движения легендарной советской «Чайки» ГАЗ-13 был решен конструкторами только после установки на автомобиль гидромеханической АКП, частично скопированной с американского аналога Borg-Warner.

Наряду с гидромеханическими автоматами в легковом автомобильном сегменте прочно закрепились автоматические трансмиссии с вариаторами и роботизированная «механика», практически не уступающая в удобстве и комфорте первым двум, но значительно экономичнее и дешевле. Но до сих пор гидромеханическая коробка передач остается основой для самых надежных и совершенных «автоматов».

Конструктивно автоматическая трансмиссия на основе гидромеханической коробки передач очень сильно отличается от устройства механической КПП, сложнее ее и значительно дороже, поэтому она более уязвима к нарушениям в обслуживании и использовании.

Устройство гидромеханической автоматической коробки передач

Принцип работы гидромеханической коробки передач основан на способности гидротрансформатора выступать в качестве немеханического преобразователя-регулятора крутящего момента двигателя.

Первая и основная особенность гидромеханического автомата - это отсутствие механизма включения-выключения сцепления . Практически всем водителям нравится управление без использования педали сцепления. Если учесть, что при движении в городской черте водителю с ручной механической коробкой приходится выжимать педаль не менее ста раз в течение часа, избавление от подобной нагрузки не прошло незамеченным. Поэтому для современного городского автомобиля автоматическая коробка передач становится фактически признанным стандартом, для дизельных двигателей - особенно.

В устройстве гидромеханической коробки выделяют три основных узла - гидротрансформатор, блок управления и планетарный механизм переключения передач.

Сердце гидромеханической коробки передач

Гидротрансформатор коробки работает по схеме: «насос - гидравлическая турбина» и обеспечивает посредством динамического давления масла на лопатки турбины передачу вращающего момента на вал коробки переключения передач. Задача насоса или насосного колеса мало чем отличается от аналогичного, используемого в центробежных насосах: под действием центробежных сил придать потоку масла больший динамический напор. Раскрученное маховиком коленвала колесо выбрасывает под определенным углом мощный масляный поток на периферийную часть наружной части обода турбины - на лопатки турбинного колеса. Под напором масла турбина преобразует энергию масла во вращение.

В конструкции гидротрансформатора коробки передач предусмотрено еще одно колесо с лопатками. Между двумя основными колесами установлен очень важный элемент - специальный спрямляющий аппарат, именуемый реактором, или статором. Он выполнен в виде кольца с профилированными лопатками, направляющими поток жидкости, выходящий из гидравлической турбины, на вход насосного колеса.

Внимание! Как видно из рисунка-схемы, поток жидкости, выброшенной насосом на лопатки турбины, передает ей часть энергии и далее, разворачиваясь на направляющем аппарате реактора, создает дополнительный момент вращения, что и обуславливает увеличение вращающего момента.

Вначале, когда автомобиль только начинает движение, и педаль тормоза еще не отпущена, реактор полностью заблокирован. Отпускаем педаль, и турбина гидромеханической части коробки передач начинает работать. При достижении скорости вращения турбины в 80% от скорости насосного колеса реактор выводится из работы обгонной муфтой. Благодаря кратковременному и плавному увеличению момента вращения, скорость вращения турбинного колеса и связанных с ним всех элементов трансмиссии происходит тоже плавно. С применением реактора вращающий момент на выходном валу гидротрансформатора в момент старта или разгона автомобиля увеличивается примерно до двух с половиной раз.

Система управления переключением передач

Малый диапазон возможного изменения момента и скорости вращения вынудил проектировщиков дополнить гидротрансформатор механической коробкой переключения передач. В гидромеханической коробке-автомате для легкового транспорта используют несколько редукторов планетарной передачи, включаемых в работу с помощью фрикционных муфт. Включение фрикциона осуществляется сжатием пакета фрикционных накладок с помощью гидравлического поршня особой конструкции.

Насос, запитывающий гидравлику привода, обычно устанавливается в непосредственной близости от гидротрансформатора. Для управления гидравлическими клапанами и золотниками системы в современных авто применяют электромагнитные соленоиды, управляемые электроникой. Для компенсации ударных контактных нагрузок применяют обгонные муфты, что добавляет плавности при вхождении в зацепление шестерен коробки.

К сведению! В большинстве современных гидромеханических коробок-автоматов реализована функция автоматического выключения гидротрансформатора при движении на скорости более 20-25 км/ч. Это позволяет значительно уменьшить потери, связанные с передачей момента, особенно при высоких оборотах вращения, когда гидравлические потери растут быстрее механических.

Перспективы использования гидромеханической коробки передач

Очень серьезным аргументом автоматов с гидромеханическим «бубликом» является относительно отработанная и совершенная конструкция устройства. Большой ресурс, тщательно подобранные гидравлические жидкости и сплавы для валов и зубчатых передач. При надлежащем уходе и аккуратном использовании гидромеханическая коробка передач служит значительно дольше новомодных конкурентов в виде вариаторов, роботизированных или преселективных коробок DSG.

Многие специалисты считают, что за гидромеханической коробкой передач останется значительный сегмент легкового автотранспорта - внедорожники и автомобили повышенной проходимости.

Косвенным подтверждением того факта, что коробка передач на основе гидромеханической схемы еще длительное время будет интенсивно применяться в широком спектре моделей легковых автомобилей, являются последние разработки законодателей автомобильной моды - немецких автопроизводителей. Известной в Германии фирмой ZF практически для всех топовых моделей BMW, AUDI и MERCEDES уже сейчас запущена в пробную эксплуатацию гидромеханическая коробка-автомат с 7-ю ступенями и рекордными характеристиками включения. Кроме того, концерн MERCEDES-BENZ выпустил свой вариант гидромеханической коробки передач с 7-ю ступенями под названием 7G-Tronic.

