Частота вращения турбины самолета. Газотурбинный двигатель. Устройство и принцип работы

1. Особенности ДВС с непрерывным сгоранием топлива

2. Принцип работы реактивного двигателя

3. Принцип работы газотурбинного двигателя

4. Принцип работы турбо реактивного двигателя

1. Двигатели с непрерывным сгоранием топлива.

Основной элемент двигателей с непрерывным сгоранием топлива - каме­ра - сгорания постоянного объема. В нее подаются горючее и окислитель. Газовый поток продуктов сгорания за счет высокой температуры и расширения приобретает большую кинетическую энергию, которая преобразуется в так называемую реактивную силу тяги двигателя или энергию вращения ротора газовой тур­бины. Возникновение реактивной силы хорошо иллюстрирует опыт из школьного курса физики - «вращение сегнерова коле­са»: вода, вытекая из колеса в одну сторону, заставляет вра­щаться колесо в противоположную сторону.

2. Принцип работы реактивного двигателя

Реактивный двигатель . Рабочая смесь для реактивного двигателя, схема которого представлена на рис. 4, готовится, как правило, из жидкого топлива и окислителя, хранящихся в отдельных резервуарах специального бака 1, из которых они непрерывно подаются в камеру сгорания 4 специальными дозирующими насосами 2 и 7 под давлением через форсунки открытого типа 6. Рабочим телом для реактивного двигателя являются продукты реакции окисления топлива (продукты горения топлива), которые при выходе из сопла 5 имеют высокую температуру и большую скорость истечения. Эти параметры рабочего тела позволяют создать значительную силу тяги у такого двигателя. Запуск осуществляется кратковременным включением запальной свечи 3.

Рис. 1. Схема жидкостного реактивного двигателя:

1 - баки; 2 - дозирующий топливный насос; 3 - запальная свеча; 4- камера сгорания; 5 - сопло; 6 - форсунки; 7 - дозирующий насос окислителя

Особенность работы реактивного двигателя состоит в том, что его сила тяги не зависит от скорости движения силовой установки. Простота конструкции делает его достаточно дешевым и простым в эксплуатации, однако большая теплонапряженность деталей приводит к снижению надежности и сроков службы.

К недостаткам этих тепловых двигателей следует отнести большой шум при работе и низкую экономичность, что является основными причинами, ограничивающими их применение на железнодорожном транспорте. Широкое распространение эти двигатели получили в авиации и ракетной технике.

3. Принцип работы газотурбинного двигателя

Газотурбинный двигатель. Газотурбинный двигатель (ГТД) представляет собой разновидность теплового двигателя, в конструкции которого имеются лопаточные машины. Особенностью работы является то, что превращение энергии горящего топлива в механическую работу происходит в нем непрерывно. В ГТД составные части рабочего цикла, включающего сжатие воздуха, отвод теплоты к рабочему телу и расширение, разобщены между собой и протекают в разных местах. В поршневых же двигателях процессы сжатия воздуха, подвода теплоты к рабочему телу и расширения, последовательно чередуясь, осуществляются в одном месте - рабочем цилиндре.

Газотурбинный двигатель может быть использован в качестве теплового двигателя на газотурбовозах и самолетах.

Газотурбинный двигатель может работать на любом виде и сорте топлива (жидкое, твердое и газообразное).

Наиболее простая принципиальная схема одновального турбинного двигателя, используемого на газотурбовозах, представлена на рис. 5.

Сжигание топлива производится в специальной камере сгорания 8. Топливо в нее через форсунку подается насосом 3. Воздух, необходимый для горения топлива, поступает в двигатель через управляемое воздухозаборное устройство 6 . Установленный на одном валу 4 с рабочим колесом газовой турбины 2, воздушный компрессор 5 сжимает его и подает в камеру сгорания 8. Продукты горения топлива из камеры сгорания, проходя через направляющий аппарат 9, поступают на лопатки рабочего колеса 2 и далеепогазоотводу 10 в атмосферу. Газовая турбина, имеющая рабочие органы в виде лопаток со специальным профилем, закрепленных на рабочем колесе 2, работает с высокой частотой вращения (100... 250 с -1 ), приводя в действие как воздушный компрессор 5, так и свободный вал 4 для передачи мощности потребителю 11. Для запуска ГТД служит специальный пусковой двигатель 12, который начинает проворачивать свободный вал 4 , а электрическая свеча 7 осуществляет первоначальное зажигание топлива в камере сгорания 8. Применение в турбине нескольких последовательно расположенных рядов рабочих колес с лопатками позволяет более полно использовать энергию отработавших газов и увеличить ее мощность.

