Вечный двигатель второго рода примеры. Вечный вопрос вечного двигателя

| Механические вечные двигатели. | Мнимые перпетуум мобиле. | Мошенничество с изобретением Орфиреуса | Наиболее ранние сведения о вечных двигателях. | На пути к определению понятий работы и энергии. | Научная фантастика и перпетуум мобиле. | Опыты с магнетизмом. | Первые попытки создания вечных двигателей. | Период наивысшего расцвета идеи perpetuum mobile. | Перпетуум мобиле в эпоху Возрождения. | Разгар дискуссии о вечном двигателе. | Споры вокруг перпетуум мобиле.

Вечный двигатель второго рода.

Как известно, закон сохранения энергии можно сформулировать в следующей несколько видоизмененной форме: при всех процессах преобразования энергии сумма всех видов энергии, участвующих в данном процессе, должна оставаться неизменной . Такая формулировка, хотя и не допускает возможности создания энергии из ничего, однако оставляет открытым другой путь реализации вечного двигателя, принцип работы которого основывался бы на идеальном преобразовании одной формы энергии в другую. Поэтому можно предложить, например, такой рабочий цикл: пусть в паровой машине (турбине, двигателе внутреннего сгорания или каком-либо ином тепловом двигателе) мы затрачиваем некоторое количество теплоты на совершение определенной механической работы; далее, полученную механическую энергию вновь преобразуем в тепло, нагревая с ее помощью пар и приводя им в действие паровую машину (турбину), и т.д. Понятно, что подобный цикл превращения энергии можно повторять бесконечно: ведь энергия данной системы с течением времени не увеличивается и не уменьшается.

Исследованием вопроса о перпетуум мобиле такого типа в начале XX в. подробно занимался известный немецкий физико-химик Вильгельм Оствальд . Описанную выше идеальную машину, способную циклично и без потерь преобразовывать энергию из одной формы в другую, он назвал перпетуум мобиле второго рода. Правда, как явствует из самого названия, даже после отказа от возможности создания перпетуум мобиле первого рода проблема вечного движения все же продолжает оставаться открытой. При этом, однако, оба указанных вида вечных двигателей резко различаются между собой. В то время как функция объявленного учеными неосуществимым перпетуум мобиле первого рода состояла в непрерывном совершении полезной работы без пополнения запасов энергии от внешних источников, назначение вечного двигателя второго рода представлялось совершенно иным - от этой машины требовалась лишь способность идеально трансформировать энергию.

В связи с обсуждением вопроса о вечном двигателе второго рода в центре дискуссии снова оказалось действие закона сохранения энергии. Из курса физики известно, что этот закон в применении к тепловым процессам составляет содержание первого начала термодинамики. Действительно, первое начало утверждает эквивалентность тепловой и механической энергии, однако в нем ничего не говорится о том, в каком направлении должны протекать процессы преобразования энергии. Бросаем ли мы камень со скалы в пропасть, превращаем ли при взрыве накопленный во взрывчатке запас химической энергии в механическую энергию, свет и тепло, сжигаем ли топливо для обогрева наших домов - все это суть закономерные изменения форм энергии. Но в то же самое время закон сохранения энергии не запрещает протекание любого из этих процессов в обратном направлении, что явно противоречит нашему практическому опыту. Таким образом, некритическое применение этого закона приводит нас к абсурдным заключениям.

Приведем еще один пример. Согласно первому началу термодинамики, теплота эквивалентна механической энергии, поэтому, не входя в противоречие с первым началом, вполне можно построить машину, отбирающую тепло от тела, которое имеет температуру окружающего воздуха, или, к примеру, забирающую тепло воды из больших водоемов и совершающую благодаря этому механическую работу. При этом даже небольшое охлаждение воды в водоеме освобождало бы огромное количество тепловой энергии, которую можно было бы преобразовывать в электрическую или, далее, опять в механическую энергию. Так, например, охлаждая на 1°С воду, содержащуюся в пруду площадью 120 м 2 и глубиной 1,9 м, мы получили бы энергию, равную 954 кДж . Если преобразовать теперь полученную механическую энергию обратно в тепло, то тем самым возникает замкнутый цикл преобразования энергии, основанный на принципе перпетуум мобиле второго рода. Вопрос заключается только в том, осуществимы ли на практике машины, реализующие этот идеальный цикл трансформации, поскольку в обыденной жизни мы никогда не встречаемся с подобными явлениями.

Из собственного опыта мы знаем, что в теплом помещении вынутая из холодильника бутылка с молоком нагревается, а стакан горячего чая остывает. К тому же холодная жидкость при своем нагревании незаметно понижает температуру воздуха в комнате, а горячая - повышает. Понятно, что в этих процессах мы не находим ничего удивительного. Вместе с тем никогда не случается, чтобы холодное тело само собой охладилось или горячее - нагрелось. Для такого охлаждения служат специальные холодильные установки, нуждающиеся, однако, в постоянном подводе энергии от внешних источников. В то же время самопроизвольное охлаждение холодного или нагревание горячего тела вовсе не противоречит первому началу термодинамики. Поэтому очевидно, что формулировку этого закона следует как-то уточнить и дополнить.