Причина такой популярности достаточно проста и очевидна. Ведь кроме надежности, гидромеханическая коробка позволяет уверенно работать с двигателями большой мощности и с рабочим объемом более трех литров. Гидромеханическая коробка уйдет в небытие не раньше самого двигателя внутреннего сгорания.

На видео показано строение гидромеханической коробки-автомат:

На легковых автомобилях наибольшее распространение получили гидромеханические коробки с планетарными механическими коробками. Их преимущества:

  • компактность конструкции;
  • меньшая металлоемкость и шумность;
  • больший срок службы.

К недостаткам относятся:

  • сложность;
  • высокая стоимость;
  • пониженный КПД.

Переключение передач в этих коробках производится при помощи фрикционных муфт и ленточных тормозных механизмов. При этом при включении одной передачи часть фрикционных муфт и ленточных тормозных механизмов пробуксовывает, что также снижает их КПД.

Представляет собой гидравли­ческий механизм, который размещен между двигателем и механической коробкой передач. Он состоит из трех колес с лопатками:

  • насосного (ведущего);
  • турбинного (ведомого);
  • реактора.

Насосное колесо 3 закреплено на маховике 1 двигателя и образует корпус гидротрансформатора, внутри которого размещены тур­бинное колесо 2, соединенное с первичным валом 5 коробки передач и реактор 4, установленный на роликовой муфте 6 свободного хода. Внутренняя полость гидротрансформатора на 3/4 своего объема заполнена специальным маслом малой вязкости.

Рис. Гидротрансформатор:
а – общий вид; б – схема; 1 – маховик; 2 – турбинное колесо; 3 – насосное колесо; 4 – реактор; 5 – вал; 6 – муфта

Каждое колесо имеет наружный и внутренний торцы, между которыми располагаются профилированные лопасти, образующие каналы для протока жидкости. Все колеса гидротрансформатора максимально приближены друг к другу, а вытеснению жидкости препятствуют специальные уплотнения.

При работающем двигателе насосное, колесо вращается вместе с маховиком двигателя. Масло под действием центробежной силы поступает к наружной части насосного колеса, воздействует на лопатки турбинного колеса и приводит его во вращение. Из турбинного колеса масло поступает в реактор, который обеспечивает плавный и безударный вход жидкости в насосное колесо и существенное увеличение крутящего момента. Таким образом, масло циркулирует по замкнутому кругу и обеспечивается передача крутящего момента в гидротрансформаторе.

Характерной особенностью гидротрансформатора является увеличение крутящего момента при его передаче от двигателя к первичному валу коробки передач. Наибольшее увеличение крутящего момента на турбинном колесе гидротрансформатора получается при трогании автомобиля с места, при этом коэффициент трансформации может составлять до 2,4. В этом случае реактор неподвижен так как заторможен муфтой свободного хода. По мере разгона автомобиля увеличивается скорость вращения насосного и турбинного колес. При этом муфта свободного хода расклинивается и реактор начинает вращаться с увеличивающейся скоростью, оказывая все меньшее влияние на передаваемый крутящий момент. После достижения реактором максимальной скорости вращения гидротрансформатор перестает изменять крутящий момент и переходит на режим работы гидромуфты. Таким образом, происходит плавный разгон автомобиля и бесступенчатое изменение крутящего момента.

Гидротрансформатор автоматически устанавливает необходимое передаточное число между коленчатым валом двигателя и к ведущими колесами автомобиля, Это обеспечивается следующим образом: с уменьшением скорости вращения ведущих колес автомобиля при возрастании сопротивления движению возрастает динамический напор жидкости от насоса на турбину, что приводит к росту крутящего момента на турбине, следовательно, на ведущих колесах автомобиля.

КПД гидротрансформатора определяет экономичность его работы. Максимальное значе­ние КПД гидротрансформатора может быть от 0,85 до 0,97, но обычно находится в диапазоне от 0,7 до 0,8. В комплексном гидротрансформаторе на режиме гидромуфты можно получить максимальное значение КПД до 0,97.

Изменение режимов работы гидротрансформатора происходит автоматически. Если увеличивать нагрузку на выходе из гидротрансформатора, то происходит уменьшение угловой скорости турбины, что приводит к увеличению коэффициента трансформации.

К сожалению, гидротрансформатор имеет малый диапазон передаточных чисел, не обеспечивает движения задним ходом, не разобщает двигатель от трансмиссии (необходима сложная система опорожнения проточных частей от рабочей жидкости). Поэтому за гидро­трансформатором устанавливают специальную планетарную коробку передач, которая компенсирует указанные недостатки.

Планетарная коробка передач

Планетарная коробка передач включает в себя планетарные механизмы . В простейшем планетарном механизме солнечная шестерня 6, закрепленная на ведущем валу 1, находится в зацеплении с шестернями-сателлитами 3, свободно установленными на своих осях. Оси сателлитов закреплены на водиле 4, жестко соединенном с ведомым валом 5, а сами сателлиты находятся и зацеплении с коронной шестерней 2, имеющей внутренние зубья.

Рис. Планетарный механизм:
1 – ведущий вал; 2 – коронная шестерня; 3 – сателлиты; 4 – водило; 5 – ведомый вал; 6 – солнечная шестерня; 7 – тормоз

Передача крутящего момента с ведущего вала 1 на ведомый вал 5 возможна только при заторможенной коронной шестерне 2 при помощи ленточного тормоза 7 или многодискового «мокрого» сцепления. В этом случае при вращении шестерни 6 сателлиты 3, перекатываясь по зубьям неподвижной шестерни 2, начнут вращаться вокруг своих осей и одновременно через водило 4 будут вращать ведомый вал 5. При растормаживании шестерни 2 сателлиты 3, свободно перекатываясь по шестерне 6, будут вращать шестерню 2, а вал 5 будет оставаться неподвижным.

