Современные паровые двигатели из двс. Если бы не безудержное стремление изобретателя Абнера Добля к совершенству, возможно, мы и сейчас катались бы на бесшумных паровых автомобилях

Начал свою экспансию еще в начале 19-го века. И уже в то время строились не только большие агрегаты для промышленных целей, но также и декоративные. В большинстве своем их покупателями были богатые вельможи, которые хотели позабавить себя и своих детишек. После того как паровые агрегаты плотно вошли в жизнь социума, декоративные двигатели начали применяться в университетах и школах в качестве образовательных образцов.

Паровые двигатели современности

В начале 20-го века актуальность паровых машин начала падать. Одной из немногих компаний, которые продолжили выпуск декоративных мини-двигателей, стала британская фирма Mamod, которая позволяет приобрести образец подобной техники даже сегодня. Но стоимость таких паровых двигателей легко переваливает за две сотни фунтов стерлингов, что не так и мало для безделушки на пару вечеров. Тем более для тех, кто любит собирать всяческие механизмы самостоятельно, гораздо интереснее создать простой паровой двигатель своими руками.

Очень простое. Огонь нагревает котел с водой. Под действием температуры вода превращается в пар, который толкает поршень. Пока в емкости есть вода, соединенный с поршнем маховик будет вращаться. Это стандартная схема строения парового двигателя. Но можно собрать модель и совершенно другой комплектации.

Что же, перейдем от теоретической части к более увлекательным вещам. Если вам интересно делать что-то своими руками, и вас удивляют столь экзотичные машины, то эта статья именно для вас, в ней мы с радостью расскажем о различных способах того, как собрать двигатель своими руками паровой. При этом сам процесс создания механизма дарит радость не меньшую, чем его запуск.

Метод 1: мини-паровой двигатель своими руками

Итак, начнем. Соберем самый простой паровой двигатель своими руками. Чертежи, сложные инструменты и особые знания при этом не нужны.

Для начала берем из-под любого напитка. Отрезаем от нее нижнюю треть. Так как в результате получим острые края, то их необходимо загнуть внутрь плоскогубцами. Делаем это осторожно, чтобы не порезаться. Так как большинство алюминиевых банок имеют вогнутое дно, то необходимо его выровнять. Достаточно плотно прижать его пальцем к какой-нибудь твердой поверхности.

На расстоянии 1,5 см от верхнего края полученного «стакана» необходимо сделать два отверстия друг напротив друга. Желательно для этого использовать дырокол, так как необходимо, чтобы они получились в диаметре не менее 3 мм. На дно банки кладем декоративную свечку. Теперь берем обычную столовую фольгу, мнем ее, после чего оборачиваем со всех сторон нашу мини-горелку.

Мини-сопла

Далее нужно взять кусок медной трубки длиной 15-20 см. Важно, чтобы внутри она была полой, так как это будет наш главный механизм приведения конструкции в движение. Центральную часть трубки оборачивают вокруг карандаша 2 или 3 раза, так, чтобы получилась небольшая спираль.

Теперь необходимо разместить этот элемент так, чтобы изогнутое место размещалось непосредственно над фитилем свечки. Для этого придаем трубке формы буквы «М». При этом выводим участки, которые опускаются вниз, через проделанные отверстия в банке. Таким образом, медная трубка жестко фиксируется над фитилем, а ее края являются своеобразными соплами. Для того чтобы конструкция могла вращаться, необходимо отогнуть противоположные концы «М-элемента» на 90 градусов в разные стороны. Конструкция парового двигателя готова.

Запуск двигателя

Банку размещают в емкости с водой. При этом необходимо, чтобы края трубки находились под ее поверхностью. Если сопла недостаточно длинные, то можно добавить на дно банки небольшой грузик. Но будьте осторожны — не потопите весь двигатель.