Задачу об использовании тепла путем охлаждения водных бассейнов нашей планеты приводил еще В. Оствальд в качестве типичного примера, демонстрирующего нереальность идеи вечного двигателя второго рода. В своей книге «Всеобщая химия », изданной в 1893 г., он писал:

«Обычно мы не отдаем себе отчета в том, что теорему о перпетуум мобиле можно истолковывать двояким образом. С одной стороны, - о ней речь заходит чаще - можно было бы построить перпетуум мобиле (имеется в виду вечный двигатель первого рода), с его помощью вырабатывать определенную энергию и использовать ее, например, для привода какой-либо машины. Доказательство невозможности подобного процесса приводит нас к первому основному закону энергетики, который говорит о том, что энергию нельзя создать или уничтожить. Перпетуум мобиле, однако, можно было бы приводить в действие иначе, не вырабатывая энергии, если бы удалось включить в процесс трансформации огромное количество неиспользованной энергии, таящейся в природе. Например, если бы можно было преобразовать большие запасы тепловой энергии, содержащиеся в водах Мирового океана, в механическую энергию, которая со временем опять перешла бы в тепловую энергию, то тем самым мы осуществили бы вечный двигатель второго рода. Такое, конечно, невозможно, потому что эти запасы тепла, внешне проявляющиеся в форме установившейся температуры Земли, неизменны».

Другой немецкий физик Рудольф Клаузиус также много времени посвятил исследованию проблем термодинамики. В частности, он пришел к выводу, что энергия нашего мира остается неизменной. Одновременно с этим он высказал важную теорему о стремлении энтропии замкнутой системы к максимуму. Чтобы лучше понять значение этой теоремы, попытаемся подробнее пояснить смысл понятия энтропии, оставляя в стороне его строгую математическую формулировку. Важнейшим свойством энтропии является то, что она не изменяется в обратимых физических процессах, т.е. в идеальных процессах, которые могут протекать в обоих направлениях без какой бы то ни было потери энергии. Практический опыт показывает, что в реальных физических явлениях всегда присутствуют те или иные факторы, например, пассивные силы (трение), из-за воздействия которых часть преобразуемой энергии, переходя в тепло, для следующей фазы данного цикла трансформации оказывается безвозвратно потерянной. О таких потерях говорят как о «мертвой» энергии, об «обесценивании » энергии или о снижении ее «качества ». В связи с этим тепловой энергии отводят последнее место в ряду различных видов энергии, поскольку при всяком процессе ее преобразования обязательно возникает тепло, которое уже нельзя трансформировать ни в какую более высокую форму энергии.

Рассуждения такого рода, применявшиеся к нашему миру в целом, приводили к созданию представлений о так называемой тепловой смерти Вселенной , к которой будто бы закономерно стремится весь окружающий мир. В частности, это должно было проявляться в повышении температуры земной атмосферы и самой планеты в результате выделения тепла при всяком природном процессе преобразования энергии.

В другой интерпретации энтропия рассматривается как мера «рассеяния» энергии в системе. Это толкование энтропии основывается на том факте, что при любом процессе, происходящем в какой-либо замкнутой системе, преобразуется только часть энергии системы, в то время как остаток рассеивается в тепло, причем так, что его нельзя извлечь обратно. Мерой таких потерь или «рассеяния » энергии и является приращение энтропии. При этом численное значение энтропии оказывается пропорциональным величине энергии, перешедшей во внутреннюю энергию участвующих в процессе тел, т.е. в теплоту.

Именно подобное рассеяние энергии является препятствием для реализации вечных двигателей, работающих без пополнения энергетических запасов извне. Например, рассеяние энергии в приводном механизме паровой машины и в самом котле, где нагревается пар для приведения ее в движение, делает невозможным описанный выше вечный двигатель второго рода. Действительно, пусть нагретый пар из котла приводит в движение паровую машину. Представим себе, что приводной механизм этой машины сделан так, что энергия его движения полностью преобразуется в тепло, подводимое обратно к котлу паровой машины. Так вот, в этой, казалось бы, идеальной системе именно из-за наличия потерь будет происходить постоянное убывание рабочей энергии, причем в результате температура и давление пара в котле будут падать, а вместе с ними будет убывать и мощность самой паровой машины.

Другие изобретатели перпетуум мобиле предлагали, например, соединить два часовых механизма так, чтобы ходом одного из них заводилась пружина другого - это давало бы возможность получить «вечную» хронометрическую систему, которая принципиально не противоречила бы закону сохранения энергии. Практические опыты, однако, опровергли эту возможность, потому что такой вечный двигатель останавливался, как только сравнивались приводные усилия обеих пружин. Более того, если даже допустить, что с помощью соответствующих изменений конструкции можно достигнуть переноса существенной части энергии от одной пружины к другой, то и тут мы не сумели бы ничего добиться - именно из-за влияния уже упомянутого рассеяния энергии, сопровождающего каждый рабочий цикл.

Таким образом, с помощью понятия энтропии был сформулирован еще один важный закон, вместе с законом сохранения энергии проливший свет на проблему вечного двигателя второго рода. Одна из его формулировок - это теорема Клаузиуса о стремлении к максимуму энтропии замкнутой системы.