В автоматических коробках передач применяются фрикционные муфты сцепления. Фрикционная муфта сцепления со­стоит комплекта покрытых слоем фрикционного материала дисков, прижатых друг к другу через прокладки в виде тонких пластин из гладкого металла.

Рис. Фрикционная муфта сцепления автоматической коробки передач:
1 – канал подачи рабочей жидкости; 2 – поршень; 3 – кожух муфты; а – выключенное состояние; б – включенное состояние

При этом часть фрикционных дисков оснащены внутренними шлицами, часть – наружными. Прижимание дисков друг к другу обеспечивается гидравлическим поршнем 2, для выключения сцепления применяется возвратная пружина. При подаче к поршню давления рабочей жидкости диски плотно прижимаются друг к другу, образуя одно целое. Как только давление снимается, возвратная пружина отводит поршень назад и диски выводятся из зацепления. В качестве возвратных пружин могут использоваться винтовые, диафрагменные и гофрированные дисковые пружины.

Двухступенчатая гидромеханическая коробка передач

В качестве примера гидромеханических передач рассмотрим двухступенчатую гидромеханическую коробку передач . Она состоит из гидротрансформатора 1, механической планетарной коробки передач с многодисковым фрикционом 3 и двумя ленточными тормозными механизмами 2 и 4 и гидравлической системы управлениях кнопочным переключением передач. Кнопки соответственно означают нейтральное положение, задний ход, первую передачу и движение с автоматическим переключением передач. В двухступенчатой механической коробке передач имеются два одинаковых планетарных механизма 5 и 6.

Рис. Гидромеханическая коробка передач:
1 – гидротрансформатор; 2,4 – тормозные механизмы; 3 – фрикцион; 5,6 – планетарные механизмы

В нейтральном положении фрикцион 3, а также тормозные механизмы 2 и 4 выключены. Трогание автомобиля с места происходит при включенной первой передаче. В этом случае масло под давлением поступает в цилиндр тормозного механизма 2, лента которого затягивается, и солнечная шестерня планетарного механизма 6 останавливается.

Если включена кнопка «Движение», то при разгоне автомобиля происходит автоматическое переключение на вторую передачу, что обеспечивается одновременным выключением тормозного механизма 2 и включением фрикциона 3. В этом случае планетарные механизмы 5 и 6 блокируются и вращаются как одно целое.

Для движения автомобиля задним ходом включается только тормозной механизм 4.

В настоящее время автоматические коробки передач имеют электронное управление, что позво­ляет гораздо точнее выдерживать заданные моменты переключения (с точностью до 1 % вместо прежних 6…8 %). Появились дополнительные возможности: по характеру изменения скорости при данной нагрузке на дви­гатель компьютер может вычислить массу автомобиля и ввести соответствующие поправки в алгоритм переключения. Электронное управление предоставило неограниченные возможности для само­диагностики, что позволило корректиро­вать процессы управления в зависимости от многих параметров (от температуры и вязкости жидкости до степени износа фрикционных элементов).

Система автоматического управления обычно состоит из следующих подсистем:

  • функционирования (гидравлические насосы, регуляторы давления)
  • измерительная, собирающая информацию о параметрах управления
  • управляющая, вырабатывающая управляющие сигналы
  • исполнительная, осуществляющая управление переключением передач, работой двигателя
  • подсистема ручного управления
  • подсистема автоматических защит, предотвращающая возникновение опасных ситуаций

Основными элементами электронной системы управления являются электронный блок и рычаг управления.

АКП с электронным управлением

В качестве примера современной АКП с электронным управлением рассмотрим шестиступенчатую коробку передач 09G японского концерна AISIN.

АКП состоит из гидротрансформатора, механической планетарной коробки передач с многодисковыми фрикционами и многодисковыми тормозными механизмами, гидравлической системы, систем охлаждения и смазки, электрической системы.

Рис. Разрез автоматической шестиступенчатой коробки передач 09G:
К– многодисковые муфты; В – многодисковые тормоза; S – солнечные шестерни; Р – сателлиты; РТ – водило; F – обгонная муфта; 1 – вал турбинного колеса; 2 – ведомая шестерня промежуточной передачи; 3 – жидкостный насос

Планетарные ряды объединены по схеме, разработанной Лепеллетье (Lepelletier). Крутящий момент двигателя подводится к одинарному планетарному ряду. Далее он направляется на сдвоенный планетарный ряд Равиньо (Ravigneaux).

Рис. Двухредукторная планетарная система Лепеллетье:
а – обычный планетарный редуктор; б – планетарный редуктор Равиньо; 1 – вал турбинного колеса; Р1 – сателлит коронной шестерни Н1; Р2 – сателлит солнечной шестерни 2; Р3 – сателлит коронной шестерни 1; S1 ­­– солнечная шестерня 1; S2 — солнечная шестерня 2; S3 — солнечная шестерня 3; Н1 – коронная шестерня 1; Н2 – коронная шестерня 2

Управление одинарным планетарным рядом производится посредством многодисковых муфт K1 и K3 и многодискового тормоза B1. Число сателлитов в планетарных рядах выбирается в зависимости от передаваемого крутящего момента.

Сдвоенный планетарный ряд управляется посредством многодисковой муфты K2, многодискового тормоза B2 и обгонной муфты F. В системе управления муфтами предусмотрены устройства динамической компенсации рабочего давления, которые делают работу муфт независящей от частоты вращения. Муфты K1, K2 и K3 служат для подвода крутящего момента к планетарным рядам, а с помощью тормозов B1 и B2, а также обгонной муфты обеспечивается передача реактивных моментов на картер коробки передач.

Давление в рабочих цилиндрах муфт и тормозов изменяется посредством регулирующих клапанов.

Обгонная муфта F представляет собою механизм, который работает параллельно с тормозом.