Газовые турбины уступают по экономичности поршневым двигателям внутреннего сгорания, особенно при работе с неполной нагрузкой. Кроме того, они отличаются большой теплонапряженностью лопаток рабочего колеса, которые непрерывно работают в высокотемпературной среде. Температура продуктов сгорания топлива достигает 1 800... 2000 °С и выше. Охлаждающей средой ГТД является только воздух, который подается значительными объемами в камеру сгорания. Другие способы отвода тепла от лопаток рабочего колеса сложны и малоэффективны. В силу этого обстоятельства привод воздушного компрессора, подающего воздух в камеру сгорания, требует больших затрат мощности, до 60... 70 % от полной мощности ГГД.

На сегодняшний день известно много конструкций и схем ГТД, отличающихся друг от друга следующими параметрами:

Условиями сжигания топлива - с внутренним и внешним сжиганием;

Использованием рабочего тела в круговом процессе - разомкнутые и замкнутые системы;

Количеством валов - одновальные, двух- и многовальные.


Рис. 2. Принципиальная схема одновального газотурбинного двигателя:

1 - корпус газовой турбины; 2 - рабочее колесо газовой турбины; 3 - топливный насос; 4 - свободный вал; 5- воздушный компрессор; 6 - воздухозаборное устройство воздушного компрессора; 7- электрическая свеча зажигания; 8- камера сгорания; 9 - направляющий аппарат; 10 - газоотвод; II - потребитель мощности; 12 - пусковой двигатель

В установках СПГГ обычно используется низкосортное топливо. Турбина работает на газе с относительно невысокой температурой (500... 600 °С), поэтому для изготовления лопаток может быть использован менее жаропрочный материал. КПД таких установок достигает 35 %, однако они имеют увеличенную массу и габариты по сравнению с дизелями с газотурбинным наддувом.

Экономичность работы ГГД можно улучшить за счет повышения температуры газов перед турбиной, использования многовальных систем, применения регенерации и утилизации теплоты уходящих газов (например, для отопления и кондиционирования воздуха в вагонах), применения промежуточного охлаждения воздуха при сжатии и промежуточного подвода теплоты к газу при его расширении. Обеспечение этих мероприятий требует применения жаропрочных сталей для лопаток турбины, использования металлокерамических материалов, воздушного охлаждения части турбины. При этом КГТД действующих установок повышается до 33... 40 %.

Существуют проектные разработки и попытки создания локомотивных газотурбинных двигателей на твердом или пылевидном топливе.

Газотурбинная установка компактна, обладает малой массой на единицу мощности, не содержит деталей с возвратно-поступательным движением, которое приводит к более быстрому износу двигателя, отличается малыми затратами на содержание оборудования. Она может работать без потребления воды, в ней легко полная автоматизация процессов, имеется реальная возможность для сжигания в камере сгорания различных видов топлива, а также имеет относительно постоянный вращающий момент на валу отбора мощности.

Особенность ГТД, применяемых в авиации, является то, что энергия сгорания топлива преобразуется в энергию истечения газов, которые с большой скоростью через выпускную систему ГТД выбрасываются в атмосферу. Тяга при работе этих двигателей возникает за счет разности количеств движения (произведения массы на скорость), выходящего из выпускной системы газовоздушного потока и входящего в приемное устройство ГТД воздуха. Тяга направлена при этом в сторону, противоположную направлению истечения газов, т. е. является реактивной. Нетрудно представить себе, что для увеличения тяги реактивного двигателя необходимо увеличить разность количеств движения, т. е. на выходе из ГТД произведение массы на скорость должно значительно превышать такую же величину на входе. Решению этой задачи служат все элементы конструкции ГТД.