Другая эквивалентная формулировка утверждает, что невозможно создать устройство, постоянно совершающее механическую работу за счет теплоты и преобразующее полученную механическую энергию обратно в тепло . Этот закон называется вторым началом термодинамики. Второе начало термодинамики отвергает также возможность получения энергии путем охлаждения тел ниже температуры окружающей среды. Таким образом, для того чтобы преобразовать теплоту в другой вид энергии (например, в механическую), нам нужно иметь нагреватель (котел) и конденсатор (холодильник). Чем больше разность температур в нагревателе и конденсаторе, тем большую долю тепла можно преобразовать в полезную работу. Если же эта разность будет равна нулю, то и количество произведенной работы окажется нулевым.

Второе начало термодинамики устраняет неполноту закона сохранения энергии, который не делал различия между обратимыми и необратимыми процессами и тем самым оставлял призрачную надежду тем, кто не хотел мириться с невозможностью создания перпетуум мобиле.

Кроме того, второе начало термодинамики налагает запрет и на вечные двигатели, аналогичные перпетуум мобиле второго рода, но основанные на преобразовании других видов энергии. Так, например, невозможна вечная работа пары электромотор - генератор, сидящей на одном валу, которая действовала бы по следующей схеме: электрический ток, вырабатываемый генератором, приводит во вращение электромотор, а механическая энергия электромотора в свою очередь трансформируется в генераторе в электрическую. Если бы оба элемента этой пары работали с 100%-ным к.п.д. (что, естественно, невозможно из-за наличия в них электрических и механических потерь), то подобная система должна была бы поддерживать себя в постоянном движении. Однако она никоим образом не могла бы быть использована для практических целей, потому что, начав отбирать от этого агрегата полезную работу, мы тем самым нарушили бы его энергетическое равновесие, и система бы остановилась.

Этот часто приводимый в литературе пример системы мотор-генератор много раз служил прообразом ряда других, более простых проектов. Правда, при подобных упрощениях невозможность перпетуум мобиле «мотор-генераторного» типа выявляется еще яснее. Ведь, например, можно заменить мотор и генератор системой двух взаимосвязанных ременных шкивов. Наконец, можно ограничиться даже одним шкивом, считая одну его половину ведущим, а другую - ведомым элементом. Можно придумать еще десятки подобных конструкций, но результат всегда будет только один, поскольку всем этим вечным двигателям, как простым, так и сложным, второе начало термодинамики уже огласило свой приговор.

Строгости ради стоит заметить, что этот закон имеет статистический характер и применим только к макроскопическим объектам. В частности, его нельзя использовать при описании движения молекул или малых частиц вещества (броуновское движение ). Кроме того, постоянное тепловое движение, обусловливающее внутреннюю энергию макроскопических тел, не может служить источником энергии для совершения полезной работы.

Согласно историческим записям, первым человеком, предложившим построить подобную машину был ученый, живший в 12 веке. Именно в это время начались Крестовые походы европейцев на Святую Землю. Развитие ремесла, хозяйства и техники потребовало разработки новых источников энергии. Популярность идеи вечного двигателя стала стремительно расти. Ученые пытались построить его, но их попытки не увенчались успехом.

Еще более популярной эта идея стала в 15-16 веках с развитием мануфактурного производства. Проекты вечного двигателя предлагались всеми, кому не лень: от простых ремесленников, мечтавших наладить свою небольшую фабрику, до крупных ученых. Леонардо да Винчи, Галилео Галилей и другие великие исследователи после многочисленных попыток создать вечный двигатель пришли к общему мнению, что это в принципе невозможно.

К такому же мнению пришли ученые, жившие в 19 веке. Среди них был Герман Гельмгольц и Джеймс Джоуль. Они независимо друг от друга сформулировали закон сохранения энергии, характеризующий протекание всех процессов во Вселенной.

Вечный двигатель первого рода

Из этого фундаментального закона следует невозможность создания вечного двигателя первого рода. Закон сохранения энергии гласит, что энергия ниоткуда не появляется и никуда бесследно не исчезает, а лишь принимает новые для себя формы.

Вечный двигатель первого рода - воображаемая система, способна совершать работу (т.е. производить энергию) неограниченное время без доступа энергии извне. Реальная подобная система может совершать работу только засчет своей внутренней энергии. Но эта работа будет ограничена, так как запасы внутренней энергии системы не бесконечны.

Тепловой двигатель для производства энергии должен выполнять определенный цикл, а значит - каждый раз возвращаться в начальное состояние. Первое начало термодинамики гласит, что двигатель для совершения работы должен получать энергию извне. Вот почему невозможно построить вечный двигатель первого рода.

Вечный двигатель второго рода

Принцип работы вечного двигателя второго рода заключался в следующем: отнимать у океана энергию, понижая при этом его температуру. Это не противоречит закону сохранения энергии, но построение такого двигателя также невозможно.

Все дело в том, что это противоречит второму началу термодинамики. Оно заключается в том, что энергия от более холодного тела не может передаваться более горячему в общем случае. Вероятность такого события стремится к нулю, так как оно нерационально.

По мере развития науки ее законы охватывают все более широкие области, уточняются, приближаются к законам природы, делаются адекватными им. В обобщенном виде характер связи между законами природы и законами науки был четко выражен А. Эйнштейном: «Наши представления о физической реальности никогда не могут быть окончательными, и мы всегда должны быть готовы менять эти представления». П.Л. Капица, любивший парадоксы, говорил даже так: «Интересны не столько сами законы, сколько отклонения от них».