После рассмотрения частностей, давайте все объединим в единую систему и посмотрим, как это все работает. В чем-то будем повторяться, однако общую картину сложить без некоторых повторений не удастся. Начнем с регуляторов давления .

Объективно давление в системе создается выше требуемого для выполнения всех необходимых функций. Конструкция акпп предполагает установку насосов, которые должны обеспечивать требуемое нормальное давление при минимальных оборотах двигателя. Естественно водитель не может обеспечивать постоянные обороты – ехать надо. Да и глупо бы было. Поэтому давление в системе принципиально нестабильно.

акпп ZF на спорткаре XKR-S

Такие технические условия привели к необходимости использования в системе управления АКПП (и не только в чисто гидравлических, а и с ЭБУ ) специальных клапанов для удержания давления в некоторых пределах (чтобы донышко не вырвало). Особенностью гидравлической системы является наличие различных давлений по функциям в различных точках системы, и формирование этих различных видов давлений занимается гидроблок АКПП . Основных типов давлений три:

— давление основной магистрали;

— давление клапана-дросселя (TV давление );

— давление скоростного регулятора.

В числе дополнительных давлений можно отметить те, которые идут

на подпитку ,

— на управление блокировочной муфтой гидротрансформатора ,

— в систему охлаждения трансмиссионки,

— в систему смазки всей коробки.

Чтобы все эти создаваемые давления работали по назначению, но, в то же время, не нанесли повреждений элементам гидросистемы, и используются клапаны , которые выравнивают и приводят к номинальному значению в контрольных точках системы. Конструкционно для выравнивания давления в основной магистрали используется два способа: с использованием вспомогательных давлений и с использованием соленоида , которым управляет .

Для гидравлического способа регулирования характерно то, что давление созданное насосом формируется регулятором давления . Главной функцией давления в основной магистрали является управление фрикционными элементами с целью обеспечения переключения передач. Все остальные указанные давления формируются пропорционально давлению в основной магистрали (согласно закону сообщающихся сосудов).

Естественное положение регулятора давления сразу же после насоса, дабы в основную магистраль поступало требуемое количество трансмиссионки. Поскольку насос начинает давить сразу же с включением двигателя, то и регулятор отрабатывает вслед за ним. Путь трансмиссионки лежит в контур системы управления трансмиссии и в контур подпитки трансформатора. Кроме того, жидкость по внутреннему каналу попадает под левый торец клапана.

Принцип работы гидросистемы АКПП

Дальше происходит стандартный процесс возрастания давления при заполнении системы жидкостью. регулятора до определенного момента остается в исходном положении и клапан регулятора неподвижен. С увеличением давления усилие жидкости преодолевает сопротивление пружины и перемещает клапан. При этом открывается отверстие для слива трансмиссионки в поддон. Давление в магистрали спадает, а клапан возвращается в исходное положение, перекрыв тем самым отток ATF в поддон. Давление снова возрастает. И этот циклический процесс продолжается все время работы АКПП .

Очень хочется надеяться, что вы после прочтения всего цикла статей уже бы о гидроблоке знали не понаслышке. Также хочется, чтобы ремонт АКПП в Ростове и ремонт гидроблока в Ростове для вас не превращались в сплошной кошмар. Наши постараются сделать максимум полезного для вас.

Гидравлическая клапанная плита (Valve Body, гидроблок, блок клапанов, «мозги») это "диспетчер" АКПП, узел автоматической коробки, состоящий из клапанов, датчиков, аккумуляторов и соединяющих их каналов.

Гидроблок, как плата с транзисторами, преобразует электросигналы от компьютера, распределяет\направляет давление масла от насоса в нужный барабан сцепления для переключения передач в АКПП или блокировки .

Можно сказать, что гидроблок исполняет роли - нашей ноги , нажимающей на педаль сцепления и

- нашей руки , переключающей рычаг КПП,

Кроме того он еще является самим таким рычагом

а также еще и мозгом (спинным) , передающим команды рукам и ногам.

Отработанные до автоматизма движения автогонщика, мгновенно и безошибочно переключающего передачи вверх или вниз - так запрограммированы "мозги" АКПП и по самому эффективному и экономичному сценарию производятся переключения: выжимание сцепления работающего пакета фрикционов - выравнивание скоростей валов - включение сцепления следующей скорости.

Вся технология переключения на другую скорость отработана конструкторами настолько идеально, что разрыв мощности в самых интеллектуальных 6-ти... 8-ми ступенчатых автоматах при разгоне составляет менее 0.2 секунды. То есть практически бесступенчато.

Настройки компьютера отрегулированы для экономии топлива и оптимизации разгонов таким образом, что водитель может в самых нагруженных и агрессивных режимах выжимать из мотора максимум его возможностей. И малейшие залипания забитых грязью (или изношенных) клапанов приводят сначала к толчкам при переключении, а позже и вообще к проскальзыванию сцепления.

Почему Гидроблок АКПП называют - "Мозги"?

Гидравлическая клапанная плита на профессиональном сленге называется - "Мозги ".

Отчасти это потому, что чисто внешне напоминает мозг с его извилинами. Отчасти - потому, что в 20-м веке гидроблок выполнял функцию "мозга" автомобиля, принимая решения: когда и какому узлу нужно включаться в работу. Действительно, гидроблок был настоящим мозгом гидравлически управляемой трансмиссии, управляя переключениями с помощью простых механических устройств вроде Говерноров (сравните: "гувернер" - управляющий хозяйством).

И тот гидроблок гидравлических АКПП 1980-х был похож на мозг ящериц или рыб. С приходом электроники и электроклапанов-соленоидов, настоящим "мозгом" стал не гидроблок, а ЭБУ (электронный блок управления ). А гидроблок стал чем-то вроде "спинного мозга". Объединившись вместе с ЭБУ - компьютером АКПП, гидроблок АКПП является настоящим мозгом трансмиссии.