Теперь необходимо заполнить трубку водой. Для этого можно опустить один край в воду, а вторым втягивать воздух как через трубочку. Опускаем банку на воду. Поджигаем фитиль свечки. Через некоторое время вода в спирали превратится в пар, который под давлением будет вылетать из противоположных концов сопел. Банка начнет вращаться в емкости достаточно быстро. Вот такой у нас получился двигатель своими руками паровой. Как видите, все просто.

Модель парового двигателя для взрослых

Теперь усложним задачу. Соберем более серьезный двигатель своими руками паровой. Для начала необходимо взять банку из-под краски. При этом следует убедиться, что она абсолютно чистая. На стенке на 2-3 см от дна вырезаем прямоугольник с размерами 15 х 5 см. Длинная сторона размещается параллельно дну банки. Из металлической сетки вырезаем кусок площадью 12 х 24 см. С обоих концов длинной стороны отмеряем 6 см. Отгибаем эти участки под углом 90 градусов. У нас получается маленький «столик-платформа» площадью 12 х 12 см с ногами по 6 см. Устанавливаем полученную конструкцию на дно банки.

По периметру крышки необходимо сделать несколько отверстий и разместить их в форме полукруга вдоль одной половины крышки. Желательно, чтобы отверстия имели диаметр около 1 см. Это необходимо для того, чтобы обеспечить надлежащую вентиляцию внутреннего пространства. Паровой двигатель не сможет хорошо работать, если к источнику огня не будет попадать достаточное количество воздуха.

Основной элемент

Из медной трубки делаем спираль. Необходимо взять около 6 метров мягкой медной трубки диаметром 1/4-дюйма (0,64 см). От одного конца отмеряем 30 см. Начиная с этой точки, необходимо сделать пять витков спирали диаметром 12 см каждая. Остальную часть трубы изгибают в 15 колец диаметром по 8 см. Таким образом, на другом конце должно остаться 20 см свободной трубки.

Оба вывода пропускают через вентиляционные отверстия в крышке банки. Если окажется, что длины прямого участка недостаточно для этого, то можно разогнуть один виток спирали. На установленную заранее платформу кладут уголь. При этом спираль должна размещаться как раз над этой площадкой. Уголь аккуратно раскладывают между ее витками. Теперь банку можно закрыть. В итоге мы получили топку, которая приведет в действие двигатель. Своими руками паровой двигатель почти сделан. Осталось немного.

Емкость для воды

Теперь необходимо взять еще одну банку из-под краски, но уже меньшего размера. В центре ее крышки сверлят отверстие диаметром в 1 см. Сбоку банки проделывают еще два отверстия — одно почти у дна, второе — выше, у самой крышки.

Берут два корка, в центре которых проделывают отверстие с диаметров медной трубки. В один корок вставляют 25 см пластиковой трубы, в другой — 10 см, так, чтобы их край едва выглядывал из пробок. В нижнее отверстие малой банки вставляют корок с длинной трубкой, в верхнее - более короткую трубку. Меньшую банку размещаем на большой банке краски так, чтобы отверстие на дне было на противоположной стороне от вентиляционных проходов большой банки.

Результат

В итоге должна получиться следующая конструкция. В малую банку заливается вода, которая через отверстие в дне вытекает в медную трубку. Под спиралью разжигается огонь, который нагревает медную емкость. Горячий пар поднимается по трубке вверх.

Для того чтобы механизм получился завершенным, необходимо присоединить к верхнему концу медной трубки поршень и маховик. В итоге тепловая энергия горения будет преобразовываться в механические силы вращения колеса. Существует огромное количество различных схем для создания такого двигателя внешнего сгорания, но во всех них всегда задействованы два элемента - огонь и вода.

Кроме такой конструкции, можно собрать паровой но это материал для совершенно отдельной статьи.

Современный мир заставляет многих изобретателей снова возвращаться к идее применения паровой установки в средствах, предназначенных для перемещения. В машинах есть возможность использовать несколько вариантов силовых агрегатов, работающих на пару.

Поршневой мотор

Современные паровые двигатели можно распределить на несколько групп:


Конструктивно установка включает в себя:

  • пусковое устройство;
  • силовой блок двухцилиндровый;
  • парогенератор в специальном контейнере, снабженный змеевиком.