Но изобретатели perpetuum mobile не правы, рассчитывая на вполне возможное изменение законов науки, не разрешающих пока действие вечных двигателей. Дело в том, что законы науки (в частности, физики) не отменяются, а дополняются и развиваются.

Н. Бор сформулировал общее положение (1923 г.), отражающее эту закономерность развития науки: принцип соответствия , который гласит, что всякий более общий закон включает в себя старый закон как частный случай; он (старый) получается из нового при переходе к другим значениям определяющих его величин.

Утверждение закона сохранения энергии - первого начала термодинамики - сделало попытки создать вечный двигатель первого рода абсолютно безнадежным занятием. И хотя они все еще продолжались, основное направление мыслей создателей perpetuum mobile изменилось. Новые варианты вечных двигателей рождаются уже в полном согласии с первым началом термодинамики: сколько энергии поступает в такой двигатель, ровно столько же и выходит.

Как известно, закон сохранения энергии можно сформулировать в следующей несколько видоизмененной форме: при всех процессах преобразования энергии сумма всех видов энергии, участвующих в данном процессе, должна оставаться неизменной. Такая формулировка, хотя и не допускает возможности создания энергии из ничего, однако оставляет открытым другой путь реализации вечного двигателя, принцип работы которого основывался бы на идеальном преобразовании одной формы энергии в другую.

Было известно, что работа в двигателях совершается, когда горячее тело отдает тепло газу или пару и пар совершает работу, например, двигая поршень. Однако оказалось, что никак не удается сделать так, чтобы энергия от более холодного тела перешла к более горячему. А ведь для создания вечного двигателя необходимо, чтобы при этом еще и совершалась работа.

В результате развития термодинамики, основываясь на работах Сади Карно, Рудольф Клаузиус показал, что, невозможен процесс, при котором теплота переходила бы самопроизвольно от тел более холодных к телам более нагретым. При этом невозможен не только непосредственный переход - его невозможно осуществить и с помощью машин или приборов без того, чтобы в природе не произошло еще каких-либо изменений.

Уильям Томсон (лорд Кельвин) сформулировал принцип невозможности вечного двигателя второго рода (1851 г.), поскольку в природе невозможны процессы, единственным следствием которых была бы механическая работа, произведённая за счет охлаждения теплового резервуара.

Исследованием вопроса о perpetuum mobile нового типа в начале XX в. занимался известный немецкий физико-химик Вильгельм Оствальд. Идеальную машину, способную циклично и без потерь преобразовывать энергию из одной формы в другую, он назвал вечным двигателем второго рода . Как видно и после отказа от возможности создания вечного двигателя первого рода проблема вечного движения все же продолжает оставаться открытой. Однако, вечные двигатели первого и второго рода уже значительно различаются между собой. Если функция объявленного учеными неосуществимым вечного двигателя первого рода состояла в непрерывном совершении полезной работы без пополнения запасов энергии от внешних источников, то от вечного двигателя второго рода требовалась лишь способность идеально трансформировать энергию.

Согласно первому началу термодинамики, теплота эквивалентна механической энергии, поэтому, не входя в противоречие с первым началом, вполне можно построить машину, отбирающую тепло от тела, которое имеет температуру окружающего воздуха, или, к примеру, забирающую тепло воды из больших водоемов и совершающую благодаря этому механическую работу. Если преобразовать теперь полученную механическую энергию обратно в тепло, то тем самым возникает замкнутый цикл преобразования энергии, основанный на принципе вечного двигателя второго рода.

Однако в обыденной жизни никогда не встречаются подобные явления. В теплом помещении вынутая из холодильника бутылка с молоком нагревается, а стакан горячего чая остывает. К тому же холодная жидкость при своем нагревании незаметно понижает температуру воздуха в комнате, а горячая - повышает. Вместе с тем никогда не случается, чтобы холодное тело само собой охладилось или горячее - нагрелось. Для такого охлаждения служат специальные холодильные установки, нуждающиеся, однако, в постоянном подводе энергии от внешних источников. В то же время самопроизвольное охлаждение холодного или нагревание горячего тела вовсе не противоречит первому началу термодинамики. Поэтому очевидно, что формулировку этого закона следует как-то уточнить и дополнить.

Второе начало термодинамики устраняет неполноту закона сохранения энергии, который не делал различия между обратимыми и необратимыми процессами и тем самым оставлял призрачную надежду тем, кто не хотел мириться с невозможностью создания perpetuum mobile. Этот физический принцип накладывает ограничение на направление процессов, которые могут происходить в термодинамических системах. Второе начало термодинамики запрещает так называемые вечные двигатели второго рода, показывая, что коэффициент полезного действия не может равняться единице, поскольку для кругового процесса температура холодильника не может равняться абсолютному нулю (невозможно построить замкнутый цикл, проходящий через точку с нулевой температурой).

Существуют несколько эквивалентных формулировок второго закона термодинамики:

Постулат Клаузиуса : «Невозможен круговой процесс, единственным результатом которого является передача теплоты от менее нагретого тела к более нагретому» (такой процесс называется процессом Клаузиуса).