TCM, ECU, PCM и Гидроблок (Valve Body) - в чем разница?

"Мозги" АКПП состоят из двух важных узлов:

Электронный блок управления трансмиссии (ЭБУ или ТСМ -анг. - transmission control module - слева - желтый блок ) и

Гидравлическая клапанная плита (valve body, на картинке слева - внизу серая клапанная плита ).

И между клапанными плитами - самая капризная деталь, требующая замены - прокладка гидроблока.

Первый (ЭБУ) работает электрическим током и импульсами-командами (как кора головного мозга - посредством нейронов) основываясь на информации от датчиков-сенсоров, а второй (Гидроплита) - работает гидравлическим маслом - "снабжает кровью и вырабатывает химию гормонов", управляя всем организмом.

Раньше ЭБУ находился под капотом или под панелью автомобиля. А с начала века стало принято соединять капризную электронику с гидроплитой внутри АКПП, где рабочая температура считается стабильнее.

То есть интеллектуальный мозг (ЭБУ) АКПП соединился с гидравлическим мозгом (клапанной плитой). Это позволило упростить конструкцию АКПП, но усложнило задачу производителям электроники.

Но это еще не весь "мозг" автомобиля. Существует еще "головной" мозг всей машины - ECU (Engine Control Unit или Module). Некоторые рисковые автопроизводители объединили все компьютеры в один и назвали его по-американски Powertrain Control Module.

Это - "мозги" всего автомобиля. Вернее это сочетание "головного мозга" (ECU), управляющего двигателем и всей машиной и "спинного мозга" (TCM), управляющего АКПП.


Типичные неисправности гидроблоков .

Неисправность проводки

Короткое замыкание или обрыв проводов. Любимая неисправность для мастеров, с чего обычно начинают диагностику гидроблока. Легко диагностируется, легко лечится, заменой проводки без дорогого и долгого демонтажа коробки. Справа - самая популярная в ремонте проводка немецкого автомата .


Чистка гидроблока и соленоидов очень часто решает проблемы с переключениями.

Гидромеханическая клапанная плита обычно - весьма отработанная и надежная конструкция, которая призвана служить весь срок жизни автомобиля. Но она требует регулярного ухода: замену масла, как только оно загрязнилось и поддержание «нормальной» вилки температур (у каждой коробки - своя «норма»)

Основной проблемой гидроблоков является "старость" отдельных элементов и грязь каналов-"атеросклероз":

Забившиеся фрикционной грязью клапаны, золотники и плунжеры не дают пружинам возвращать клапан на место или соленоидам открывать этот клапан, (очистка решает эти проблемы)

Процарапанные абразивным "мусором" поверхности каналов, муфт, золотников износ и протечки масла через них, (проверяется оборудованием Соннакс - №100301 .)

Износившиеся расходники: ослабевшие пружины, возвращающие плунжер на место, рассыпающиеся бумажные прокладки или изношенные металлические прокладки, шарики, забитые грязью фильтры, задубевшая резина колец и т.д. (замена расходников решает большинство проблем).

Для переборки очень помогает самодельный или специальный поддон (100301 ) для сортировки и хранения деталей гидроблока.

Самодельный одноразовый поддон (обычно пару штук: справа и слева) делают из плотного картона, изгибая из него "гармошку", в меха которой складывают детали в том порядке, в каком они стояли в гидроблоке.


Неисправности соленоидов - электроклапанов . ( ).

Проверяются диагностическим оборудованием (сопротивление, срабатывание, износ...). Промываются, ремонтируются с заменой втулок или заменяются полностью. Неисправности соленоидов - подробнее .



Неисправность датчиков . Перегреваются, забиваются намагниченной пылью из масла, перегорают... Легко лечится или очисткой датчиков или заменой, если замер сопротивления указывает на эту неисправность. На странице каждой , где встречается такая проблема, есть таблица нормального сопротивления датчиков при определенной температуре.

Слева - таблица по проверке АКПП JF414 (Лада Гранта), помогающая через фишку диагностировать все соленоиды и датчик.


Неисправность электроплаты , диагностика производится по . Большинство электроплат успешно ремонтируется, заменой сгоревших элементов. Чаще всего горят встроенные в плату датчики.

См. страницу своей .


Неисправность (загрязненность или износ) элементов самой гидроплиты, старение расходников - прокладки гидроблока или сепараторной пластины, резиновых уплотнений, металлических элементов, фильтров. Самый частый источник всех проблем, вызванный перегревом и грязным маслом, в основном из-за изношенных фрикционов и клеевого слоя, которым фрикционные накладки приклеены к стальной основе.

Чистка гидроблока с полной разборкой это такая же рутинная операция для мастера АКПП как чистка автомата Калашникова для солдата после стрельбы.


Нарушение герметичности из-за задубевшей резины, из-за чего масло не попадает туда, куда нужно или наоборот - попадает туда, куда не нужно. Так самыми популярными расходниками стали "очки" у бестселлера ZF6HP или "адаптер" для тех же автоматов, виновные за аварийные протечки масла.

С каждым годом гидроплиты становятся все надежнее, все элементы плиты, подверженные износу, переносятся в конструкцию соленоида. На странице каждой АКПП описаны наиболее вероятные причины по которым гидроблок требует обслуживания.


Проблемы соленоидов-электроклапанов

Современные клапанные плиты в 5-ти и 6-ти ступенчатых акпп, где используются линейные соленоиды, работают в совсем других условиях: Одна из проблем - повышенная температура. С 2003-2005-х годов рабочая температура двигателя (и в АКПП) повысилась с 95°-100º на 20-30 градусов. Электроника быстрее стареет, работая при температуре свыше 120ºС.

Так электроклапан-соленоид, закрывая\открывая канал для масла, изнашивается (слева - увеличенный снимок выходного отверстия ) и характеристики расхода и давления меняются, что приводит к нештатным переключениям, толчкам и задержкам.