Существуют три типа газотурбинных двигателей: турбореактивные, турбореактивные двухконтурные и турбовинтовые. Рассмотрим принцип работы каждого типа двигателя.

Газотурбинный двигатель успешно применяется в танках и авиации. К сожалению, ряд конструктивных ограничений не позволяет использовать эту прогрессивную конструкцию в качестве силовой установки для легкового автомобиля.Преимущество двигателей этого типа в том, что у них самая большая удельная мощность среди существующих силовых установок, относящихся к двигателям внутреннего сгорания, до 6 кВт/кг. Кроме того, газотурбинный двигатель может работать на различных видах жидкого топлива, а не только на бензине или дизеле.

История создания газотурбинного двигателя

Первая газовая турбина была разработана в 1519 году. Она существенно отличалась от современных устройств и применялась в "сфере малой механизации". Турбина вращала вертел, предназначенного для жарки мяса. Использовалась газовая турбина и для приведения в движение повозки изобретателя Джона Барбера.

Один из первых газотурбинных двигателей для танков разработала компания BMW в 1944 году. Он был опробован на самоходной установке "Пантера"

В 1950 году был разработан газотурбинный двигатель, предназначенный для автомобилей. В результате появилась экспериментальная модель гоночного автомобиля «JET1». Двигатель машины был расположен позади сидений, по бокам монтировались воздухозаборники, а на верхней задней части находились отверстия для выхода выхлопных газов. Скорость вращения турбины достигала 50 тысяч оборотов за 1 минуту. В качестве топлива использовался бензин, парафиновое масло и дизельное топливо. Максимальная скорость, с которой могла двигаться машина, составляла 140 км/ч. Из-за значительного расхода топлива автомобили с газотурбинным двигателем не пользовались особым спросом.

Единственный случай применения газотурбинного двигателя в конструкции мотоцикла - MTT Y2K Turbine Superbike с ДВС Rolls-Royce-Allison Model 250

Модернизировав устройство и сконструировав модель «BRM», копания «Rover» приняла участие в гоночных соревнованиях 1963 года и установила рекорд: машина разгонялась до скорости 229 км/ч. Позже в аналогичных соревнованиях участвовали и другие автомобильные производители. Например, компания «Howmet» выпустила модель «TX», которая работала на газотурбинном двигателе и неоднократно становилась гоночным фаворитом.Единственная в истории модель серийного автомобиля с газотурбинным двигателем, предназначенного для передвижения по дорогам общего пользования, была выпущен Пятьдесят экземпляров автоьмобля под названием Chrysler Turbine были вручную собраны специалистами итальянского кузовного ателье Ghia. В продажу автомобили не поступали, а были розданы добровольцам, на два года для тестирования. Эксперимент прошёл удачно, но для запуска нового производства требовалась постройка завода по выпуску двигателей нового типа, и концерн Chrysler не рискнул инвестировать большие деньги. В семидесятые годы, когда в США существенно ужесточились экологические нормы, и, вдобавок, начался топливный кризис, взвинтивший цены на нефть компания отказалась от продолжения разработок.

Устройство и принцип действия газотурбинного двигателя

Попадая в компрессор, воздух подвергается сжатию и нагреванию. Далее он поступает в камеру сгорания, куда также подается и часть топлива. Из-за высокой скорости воздух и топливо воспламеняются при столкновении. Во время сгорания смеси выделяется энергия, которая преобразуется в механическую работу за счет вращения. Часть данной энергии используется для сжатия воздуха в компрессоре. Другая часть поступает в электрический генератор. После этого отработавшие газы отправляются в утилизатор.

Достоинства и недостатки газотурбинных двигателей

Газотурбинные двигатели во многом превосходят поршневые моторы. Благодаря способности развивать большие обороты устройство отличается высокой мощностью, но при этом имеет компактные размеры. В качестве топлива используют керосин или дизельное топливо. Масса газотурбинного двигателя в 10 раз меньше массы аналогичного по мощности двигателя внутреннего сгорания. Ввиду отсутствия трущихся деталей газовая турбина не требует наличия .