Постулат Томсона (Кельвина): «Невозможен круговой процесс, единственным результатом которого было бы производство работы за счёт охлаждения теплового резервуара» (такой процесс называется процессом Томсона).

Другая формулировка второго начала термодинамики основывается на понятии энтропии:

«Энтропия изолированной системы не может уменьшаться » (закон неубывания энтропии). В состоянии с максимальной энтропией макроскопические необратимые процессы (а процесс передачи тепла всегда является необратимым из-за постулата Клаузиуса) невозможны.

Когда была создана статистическая термодинамика, которая основывалась на молекулярных представлениях, Оказалось, что второе начало термодинамики имеет статистический характер: оно справедливо для наиболее вероятного поведения системы. Существование флуктуаций препятствует точному его выполнению, однако вероятность сколь-нибудь значительного нарушения крайне мала. То есть переход тепла от холодного тела к более горячему возможен, но это крайне маловероятное событие. А в природе реализуются наиболее вероятные события.

Есть "Вечный двигатель второго рода"!

...- Г-голубчики, - сказал Федор Симеонович озадаченно, разобравшись в почерках. - Это же п-проблема Бен Б-бецалая. К-калиостро же доказал, что она н-не имеет р-решения.

Мы сами знаем, что она не имеет решения, - сказал Хунта, немедленно ощетиниваясь. - Мы хотим знать, как ее решать.

К-как-то ты странно рассуждаешь, К-кристо... К-как же искать решение, к-когда его нет? Б-бесмыслица какая-то...

Извини, Теодор, но это ты странно рассуждаешь. Бессмыслица - искать решение, если оно и так есть. Речь идет о том, как поступать с задачей, которая решения не имеет...

А.Стругацкий, Б.Стругацкий. Понедельник начинается в субботу.

Уважаемые Господа!

Вечный двигатель второго рода это такой двигатель, который не подчиняется Второму закону термодинамики.

В 1824 году С. Карно в своем сочинении «Размышления о движущей силе огня и о машинах, способных развивать эту силу» высказал мысль, что «тепловая машина не поглощает тепло, превращая ее в работу, а передает его холодному телу». В. Томпсон (лорд Кельвин), Р. Клаузиус, М. Планк возвели эту мысль в ранг закона. Современная трактовка Второго закона термодинамики звучит так: "Для перевода теплоты в работу необходим источник тепла и охладитель более низкой температуры". Того, кто осмеливался противоречить этому закону, называют изобретателями вечного двигателя второго рода.

Этот закон распространяется на тепловые электростанции. Наверное, все знают, что для выработки электроэнергии надо подвести тепло к воде в парогенераторе «ПГ» (см. Рис. 1), затем испарить ее и поднять давление пара. После этого пар с высоким давлением поступает в турбину «Т», вращает ее ротор вместе с ротором генератора «Г», а последний вырабатывает электроэнергию. После турбины, пар с низким давлением поступает в конденсатор «К» (охладитель) и там конденсируется - пар переходит в состояние жидкости (воды). После конденсатора, вода снова подается в парогенератор конденсатным насосом «КН».

При отводе тепла из конденсатора, в окружающую среду (реки, озера, моря) выбрасывается более половины подведенного тепла. Вот как мы греем "матушку Землю!

Выброс тепла в конденсаторе делается для того, чтобы уменьшить затраты энергии на поднятие давления пара. Для поднятия давления водяного пара с низким давлением, сначала его надо перевести в состояние жидкости (сконденсировать), поднять давление воды в насосах, подать в парогенератор, снова подвести к воде тепло для ее испарения и поднятия давления пара.

Я решил придумать что-нибудь для увеличения КПД цикла и улучшения экологической обстановки в местах размещения ГРЭС, ТЭЦ, АЭС.

Для изобретательства в теплоэнергетике надо знать азы термодинамики.

При нормальных условиях для выкипания воды, сначала надо нагреть ее до 100°С, затем подвести тепло для испарения. Испарение происходит при отрыве молекул воды с поверхности кипения. О распределении внутренних энергий в процессе кипения можно судить по Рис.2.

Здесь, I" - теплота идущая на нагрев воды до температуры кипения.

R - теплота идущая на испарение кипящей воды - теплота парообразования

При дальнейшем подводе тепла к пару, идет его перегрев – увеличение внутренней энергии с повышением температуры.

Теплота парообразования R состоит из теплоты разъединения молекул U и теплоты расширения L. При нормальных условиях теплота расширения L в 12,5 раз меньше теплоты разъединения U.

В процессе получения электроэнергии, теплота разъединения U выбрасывается в окружающую среду, а теплота расширения L участвует в полезной работе. Вот из-за неё то и вся драка пойдет.

Я подумал, все дело в состоянии массы - жидкое оно, или газообразное. Как это так? Для поднятия давления в жидкости надо затратить энергии во много раз меньше, чем для поднятия того же давления в паре? Значит надо найти другой, менее энергоемкий способ поднятия давления пара, или найти другой способ перевода пара в состояние жидкости (воды).

Известно, что "Удавалось перегревать воду при нормальных условиях на десятки градусов. Однако, в конце концов, такая вода вскипает. Кипение происходит крайне бурно, напоминая взрыв".