Когда масло в гидроблоке движется не по полному сечению канала, а через частично открытый клапан, то в этот момент в самом узком месте от трения возникает повышенный износ поверхностей: и золотника-плунжера (слева) и самого металла гидроблока. Тело плиты делается из алюминиевго сплава и эту проблему стали решать анодированием истирающихся алюминиевых поверхностей. В 2000-х годах был найден способ: - перенести это "узкое место" из массивной плиты - в маленький соленоид.

Теперь соленоиды имеют свой клапан-золотник. И более дорогое анодирование значительно облегчило ремонт износившихся клапанов. Стало легче менять износившийся узел (с самим соленоидом).

Износ материала плиты и золотников

Быстрые разгоны достигаются за счет того, что все сцепления (и особенно сцепление бублика") переключаются с " " гидротрансформатора (и фрикционов!). Теперь переключение происходит по сложной кинематической схеме и практически незаметно, используя фрикционы гораздо более интенсивно.

Из-за этого масло и нагревается быстрее, и фрикционы сорят больше. Загрязнение масла и вызывает "атеросклероз мозга" - отложения спрессованной фрикционной пыли, смешанной с металлической крошкой от износа металлических деталей. Эта грязь откладывается во всех тихих уголках (клапана плиты, золотники, соленоиды) и затрудняет работу клапанов, а также изнашивает поверхности трения и ухудшает охлаждение.

Именно эти свежие отложения вымывает при смене которые вместе с отслоившейся фрикционной бумагой забивают каналы такой "старой и больной" плиты.

Обслуживание гидроблока

Конструкцию современных (6-ти ступенчатых) АКПП стали спроектировать таким образом, что гидроблок располагается не снизу, где его довольно трудно обслуживать, а сбоку, и инструкция по доливу масла (для примера - ) выглядит следующим образом:

- На первом этапе, при снятии боковой крышки гидроблока (достаточно для смены соленоидов) - требуется долить всего 1.3 литра масла. - При более сложном ремонте - снятии и чистке гидроблока, потребуется долить 3.9 литра масла. А уже при сложном обслуживании (когда снимается для ремонта "бублик"- ) - 5.3 литра масла.

И только при полном демонтаже АКПП производится полная смена масла. Таким образом интеллектуальный лидер производителей АКПП - Айсин Ко, конструктивно подготовила сервисы и владельцев к тому, что обслуживание АКПП делится на этапы:

Первое обслуживание АКПП: чистка-замена соленоидов и ремонт со снятием боковой крышки и чисткой гидроблока (без дорогостоящего демонтажа-монтажа самой АКПП).

Следующий регламентный уровень: Снятие и ремонт Гидротрансформатора с заменой изношенного фрикциона (или 2-3-х фрикционов в некоторых ZF -32 или ).

И только после этих регламентных работ потребуется капитальный ремонт всей трансмиссии с демонтажом.

Что если еще поездить с "пинающимся" гидроблоком?

В зависимости от места неисправности, расплачиваться приходится по-разному.

На схеме Соннакс (слева ) показывается, в каком месте возникают проблемы в случае протечек масла в разных местах гидроплиты:

Одни протечки ведут к нештатной работе переключения 1-2, ... 3-4 скоростей.

Другие - к неработающей блокировке трансформатора с вытекающими отсюда проблемами перегрева и перерасхода топлива,

Третьи - к общему недостатку давления, что ведет к выработке металла осей и втулок. - Частая проблема для легендарных ZF-ских коробок 6HP26.

Наиболее популярное место ремонтов - клапан включающий блокировку гидротрансформатора и соответствующий соленоид LockUp. Именно здесь проходит самое грязное и горячее масло, пока не очистится и не охладится, пройдя через поддон, радиатор и фильтр.

Чем дольше золотники будут работать с крошкой, попавшей на поверхности скольжения, тем глубже царапины или истирания корпуса гидроблока. Когда тело гидроблока изношено свыше допустимых 30-50 микрон, приходится менять саму гидроплиту.

Ремонт гидроблоков.

Некоторые проблемы гидроблоков решаются "ремонтом на расстоянии" - прочтите о своем гидроблоке на соответствующей странице . Нажмите на оранжевый номер детали, чтобы узнать о такой возможности.

1: Из наиболее популярных можно отметить Мехатроник для - 26 - # 181740 .

Заказывают так называемый "Ребилд" - Восстановленный Мехатроник. Восстановление и продажа этих не таких сложных, но очень капризных плат производится самим ZF .


№2. Часто заказывают новую Электроплату Мерседесовского автомата - #194446 .


Проблемы обеих плат связывают с перегревом и нарушением характеристик (температура-сопротивление) некоторых элементов платы (датчиков). После установки эта Плата может требовать прописки у дилера.


3. Еще одна часто ремонтируемая плата гидроблока - Джатковская : - № 319446 , сгорают элементы платы. Ремонт снятой платы производится по кодам неисправностей и занимает обычно 2-3 дня.

Мастера связывают эту проблему с перепадами напряжения, которые обычно случаются при прикуривании или при скидывании клемм аккумулятора на заведенной машине. Цены можно узнать - кликнув на номер детали на оранжевом фоне.


Из самых популярных гидроблоков в замене - Плита управления /Valve Body /09G . №134740 .

Проблемой чаще всего является нештатная работа износившихся соленоидов. Раньше мастера привычно приговаривали сам гидроблок к замене, но сейчас все чаще просто заменяют пару неисправных соленоидов. ().

В незапущенных случаях, когда сама гидроплита не имеет протечек (смотри тест-продувку - ) то замена соленоидов помогает продлить жизнь коробки на несколько лет. (При условии работы с чистым маслом ).


Другая популярная в замене гидроплита - от айсиновского бестселлера .