Инженеры Chrysler, создавшие единственный мелкосерийный автомобиль с газотурбинным двигателем, опытным путем выяснили, что лучшее топливо для ГТД - обычный керосин

Основным недостатком становится повышенный расход топлива, вызванный необходимостью искусственного ограничения температуры газов. Это ограничение связано с тем, что в случае с автомобилем двигатель устанавливается внутри кузова, а не под крылом, как, у самолета, например. Соответственно, температура двигателя не должна превышать 700 градусов. Металлы, устойчивые к таким температурам, имеют очень высокую стоимость. Эта проблема часто вызывает интерес у ученых, и в скором будущем должны появиться газотурбинные двигатели, обладающие хорошими показателями экономичности. Очевидно, это произойдет только в том случае, если будет решена проблема отвода большого количества тепла, что позволит ставить на автомобили "незадушенные" двигатели, в конструкции которых проблема экономичности решена. Среди недостатков также следует отметить высокие требования к качеству атмосферного воздуха и отсутствие возможности торможения двигателем.

Двухвальный газотурбинный двигатель, оснащенный теплообменником

Этот тип двигателей встречается наиболее часто. По сравнению с одновальными аналогами, данные устройства соответствуют более высоким требованиям к динамике автомобилей. Двухвальные агрегаты предполагают наличие специальной (для привода компрессора) и тяговой (для привода колес) турбин, валы которых не соединены. Такие двигатели позволяют улучшить динамические свойства машины и дают возможность сократить количество ступеней в коробке передач.

После отказа от массового производства автомобилей с газотурбинными двигателями компания Chrysler уничтожила большую часть тестовых экземпляров, чтобы "турбины не попали на авторазборки"

В отличие от поршневых моторов, двухвальные газотурбинные установки предполагают автоматическое при увеличении нагрузки. Благодаря этому переключение коробки передач требуется значительно позже или вообще не требуется. При равной мощности автомобили с двухвальным газотурбинным двигателем разгоняются быстрее, чем машины с поршневыми моторами. Недостатками данного вида является сложность изготовления, увеличение размеров и веса вследствие наличия дополнительных деталей: теплообменника, газо- и воздухопроводов.

Газотурбинный двигатель со свободно-поршневым газовым генератором

На данный момент газотурбинные двигатели этой конструкции - самые перспективные для строительства автомобилей. Устройство представляет собой блок, объединяющий поршневой компрессор и двухтактный дизель. В средней части находится цилиндр с прямоточной продувкой, внутри которого располагается два связанных между собой специальным механизмом поршня. При схождении поршней происходит сжимание воздуха, и топливо воспламеняется. Сгоревшее топливо способствует образованию газов, которые при высокой температуре и давлении провоцируют расхождение поршней в стороны. Далее через выхлопные окна газы попадают в газосборник. Благодаря наличию продувочных окон в цилиндр проникает сжатый воздух, который способствует и подготавливает двигатель к следующему циклу. После этого процесс повторяется.