Процесс происходит следующим образом. После включения зажигания начинает поступать питание от аккумуляторной электробатареи трех двигателей. От первого в работу приводится воздуходувка, прокачивающая воздушные массы по радиатору и передающая их по воздушным каналам в смесительное устройство с горелкой.

Одновременно с этим очередной электромотор активирует насос перекачки топлива, подающий конденсатные массы из бачка по змеевидному устройству подогревательного элемента в корпусную часть отделителя воды и подогреватель, находящийся в экономайзере, в паровой генератор.
До начала запуска пару нет возможности пройти к цилиндрам, так как путь ему перекрывают клапан дросселя или золотник, которые приводятся в управление кулисной механикой. Поворачивая ручки в сторону, необходимую для передвижения, и приоткрывая клапан, механик приводит в работу паровой механизм.
Отработанные пары по единому коллектору поступают на распределительный кран, в котором разделяются на пару неодинаковых долей. Меньшая по объему часть попадает в сопло смесительной горелки, перемешивается с воздушной массой, воспламеняется от свечи. Появившееся пламя начинает подогревать контейнер. После этого продукт сгорания переходит в водоотделитель, происходит конденсирование влаги, стекающей в специальный бак для воды. Оставшийся газ уходит наружу.


Вторая часть пара, большая по объему, по крану-распределителю переходит в турбину, приводящую во вращение роторное устройство электрического генератора. Далее пары проходят в сопловую часть конденсатора, потом – в радиатор, в котором охлаждаются, передавая тепловую энергию воздуху, и попадают в водяную емкость.

Правила эксплуатации автомобилей с паровым двигателем

Паровая установка может напрямую соединяться с приводным устройством трансмиссии машины, и с началом ее работы машина приходит в движение. Но с целью повышения кпд специалисты рекомендуют использовать механику сцепления. Это удобно при буксировочных работах и разных проверочных действиях.


В процессе движения механик, учитывая обстановку, может изменить скорость, манипулируя мощностью парового поршня. Это можно выполнить, дросселируя пар клапаном, или изменять подачу пара кулисным устройством. На практике лучше использовать первый вариант, так как действия напоминают работу педалью газа, но более экономичный способ – задействование кулисного механизма.

Для непродолжительных остановок водитель притормаживает и кулисой останавливает работу агрегата. Для длительной стоянки отключается электрическая схема, обесточивающая воздуходувку и топливный насос.

Преимущества машины

Аппарат отличается способностью работать практически без ограничений, возможны перегрузки, имеется большой диапазон регулировки мощностных показателей. Следует добавить, что во время любой остановки паровой двигатель перестает работать, чего нельзя сказать про мотор.

В конструкции нет необходимости устанавливать коробку переключения скоростей, страртерное устройство, фильтр для очистки воздуха, карбюратор, турбонаддув. Кроме этого, система зажигания в упрощенном варианте, свеча только одна.

В завершении можно добавить, что производство таких машин и их эксплуатация будут обходиться дешевле, чем автомобили с двигателем внутреннего сгорания, так как топливо будет недорогим, материалы, применяемые в производстве – самыми дешевыми.

Я живу только на угле и воде и все еще обладаю достаточной энергией, чтобы разогнаться до 100 миль в час! Это именно то, что может сделать паровоз. Хотя эти гигантские механические динозавры в настоящее время вымерли на большей части мировых железных дорог, паровые технологии живут в сердцах людей, и локомотивы, подобные этому, до сих пор служат туристическими достопримечательностями на многих исторических железных дорогах.

Первое современные паровые машины были изобретены в Англии в начале 18 века и ознаменовали начало Промышленной Революции.

Сегодня мы вновь возвращаемся к энергии пара. Из-за особенностей конструкции в процессе сгорания топлива паровой двигатель дает меньше загрязнений, чем двигатель внутреннего сгорания. В данной публикации на видео посмотрите, как он работает.