Я задал себе задачу успокоить перегретую воду - найти способ ее успокаивания (чтобы не взрывалась). Потом создать такие условия, когда внутренняя энергия перегретой воды была бы больше, чем внутренняя энергия пара при том же давлении сжатия.

Моя профессия - инженер теплоэнергетик, специализация - виброналадка вращающегося оборудования. Т.е. в голове всякие ускорения, центробежные силы и др. Поэтому, возник вопрос, как влияют центробежные силы инерции на процесс кипения жидкости?

Представьте, что Вас послали на Солнце в барокамере и термостате. На Солнце вес увеличивается в 30 раз и составит для человека 2 - 3 тонны. Ну и как в этих условиях бегать, прыгать? Короче, летальный исход от веса! Ну а молекулы воды другое дело. К ним можно подвести много тепла и тогда произойдет их отрыв (прыжок) с поверхности. Но с увеличением тепла в жидкой массе должна расти ее температура кипения. Т.е. воду для кипения надо будет нагревать не до 100°С, а до большей температуры.

Имитировать увеличение веса в молекулах воды можно во вращающемся цилиндре (см. Рис. 3). Вес молекул увеличится от возрастания центробежных сил в массе.

Я провел опыт по испарению воды во вращающемся цилиндре. При увеличении центробежных сил, от увеличения радиуса поверхности кипения возрастала температура кипения. В первом приближении определил увеличение внутренней энергии, при увеличении радиуса кипения на один сантиметр.

Получилось, что температура кипения чистой воды увеличивается не только от увеличения давления сжатия, но и от увеличения центробежных сил в молекулах на вращающейся поверхности. Этот эффект был также открыт в 1971 году в Америке.

Согласно данных измерений в опыте, я просчитал, что для того, чтобы внутренняя энергия кипящей воды была равна внутренней энергии пара, при нормальных условиях, надо иметь радиус внутренней вращающейся поверхности воды в цилиндре 1,9 метра. Т.о. если этот радиус будет больше, то пар с нормальными параметрами будет переходить в состояние жидкости на этой поверхности (силы не хватит оторваться от поверхности "Солнца"). Процесс перехода пара в состояние жидкости на вращающейся поверхности назван «Коллапсация пара".

Расчеты показали, что энергия массы, вращающейся с частотой n = 3000 об/мин на поверхности с радиусом 1,9 метра близка к энергии движения массы со звуковой скоростью и к теплоте расширения L.

Материалы по опытам со сверхзвуковыми движениями потоков газов говорят об одной физической природе скачков уплотнения на острие крыла и переходом пара в состояние жидкости на вращающейся поверхности. Причем, затрачиваемые энергии в процессах перехода пара в состояние жидкости равны теплоте расширения пара L. Исходя из этого, для уточнения, мной выполнен расчет радиуса коллапсации пара для компенсации теплоты расширения. Этот радиус получился равным 1,05 метра.

Для подтверждения правильности рассуждений рассмотрен процесс эрозионного износа лопаток паровых турбин (вырывы металла жидкостью), работающих на сухом насыщенном паре при атмосферном давлении. Начало эрозионного износа лопаток начинается на радиусе примерно 1 метр. Эти наблюдения подтверждают также специалисты МЭИ. Значит, рассуждения и расчеты радиуса коллапсации выполнены правильно.

Т.о. найден новый способ перевода пара в состояние жидкости!

Представьте, что в цилиндре Рис. 3 близко к наружному диаметру выполнены отверстия, а сам цилиндр помещен в корпус с напорным и всасывающим патрубками и системой уплотнений. Это будет центробежный насос с гидрозатвором в рабочем колесе. На Рис. 4 показан разрез насоса.

Работа насоса происходит следующим образом.

Пар с низким давлением поступает во всасывающий патрубок насоса. Попадая в отверстия барботажного цилиндра, он раскручивается и приобретает центробежную силу. Под действием этой силы пар направляется к поверхности гидрозатвора. Когда молекулы пара окажутся на этой поверхности, они перейдут в состояние перегретой жидкости. Центробежные силы не дадут им снова оторваться от поверхности. По радиусу гидрозатвора будет происходить приращение давления сжатия перегретой воды, как в обычном центробежном насосе. С большим давлением перегретая вода будет выходить из гидрозатвора рабочего колеса насоса. После выхода из рабочего колеса перегретая вода прекратит вращаться и снова перейдет в состояние пара, но с высоким давлением.

Энергия, затрачиваемая на коллапсацию единицы массы пара будет равна теплоте расширения L. Т.е. для повышения давления пара не надо будет выбрасывать теплоту разъединения U. Для перевода пара в состояние жидкости надо будет затрачивать работу равную теплоте расширения L. Т.к. теплота L в турбинах также используется для совершения работы, то тепло, используемое полезно, будет равно теплоте перегрева пара.

Схема работы паросиловой установки с применением двухфазного насоса будет выглядеть, как показано на Рис. 5.

Здесь: ПП – пароперегреватель; Т – турбина; Г – Генератор; ДН – Двухфазный насос.