ИДЕЯ применить в автомобилях газотурбинные двигатели возникла давно. Но лишь за последние несколько лет их конструкция достигла той степени совершенства, которая дает им право на существование.
Высокий уровень развития теории лопаточных двигателей, металлургии и техники производства обеспечивает теперь реальную возможность создания надежных газотурбинных двигателей, способных с успехом заменить на автомобиле поршневые двигатели внутреннего сгорания.
Что представляет собой газотурбинный двигатель?
На рис. показана принципиальная схема такого двигателя. Ротационный компрессор, находящийся на одном валу с газовой турбиной, засасывает воздух из атмосферы, сжимает его и нагнетает в камеру сгорания. Топливный насос, также приводимый в движение от вала турбины, нагнетает топливо в форсунку, установленную в камере сгорания. Газообразные продукты сгорания поступают через направляющий аппарат на рабочие лопатки колеса газовой турбины и заставляют его вращаться в одном, определенном направлении. Газы, отработавшие в турбине, выпускаются в атмосферу через патрубок. Вал газовой турбины вращается в подшипниках.
По сравнению с поршневыми двигателями внутреннего сгорания газотурбинный двигатель обладает весьма существенными преимуществами. Правда, он тоже еще не свободен от недостатков, но они постепенно ликвидируются по мере развития конструкции.
Характеризуя газовую турбину, прежде всего следует отметить, что она, как и паровая турбина, может развивать большие обороты. Это дает возможность получать значительную мощность от гораздо меньших по размерам (по сравнению с поршневыми) и почти в 10 раз более легких по весу двигателей.
Вращательное движение вала является по существу единственным видом движения в газовой турбине, в то время как в двигателе внутреннего сгорания, помимо вращательного движения коленчатого вала, имеет место возвратно-поступательное движение поршня, а также сложное движение шатуна. Газотурбинные двигатели не требуют специальных устройств для охлаждения. Отсутствие трущихся деталей при минимальном количестве подшипников обеспечивают длительную работоспособность и высокую надежность газотурбинного двигателя.
Для питания газотурбинного двигателя используется керосин либо топлива типа дизельных.
Основная причина, которая сдерживает развитие автомобильных газотурбинных двигателей, заключается в необходимости искусственно ограничивать температуру газов, поступающих на лопатки турбины. Это снижает коэффициент полезного действия двигателя и приводит к повышенному удельному расходу топлива (на 1 л. с). Температуру газа приходится ограничивать для газотурбинных двигателей пассажирских и грузовых автомобилей в пределах 600-700°С, а в авиационных турбинах до 800-900°С потому, что еще очень дороги высокожаропрочные сплавы.
В настоящее время уже существуют некоторые способы повышения коэффициента полезного действия газотурбинных двигателей путем охлаждения лопаток, использования тепла отработавших газов для подогрева поступающего в камеры сгорания воздуха, производства газов в высоко эффективных свободно-поршневых генераторах, работающих по дизель-компрессорному циклу с высокой степенью сжатия и т. д. От успеха работ в этой области во многом зависит решение проблемы создания высокоэкономичного автомобильного газотурбинного двигателя.


Принципиальная схема двухвального газотурбинного двигателя с теплообменником

Большинство существующих автомобильных газотурбинных двигателей построено по так называемой двухвальной схеме с теплообменниками. Здесь для привода компрессора 1 служит специальная турбина 8, а для привода колес автомобиля - тяговая турбина 7. Валы турбин не соединены между собой. Газы из камеры сгорания 2 вначале поступают на лопатки турбины привода компрессора, а затем на лопатки тяговой турбины. Воздух, нагнетаемый компрессором, прежде чем поступить в камеры сгорания, подогревается в теплообменниках 3 за счет тепла, отдаваемого отработавшими газами. Применение двухвальной схемы создает выгодную тяговую характеристику газотурбинных двигателей, позволяющую сократить число ступеней в обычной коробке передач автомобиля и улучшить его динамические качества.

Ввиду того, что вал тяговой турбины механически не связан с валом турбины компрессора, число его оборотов может изменяться в зависимости от нагрузки, не оказывая существенного влияния на число оборотов вала компрессора. Вследствие этого характеристика крутящего момента газотурбинного двигателя имеет вид, представленный на рис., где для сопоставления нанесена также и характеристика поршневого автомобильного двигателя (пунктиром).
Из диаграммы видно, что у поршневого двигателя по мере уменьшения числа оборотов, происходящего под влиянием возрастающей нагрузки, крутящий момент вначале несколько возрастает, а затем падает. В то же время у двухвального газотурбинного двигателя крутящий момент автоматически возрастает по мере увеличения нагрузки. В результате необходимость в переключении коробки передач отпадает либо наступает значительно позже, чем у поршневого двигателя. С другой стороны, ускорения при разгоне у двухвального газотурбинного двигателя будут значительно большими.
Характеристика одновального газотурбинного двигателя отличается от показанной на рис. и, как правило, уступает, с точки зрения требований динамики автомобиля, характеристике поршневого двигателя (при равной мощности).