Там так же в последнее время мастера стали реже менять саму плиту и чаще заказывать соленоиды (типичным комплектом -3шт. - 351428K ) для замены.

В принципе убить эту плиту очень трудно. Довольно технологична чистка самой плиты. И очень сложная и малопредсказуемая работа по чистке соленоидов. Поэтому и Американцы и Тайваньцы выпустили точные копии оригинальных соленоидов, которые и заказываются в настоящее время вместо замены всей гидроплиты.


На третьем месте по популярности заказов по замене гидроблока - набирающий обороты Гидроблок - №346740 . И в этом гидроблоке повторяются те же проблемы, что и у 5-ти ступенчатого брата .

Самые заменяемые соленоиды, которые обычно решают начинающиеся проблемы гидроблока - Большие: 346421 , 346422 , и малый соленоид блокировки ГДТ: 346425 . Но если каналы при продувке дают многочисленные протечки, то приходится менять весь гидроблок. АКПП . Цену можно узнать - кликнув на номер детали на оранжевом фоне.


Ремонт и чистка

Ремонт современных гидроблоков начинается со сбора данных компьютера - кодов и чаще всего заключается в переборке гидроблока.

Разборка и сборка с чисткой и заменой расходников - регламентная работа, которую каждый день делают во всех сервисах АКПП и которую производители автоматов рекомендуют делать одновременно с ремонтом гидротрансформатора и заменой фильтра.

Не дожидаясь, когда фрикционы износятся до клеевого слоя, чтобы окончательно забить плунжера и истереть каналы плиты до недопустимых люфтов. Это как с тормозными колодками - если ездить до писка "железом-по-железу", то придется менять все.

Чистку гидроблока многие делают самостоятельно, если запастись терпением, фотографиями и собрать опыт интернет-форумов по ремонту вашей трансмиссии.

Реставрация гидроблоков - это работа совсем другого уровня. Гуру ремонта АКПП - американская компания Соннакс выпускает множество материалов, инструкций, инструментов и деталей, с помощью которых специалисты с золотыми руками и мозгами делают сложные операции по восстановлению работы изношенной гидроплиты.

Но это настолько сложная работа с непредсказуемым результатом, что у большинства специалистов она кончается заменой гидроблока на новый. А замена "мозгов" - всегда недешевое удовольствие для тех, кто легко к ним относится.

Самый легкий случай ремонта гидроблока - на раннем этапе болезни. Когда достаточно прочистить и промыть гидроблок, заменить его расходники и если понадобится - .

Нет, еще более легкий случай - это когда неисправна проводка, запитывающая соленоиды и датчики. Это - вообще делается за несколько минут и стоит совсем недорого.

Гидроблок АКПП или гидравлическая клапанная плита – это орган управления коробкой и самый сложный в ней механизм, немного напоминающий человеческий мозг с его извилинами. Он представляет из себя металлическую плиту с выфрейзерованными каналами, в которые устанавливаются регулирующие клапаны, наборы датчиков и соленоиды ответственные за работу коробки. Клапанный блок управляет сцеплением и блокировкой гидротрансформатора, забирая на себя роль педали сцепления и рычага переключения передач.

По определенной программе, находящейся в блоке управления, он производит переключение, выравнивая скорости вращения шестеренок и включая следующую передачу. На выполнение этих действий у АКПП уходит значительно меньше времени, чем у человека. Компьютер выстраивает управление коробкой таким образом, чтоб максимально адаптироваться под характер вождения автовладельца и обеспечить нужную плавность хода и экономию топлива, при этом выжимая из мотора требуемую мощность.

Гидроблок современных АКПП состоит из самой плиты и электронного блока управления. Самая плита – это тело и кровеносные сосуды АКПП, блок управления – мозг.

В зависимости от фирмы производителя и модели АКПП гидроблоки имеют самый различный ресурс. Он не вечен и деталь сломаться. Ремонт его своими руками невозможен. Ремонт гидроблока АКПП – не редкость и он хорошо освоен специалистами ремонтных сервисов, куда лучше и отдать свой автомобиль.

Типичные неисправности гидроблока на примере разных АКПП

АКПП 09G разрабатывалась японским концерном Aisin. В разработке и адаптации принимали участие инженеры Фольксваген, которые в команде Aisin подгоняли 09G своими руками к различным двигателям. АКПП 09G устанавливались на Фольксваген Пассат Б5 и Б6, Гольф, Джетта, Туарег, Ауди А3 и другие автомобили с двигателями до 3,5 литров.

Сама по себе коробка оказалась не такой уж и надежной. На автомобилях Фольксваген Пассат Б5, Б6 и Таурег эта трансмиссия частенько ходит всего 50000-60000 километров до первой серьезной поломки. На АКПП 09G слабый теплообмен и гидроблок 09G быстро выходит из строя из-за перегревов.


Владельцы Фольксваген Пассат Б5, Б6 и Туарег частенько нарушают очевидные правила эксплуатации и перегревают АКПП, наивно полагаясь на новизну автомобиля и немецкое качество.

Из-за этого в Пассат Б5, Б6 и Туарег может наблюдаться некорректная работа АКПП: задержки переключений, пинки и рывки. На некоторых автомобилях Пассат Б5, Б6 и Туарег переключения могут сопровождаться ощутимымы пробуксовками колес даже на приличной скорости движения.

Пробуксовки и аварийные режимы АКПП на Пассат б6 и Туарег также могут быть связаны с некорректной работой датчиков и электрики. Часто в этой трансмиссии выходят из строя целые жгуты проводки. При плохом контакте гидроблока с некоторыми датчиками АКПП на Пассат Б6 и Туарег могу наблюдаться пугающее поведение коробки, которое, к счастью, не потребует замены механизмов коробки.

При неприятностях с коробкой Пассат б6 и Туарег стоит начать с замены масла, которую можно сделать своими руками. На время диагностических процедур при появлении первых признаков поломки на автомобиле лучше не ездить, а сразу вести его в сервис. Если вариантов нет и машина какое-то время необходима, то переход на ручной режим переключения может стать временным решением.