Из двухфазного насоса, пар с высоким давлением поступает в пароперегреватель и там перегревается. Перегретый пар с высоким давлением из пароперегревателя поступает на турбину. В турбине тепловая энергия пара переходит в энергию вращения ротора турбины. Последний вращает ротор генератора, который вырабатывает электроэнергию. После турбины, пар низкого давления поступает в двухфазный насос. В двухфазном насосе происходит повышение давления пара низкого давления до давления пара высокого давления. Далее цикл повторяется.

Скорость, с которой человечество превращает в тепловую все остальные формы энергии, начинает уже угрожать самому факту существования цивилизации. «Тепловая смерть» в обозримом будущем из-за всё нарастающего потребления энергии с последующим ее рассеянием в виде тепла уже кажется неизбежной при сохранении нынешних темпов экономического развития. Но если человечество попытается затормозить их, то пойдет поперек законов эволюции и все равно погибнет.

Есть ли выход? Вполне возможно, что он пока не просматривается просто из-за неправильного понимания одного физического принципа. Преобразование энергопотребления в круговорот энергии в принципе позволило бы наращивать его интенсивность, не нарушая равновесия со средой. Это доказывает опыт органического мира, который, на протяжении тысячелетий сохраняя массу биосферы более или менее постоянной, многократно увеличил за время своей эволюции ежегодное потребление вещества и энергии.

Ныне пропускаемые им ежегодно через себя массы вещества сравнимы с массой земной коры, а по некоторым оценкам - превышают ее.

Вечный двигатель второго рода невозможен?

Поскольку почти вся потребленная нами энергия рано или поздно рассеивается в виде тепла, из-за чего нам угрожает «тепловая смерть», постольку круговорот энергии должен будет принять форму круговорота тепла. Другими словами, нам предстоит научиться собирать рассеянное тепло, чтобы вновь и вновь использовать его энергию.

Идеальной тепловой машиной принято считать ту, которую теоретически разработал в 1824 году французский физик Сади Карно (Nicolas Léonard Sadi Carnot, 1796–1832). Ее идеальность заключается в том, что коэффициент полезного действия (КПД) любой другой машины, использующей те же холодильник и нагреватель, будет меньше, чем у машины, придуманной им. А то, что КПД его машины отличен от единицы, следует из самого факта наличия у нее холодильника: получив определенную энергию от нагревателя (например, в виде тепла от сжигания топлива), рабочее телоидеальной машине это, разумеется, идеальный газ), выполняя полезную работу, совершенно бесполезно отдает часть своей энергии в виде тепла холодильнику.

Сегодня для собирания рассеянного тепла используются энергетические установки классического типа (с холодильником) - гео- и гидротермальные энергоустановки и тепловые насосы с КПД меньшими, чем КПД Карно.

Французский физик Сади Карно создавал свою теорию тепловых машин, когда был еще совсем молодым. Хотя в основе его рассуждений лежала отвергнутая впоследствии теория о неуничтожимом тепловом флюиде, многие его выводы оказались точными и обладали большой практической пользой

Разумеется, использование рассеянного тепла возможно только потому, что среда нагрета неравномерно, то есть с перепадами температуры, которые и используются собирающими тепло тепловыми машинами. Коль скоро величина этих перепадов невелика, КПД классических тепловых машин зарезается до чрезмерно малых значений. Поэтому круговорот тепла в энергетике может стать реальным лишь при ее базировании на энергетических установках без холодильника, КПД которых не был бы ограничен КПД Карно.

Такие энергетические установки называют вечными двигателями второго рода. Принято считать, что они запрещены

Вторым началом термодинамики. Однако угроза «тепловой смерти» заставляет нас максимально благожелательно рассмотреть аргументы в их защиту.

Положение не безнадежно. Не может быть так, чтобы на протяжении миллионов и миллиардов лет законы эволюции подстегивали органический мир, а затем и человечество к развитию в определенном направлении (в сторону интенсификации потребления вещества и энергии), а потом это развитие вдруг наткнулось бы на закон физики, который, делая невозможным круговорот тепла, обрекал бы человечество на гибель. Законы эволюции и физики, думается, входят в единый и непротиворечивый свод законов природы. Если это и на самом деле так, то запрет на вечные двигатели второго рода должен оказаться несостоятельным.

Ошибки классиков

Конечно, науки без ошибок не бывает, однако в истории запрета на вечные двигатели второго рода ошибок особенно много. Начать с того, что вывод Сади Карно об обязательности холодильника был сделан на основании принципа неуничтожаемости теплорода, согласно которому потребление тепла подобно потреблению энергии. Потребляя энергию, мы ведь не уничтожаем ее (поскольку действует закон сохранения энергии), но только превращаем одну ее форму в другую. Потребление теплорода, говорит Карно, означает не его уничтожение, но лишь его переход от более теплого тела к менее теплому. Вот это менее теплое тело и является, полагает Карно, холодильником, обязательным для всякой тепловой машины:

Возникновение движущей силы обязано в паровых машинах не действительной трате теплорода, а его переходу от горячего тела к холодному […] этот принцип приложим ко всем машинам, приводимым в движение теплотой […] Согласно этому принципу, недостаточно создать теплоту, чтобы вызвать появление движущей силы: нужно еще добыть холод.

Отбросив теорию теплорода, шедшие за Карно классики термодинамики оставили в силе его вывод о наличии у всякой тепловой машины холодильника. Мягко говоря, это удивляет, поскольку сегодня хорошо известно, что, превращаясь в другие формы энергии, тепло перестает существовать как тепло. Иначе говоря, потребляя теплород (тепло), мы его уничтожаем, что подрывает аргументацию Карно.