Принципиальная схема газотурбинного двигателя со свободно-поршневым генератором газа

Большую перспективу имеет газотурбинный двигатель. В этом двигателе газ для турбины вырабатывается в так называемом свободно-поршневом генераторе, представляющем собой двухтактный дизель и поршневой компрессор, объединенные в общем блоке. Энергия от поршней дизеля передается непосредственно поршням компрессора. Ввиду того, что движение поршневых групп осуществляется исключительно под действием давления газов и режим движения зависит только от протекания термодинамических процессов в дизельном и компрессорных цилиндрах, такой агрегат и называется свободно-поршневым. В его средней части расположен открытый с двух сторон цилиндр 4, имеющий прямоточную щелевую продувку, в котором протекает двухтактный рабочий процесс с воспламенением от сжатия. В цилиндре оппозитно перемещаются два поршня, один из которых 9 во время рабочего хода открывает, а во время возвратного хода закрывает выхлопные окна, прорезанные в стенках цилиндра. Другой поршень 3 также открывает и закрывает продувочные окна. Поршни связаны между собой легким реечным или рычажным синхронизирующим механизмом, не показанным на схеме. Когда они сближаются, воздух, заключенный между ними, сжимается; к моменту достижения мертвой точки температура сжимаемого воздуха становится достаточной для воспламенения топлива, которое впрыскивается через форсунку 5. В результате сгорания топлива образуются газы, обладающие высокой температурой и давлением; они заставляют поршни разойтись в стороны, при этом поршень 9 открывает выхлопные окна, через которые газы устремляются в газосборник 7. Затем открываются продувочные окна, через которые в цилиндр 4 поступает сжатый воздух, вытесняет из цилиндра выхлопные газы, смешивается с ними и также поступает в газосборник. За то время, пока продувочные окна остаются открытыми, сжатый воздух успевает очистить цилиндр от выхлопных газов и заполнить его, подготовив таким образом двигатель к следующему рабочему ходу.
С поршнями 3 и 9 связаны компрессорные поршни 2, двигающиеся в своих цилиндрах. При расходящемся ходе поршней идет всасывание воздуха из атмосферы в компрессорные цилиндры, при этом самодействующие впускные клапана 10 открыты, а выпускные 11 закрыты. При встречном ходе поршней впускные клапана закрыты, а выпускные открыты и через них воздух нагнетается в ресивер 6, окружающий дизельный цилиндр. Поршни двигаются навстречу друг другу за счет энергии воздуха, накопившейся в буферных полостях 1 во время предыдущего рабочего хода. Газы из сборника 7 поступают в тяговую турбину 8, вал которой соединен с трансмиссией. Следующее сопоставление коэффициентов полезного действия показывает, что описанный газотурбинный двигатель уже сейчас по своей эффективности не уступает двигателям внутреннего сгорания:
Дизель 0,26-0,35
Двигатель бензиновый 0,22-0,26
Газовая турбина с камерами сгорания постоянного объема без теплообменника 0,12-0,18
Газовая турбина с камерами сгорания постоянного объема с теплообменником 0,15-0,25
Газовая турбина со свободно-поршневым генератором газа 0,25-0,35

Таким образом, КПД лучших образцов турбин не уступает КПД дизелей. Не случайно поэтому количество экспериментальных газотурбинных автомобилей различного типа возрастает с каждым годом. Все новые фирмы в различных странах объявляют о своих работах в этой области.


Схема реального газотурбинного двигателя

Этот двухкамерный двигатель, без теплообменника, имеет эффективную мощность 370 л. с. Топливом для него служит керосин. Скорость вращения вала компрессора достигает 26 000 об/мин, а скорость вращения вала тяговой турбины от 0 до 13 000 об/мин. Температура газов, поступающих на лопатки турбины, равна 815° Ц, давление воздуха на выходе из компрессора - 3,5 ат. Общий вес силовой установки, предназначенной для гоночного автомобиля, составляет 351 кг, причем газопроизводящая часть весит 154 кг, а тяговая часть с коробкой передач и передачей на ведущие колеса - 197 кг.

Газотурбинный двигатель - представляет собой тепловой силовой агрегат, который осуществляет свою работу по принципу реорганизации тепловой энергии в механическую.

Ниже подробно рассмотрим, как работает газотурбинный двигатель, а также его устройство, разновидности, преимущества и недостатки.