Если вместо масла в коробке черная жижа, которая не менялась уже 120000 километров, коробки Пассат и Туарег просто не будут работать нормально. Если же дело не в масле, то все, конечно, печальнее. Если масло менялось недавно, то производить его замену не следует. Для Туарег и Пассат эта процедура совсем недешевая.

Цены на ремонт гидроблока Пассат и Туарег начинаются от 35000-50000 рублей. Замена старого на новый обойдется примерно раза в два дороже. Определить причину неисправности можно только в сервисе, может понадобиться сложная диагностика, например, на стенде Valve Body Hydro Test.

Продлить жизнь коробки на Пассат и Туарег можно следующим образом:

  • Следить за состоянием масла и своевременно его менять;
  • Всегда ездить только на прогретой коробке;
  • В пробках переключаться в ручной режим на вторую скорость. Что убережет коробку от бесконечного переключения передач и опасного перегрева.

Коробки BTR

На Ссанг Енг Актион Спорт устанавливался коробка 4BTR M74LE, разработанная в 1988 году. Коробка Ссанг Енг Актион Спорт печально известна тем, что может начать проявлять первые признаки износа и некорректной работы на пробеге всего в 12000-30000 километров. Многие владельцы Ссанг Енг Актион Спорт вынуждены проходить долгие диагностики и частые ремонты у официальных дилеров, которые нередко занимают 1,5–4 месяца. Не самый хороший подарок для людей, покупающих новые Ссанг Енг Актион Спорт.


Санг Енг Актион с коробкой 4BTR M74LE

На Актион Спорт очень «веселая» АКПП. Зачастую ни официальные дилеры, ни самые профессиональные специалисты не могут разобраться в дефекте и причине странного поведения коробки. Бичом Актион Спорт обычно являются странные, но весьма ощутимые вибрации, возникающие на какой-либо скорости, и случайное срабатывание аварийного режима АКПП. Количество возможных неприятностей, возникающих в коробке Актион описывать можно долго. Вот несколько примеров неисправностей Актион: прокладка гидротрансформатора при износе забивает своими остатками гидроблок, старые фильтры снабжены плохими магнитами, которые просто не улавливают металлическую грязь, забивающую и ломающую вообще все, что только можно в АКПП, при пробуксовках коробка часто переключается в аварийный режим из-за изначально неверной работы датчиков скоростей. В общем, Актион с автоматом лучше не брать.

Семейство коробок 6Т

Шестиступенчатая АКПП 6T- устанавливалась на автомобили Шевроле Круз, Авео и Епика. Эта КПП модульного типа и она максимально унифицирована со всем её семейством. Поэтому запчастей для ремонта КПП Шевроле Круз всегда полно. Типовой проблемой гидроблока Шевроле Круз является отказ внутренней электроники из-за устаревания.


Блок соленоидов на Шевроле Круз приходится менять весь, в целях смягчения переключений он всегда работает командой, правда, служит он немало, и такая конструкция КПП долго бережет гидротрансформатор. При износе втулок и колец на Шевроле Круз из-за масляного голодания эти соленоиды очень быстро выработают свой ресурс.

Изношенные или забитые грязью клапана приводят к толчкам при переключении передач или же вообще к отказу коробки работать с одной или несколькими из них.

При высоких температурах работы КПП Шевроле Круз и если масло старое, могут неверно отрабатывать датчики Холла. Что приводит к некорректной работе и переключениям 4–6 передач на Шевроле Круз. Обычно об этом свидетельствует дерганье Шевроле Круз при движении. Как и все современные автоматы, КПП Шевроле Круз очень чувствительна к перегревам и работе на грязном и старом масле.


Четырехскоростные АКПП u241e от производителя Тойота устанавливалась на самые популярные и надежные передне- и полноприводные модели, такие как Камри, Авенсис, Целика и т.д. КПП u241e очень надежная трансмиссия и она устанавливается на автомобили до сих пор.

По сравнению с младшим братом u240, u241e она была несколько усилена для более мощных моторов, что сделало её еще более надежной. Хотя понятие «надежная» стоит применять для u241e только в свете современных реалий. По количеству обращений из-за выхода из строя эта КПП лишь немного уступает DP0 и ZF 5HP19. Хотя в защиту автомобилей Тойота стоит сказать, что машины с этой КПП ходят куда больше и ломаются скорее из-за нежелания расставаться с надежной машиной слишком долгое время. Детской болезнью u241e является плохая распайка контактов внутри гидроблока, из-за которой скачет давление и горят пакеты. К счастью, такая неисправность для u241e легко устраняется без снятия коробки. В основном неприятность встречается на старых Тойота Рав 4, оборудованных u241e.


Тойота Рав 4, оборудованная u241e

К несчастью, с введением в начале 2000 во всем мире контролируемого износа в производстве автомобилей и их деталей, и законов, которые делают использование старых автомобилей нерентабельным, качество машин и АКПП ужасно упало. Производители просто перестали делать свои автомобили надежными.

Автомобили теперь должны служить не более трех лет и затем автолюбитель должен покупать новый (в ряде стран, например, в Японии, это прописано на законодательном уровне). Ради сравнения: АКПП 31ТН, выпускавшаяся с 1981 до 2001 (часть конструкции сохранилась с предшественника с 72–78 годов) для американских автомобилей с многолитровыми мощными двигателями, легко служит до сих пор, ремонтируется легко и раз в 10–20 дешевле, чем коробки на новых автомобилях с первыми проблемами. Пробег таких коробок может превысить и 1 миллион километров до первого капитального ремонта. Но к сожалению, такого больше не делают. Современные АКПП требуют очень бережного обращения и очень не любят нарушения инструкции по эксплуатации.