Еще более удивительна история возникновения понятия вечных двигателей второго рода. Его ввел Вильгельм Оствальд (

Wilhelm Friedrich Ostwald, 1853–1932) в 1888 году, и сделал он это абсолютно некорректно:

Работа, доставляемая гигантской машиной океанского парохода, целиком переходит в теплоту, так как энергия движения движущегося судна по прибытии становится равной нулю и превращается в теплоту. Если бы можно было сообщенную морской воде теплоту обратно превратить в энергию движения, то пароход мог бы совершить свой обратный путь без затраты угля, что, конечно, невозможно […] Исполнение этого было бы равносильно perpetuum mobile […] так как одно и то же количество энергии постоянно можно было бы употреблять для одинаковых превращений, то техническую задачу дарового получения работы можно было бы считать разрешенной. Что этого на самом деле нет, выражают в следующей форме: perpetuum mobile второго рода невозможен. При этом под perpetuum mobile второго рода подразумевают машину, которая может приводить покоящуюся энергию в движение или превращать ее в другие формы.

Покоящейся энергией Оствальд, как это было тогда принято, называет рассеянное в среде тепло:

Даровая теплота находится повсюду в безграничном количестве […] она представляет [собой] покоящуюся энергию.

Обратим внимание: Оствальд запрещает не тепловую машину без холодильника, но любую тепловую машину, потребляющую рассеянное тепло. Однако мы-то с вами сегодня точно знаем, что такие тепловые машины существуют! Оствальд, положим, мог о них и не знать (первая вырабатывающая электроэнергию геотермальная установка появилась в 1904 году, аналогичная гидротермальная - в 1929 году, первый патент на технологию тепловых насосов был выдан в 1912 году), однако не может не удивлять, что его формулировки воспроизводятся на протяжении XX века и другими авторами. Действующую на Земле тенденцию к рассеянию нетепловых форм энергии в виде тепла все они, начиная с Оствальда, некорректно трансформируют в не знающий исключений закон.

Холодильник обязателен?

Но вернемся к запрету на тепловые машины без холодильника. Последователи Карно, отказавшись от теплорода, не исправили его ошибку, на мой взгляд, потому, что работали исключительно с классическими тепловыми машинами, имеющими две особенности, которые делают холодильник для них и на самом деле необходимым:

1) цикличность;

2) однофазное рабочее тело (газ или жидкость).

Возвращая такое рабочее тело в начальное состояние, мы вынуждены отдавать часть полученного от нагревателя тепла холодильнику. Между тем, для нециклических тепловых машин он не обязателен, как не обязателен он, по-видимому, и для циклических тепловых машин с двухфазным рабочим телом газ-жидкость.

Примером нециклической тепловой машины без холодильника может служить работающий в вакууме ракетный двигатель, для которого говорить об охлаждении продуктов сгорания за бортом не приходится - расширение газа в пустоту, как известно, происходит изотермически. Еще один пример нециклической тепловой машины без холодильника будет приведен далее.

Что же касается циклических тепловых машин с двухфазным рабочим телом, то, как это доказывают в последние десятилетия независимо друг от друга несколько отечественных исследователей, возвращение рабочего тела в начальное состояние может в них осуществляться не с передачей части тепла холодильнику, но с ее возвращением нагревателю. Точнее, часть полезной работы одной фазы рабочего тела используется для адиабатического расширения и, следовательно, охлаждения другой. Внешний холодильник становится ненужным, а КПД - не ограниченным КПД машины Карно.

Второе начало термодинамики

Излюбленный аргумент защитников вечных двигателей второго рода - ограниченность второго начала термодинамики. Моя позиция иная. Я считаю, что второе начало - это закон природы, действующий, если исключить микроскопические флуктуации, без ограничений. Другое дело, что надо правильно его прочитать.

В современных учебниках и научных монографиях содержание второго начала чрезмерно размыто, о чем свидетельствует разнообразие его формулировок. Я собираю их уже много лет, и к настоящему моменту в моей коллекции 48 формулировок, но в реальности их еще больше. Это разнообразие контрастирует, например, с формулировками закона сохранения энергии, которые в разных источниках практически слово в слово повторяют друг друга.

Часто приходится читать о тождественности разных формулировок второго начала. Это и так, и не так. Конечно же, все многочисленные формулировки второго начала не могут быть тождественными, как не могут они все быть и разными. Я попытался вышелушить ядро закона природы, который за всем этим стоит, и у меня получились две такие его компоненты: 1) действует закон возрастания полной энтропии; 2) существует асимметрия между превращениями нетепловых форм энергии в теплоту, с одной стороны, и превращениями теплоты в другие формы энергии - с другой: первые, в отличие от вторых, не требуют компенсации.

Самый распространенный источник путаницы я вижу в неумении провести различие между тепловой и нетепловой энтропией. Между тем, различие между ними легко продемонстрировать. Если смешать горячий воздух с холодным, мы получим теплый воздух - то же самое, что при передаче определенного количества тепла от горячего воздуха холодному. Энтропия выросла при участии теплового процесса.