Отличительные черты газотурбинных двигателей

Сегодня наиболее широко подобный тип моторов используется в авиации. Увы, но из-за особенностей устройства они не могут применяться для обычных легковых автомобилей.

По сравнению с другими агрегатами внутреннего сгорания газотурбинный движок обладает наибольшей удельной мощностью, что является его основным плюсом . Помимо этого такой двигатель способен функционировать не только на бензине, но и на множества других видах жидкого горючего. Как правило, он работает на керосине либо на дизельном горючем.

Газотурбинный и поршневой двигатель, которые устанавливаются на «легковушках» за счет сжигания топлива изменяют химическую энергию горючего в тепловую, а затем и в механическую.

Но сам процесс у данных агрегатов немного различается. И в том и в другом движке сначала осуществляется забор (то есть воздушный поток поступает в мотор), затем происходит сжатие и впрыск горючего, после этого ТВС загорается, вследствие чего сильно расширяется и в результате выбрасывается в атмосферу.

Различие состоит в том, что в газотурбинных аппаратах все это проходит в одно время, но в различных частях агрегата. В поршневом же все осуществляется в одной точке, но по очередности.

Проходя через турбинный мотор, воздух сильно сжимается в объеме и благодаря этому увеличивает давление почти в сорок раз.


Единственное движение в турбине это вращательное, когда как в иных агрегатах внутреннего сгорания, помимо вращения коленвала также происходит движение поршня.

КПД и мощность газотурбинного двигателя выше чем у поршневого, несмотря на то, что вес и размеры меньше.

Для экономного потребления топлива газовая турбина оснащена теплообменником - диском из керамики, который функционирует от двигателя с небольшой частотой вращения.

Устройство и принцип работы агрегата

По своей конструкции движок не очень сложный, он представлен камерой сгорания, где оборудованы форсунки и свечи зажигания, которые необходимы для подачи горючего и добычи искрового заряда. Компрессор оснащен на валу вместе с колесом, обладающим особыми лопатками.

Помимо этого мотор состоит из таких составляющих как - редуктор, канал впуска, теплообменник, игла, диффузор и выпускной трубопровод.

Во время вращения компрессорного вала, воздушный поток, поступающий через канал впуска, захватывается его лопастями. После увеличения скорости компрессора до пятисот м в секунду, он нагнетается в диффузор. Скорость у воздуха на выходе диффузора снижается, но давление увеличивается. Затем воздушный поток оказывается в теплообменнике, где происходит его нагрев за счет отработанных газов, а после этого воздух подается в камеру сгорания.

Вместе с ним туда попадает горючее, которое распыляется через форсунок. После того как топливо перемешивается с воздухом, создается топливно-воздушная смесь, которая загорается благодаря искре получаемой от свечи зажигания. Давление в камере при этом начинает увеличиваться, а турбинное колесо приводится в действие за счет газов попадающих на лопатки колеса.


В итоге осуществляется передача крутящего момента колеса на трансмиссию авто, а отходящие газы выбрасываются в атмосферу.

Плюсы и минусы двигателя

Газовая турбина, как и паровая, развивает большие обороты, что позволяет ей набирать хорошую мощность, несмотря на свои компактные размеры.

Охлаждается турбина очень просто и эффективно, для этого не нужно каких-либо дополнительных приборов. У нее нет трущихся элементов, а подшипников совсем немного, за счет чего движок способен функционировать надежно и долгое время без поломок.

Главный минус подобных агрегатов в том, что стоимость материалов, из которых они изготавливаются довольно высокая. Цена на ремонт газотурбинных двигателей тоже немалая. Но, несмотря на это они постоянно совершенствуются и разрабатываются во многих странах мира, включая нашу.

Газовую турбину не устанавливают на легковые автомобили, прежде всего из-за постоянной нужды в ограничении температуры газов, которые поступают на турбинные лопатки. Вследствие этого понижается КПД аппарата и повышается потребление горючего.

Сегодня уже придуманы некоторые методы, которые позволяют повысить КПД турбинных двигателей, например, с помощью охлаждения лопаток или применения тепла выхлопных газов для обогрева воздушного потока, который поступает в камеру. Поэтому вполне возможно, что через некоторое время разработчики смогут создать экономичный двигатель своими руками для автомобиля.


Среди главных преимуществ агрегата можно также выделить:

  • Низкое содержание вредоносных веществ в выхлопных газах;
  • Простота в обслуживании (не нужно менять масло, а все детали обладают износостойкостью и долговечностью);
  • Нет вибраций, поскольку есть возможность запросто сбалансировать вращающейся элементы;
  • Низкий уровень шума во время работы;
  • Хорошая характеристика кривой крутящего момента;
  • Заводиться быстро и без затруднений, а отклик двигателя на газ не запаздывает;
  • Повышенная удельная мощность.

Виды газотурбинных двигателей

По своему строению данные агрегаты разделяются на четыре типа. Первый из них это турбореактивный, его в большинстве своем устанавливают на военные самолеты, обладающие высокой скоростью. Принцип работы заключается в том, что газы, выходящие на большой скорости из мотора, через сопло толкают самолет вперед.

Другой тип - турбиновинтовой. Его устройство от первого отличается тем, что он имеет еще одну секцию турбины. Данная турбина составлена из ряда лопаток, которые забирают остаток энергии у газов, прошедших через турбину компрессора и благодаря этому осуществляют вращение воздушного винта.

Винт может располагаться как в задней части агрегата, так и в передней. Отходящие газы выводятся через выхлопные трубы. Такой реактивный аппарат оснащается на самолетах, летающих на низкой скорости и на малой высоте.


Третий тип - турбовентиляторный, который похож по своей конструкции на предыдущий двигатель, но у него 2-я турбинная секция забирает энергию у газов не полностью и поэтому подобные движки также обладают выхлопными трубами.

Главная особенность такого двигателя в том, что его вентилятор, закрытый в кожух, работает от турбины низкого давления. Поэтому движок называют еще 2-х контурным, поскольку воздушный поток проходит через агрегат, являющейся внутренним контуром и через свой внешний контур, необходимый только лишь для направления потока воздуха, который толкает мотор вперед.

Самые новейшие самолеты оборудованы именно турбовентиляторными двигателями. Они эффективно функционируют на большой высоте, а также отличаются экономичностью.

Последний тип - турбовальный. Схема и устройство газотурбинного двигателя этого типа почти такая же, как и у прошлого движка, но от его вала, который присоединен к турбине, приводится в действие практически все. Чаще всего его устанавливают в вертолеты, и даже на современные танки.

Двухпоршневой и малоразмерный двигатель

Наиболее распространен двигатель с двумя валами, оборудованный теплообменником. В сравнении с агрегатами, у которых всего 1 вал, такие аппараты более эффективные и мощные. 2-х вальный двигатель оснащен турбинами, одна из которых предназначена для привода компрессора, а другая для привода осей.


Подобный агрегат обеспечивает машине хорошие динамические характеристики и сокращает кол-во скоростей в трансмиссии.

Также существуют малоразмерные газотурбинные двигатели. Они состоят из компрессора, газо-воздушного теплообменника, камеры сгорания и двух турбин, одна из которых находятся в одном корпусе со сборником газа.

Малоразмерные газотурбинные двигатели применяются в основном на самолетах и вертолетах, которые преодолевают большие расстояние, а также на беспилотных летательных устройств и ВСУ.

Агрегат со свободно поршневым генератором

На сегодняшний день аппараты этого типа являются наиболее перспективными для авто. Устройство движка представлено блоком, который соединяет поршневой компрессор и 2-х тактовый дизель. В середине находится цилиндр с наличием двух поршней объединенных друг с другом с помощью специального приспособления.

Работа движка начинается с того, что воздух сжимается во время схождения поршней и происходит возгорание горючего. Газы образуются за счет сгоревшей смеси, они способствуют расхождению поршней при повышенной температуре. Затем газы оказываются в газо-сборнике. За счет продувочных щелей в цилиндр попадает пережатый воздух, помогающий очистить агрегат от отработанных газов. Затем цикл начинается заново.