Конструкция и механизм действия паровой машины

Что питало старинный паровой двигатель?

Требуется энергия, чтобы делать абсолютно все, о чем вы только можете подумать: кататься на скейтборде, летать на самолете, ходить в магазины или водить машину по улице. Большая часть энергии, которую мы используем для транспортировки сегодня, поступает из нефти, но это было не всегда так. До начала 20-го века уголь был любимым топливом в мире, и он приводил в движение все: от поездов и кораблей до злополучных паровых самолетов, изобретенных американским ученым Сэмюэлем П. Лэнгли, ранним конкурентом братьев Райт. Что такого особенного в угле? Внутри Земли его много, поэтому он был относительно недорогим и широко доступным.

Уголь является органическим химическим веществом, что означает, что он основан на элементе углерода. Уголь образуется в течение миллионов лет, когда останки мертвых растений закапывают под камнями, сжимают под давлением и варят под действием внутреннего тепла Земли. Вот почему это называется ископаемое топливо. Комки угля – это действительно комки энергии. Углерод внутри них связан с атомами водорода и кислорода соединениями, называемыми химическими связями. Когда мы сжигаем уголь на огне, связи распадаются, и энергия выделяется в форме тепла.

Уголь содержит примерно вдвое меньше энергии на килограмм, чем более чистое ископаемое топливо, такое как бензин, дизельное топливо и керосин – и это одна из причин, по которой паровые двигатели должны сжигать так много.

Основным преимуществом паровых машин является то, что они могут использовать практически любые источники тепла для преобразования его в механическую работу. Это отличает их от двигателей внутреннего сгорания, каждый тип которых требует использования определённого вида топлива. Наиболее заметно это преимущество при использовании ядерной энергии, поскольку ядерный реактор не в состоянии генерировать механическую энергию, а производит только тепло, которое используется для выработки пара, приводящего в движение паровые машины (обычно паровые турбины). Кроме того, есть и другие источники тепла, которые не могут быть использованы в двигателях внутреннего сгорания, например, солнечная энергия. Интересным направлением является использование энергии разности температур Мирового Океана на разных глубинах

Подобными свойствами также обладают другие типы двигателей внешнего сгорания, такие как двигатель Стирлинга , которые могут обеспечить весьма высокую эффективность, но имеют существенно большие вес и размеры, чем современные типы паровых двигателей.

Паровые локомотивы неплохо показывают себя на больших высотах, поскольку эффективность их работы не падает в связи с низким атмосферным давлением. Паровозы до сих пор используются в горных районах Латинской Америки, несмотря на то, что в равнинной местности они давно были заменены более современными типами локомотивов.

В Швейцарии (Brienz Rothhorn) и в Австрии (Schafberg Bahn) новые паровозы, использующие сухой пар, доказали свою эффективность. Этот тип паровоза был разработан на основе моделей Swiss Locomotive and Machine Works (SLM) 1930 -х годов, со множеством современных усовершенствований, таких, как использование роликовых подшипников, современная теплоизоляция, сжигание в качестве топлива лёгких нефтяных фракций, улучшенные паропроводы, и т. д. В результате такие паровозы имеют на 60 % меньшее потребление топлива и значительно меньшие требования к обслуживанию. Экономические качества таких паровозов сравнимы с современными дизельными и электрическими локомотивами.

Кроме того, паровые локомотивы значительно легче, чем дизельные и электрические, что особенно актуально для горных железных дорог. Особенностью паровых двигателей является то, что они не нуждаются в трансмиссии, передавая усилие непосредственно на колёса. При этом паровая машина паровоза продолжает развивать тяговое усилие даже в случае остановки колёс (упор в стену), чем отличается от всех других видов двигателей, используемых на транспорте.

Коэффициент полезного действия

Паровой двигатель, выпускающий пар в атмосферу, будет иметь практический КПД (включая котёл) от 1 до 8 %, однако двигатель с конденсатором и расширением проточной части может улучшить КПД до 25 % и даже более. Тепловая электростанция с пароперегревателем и регенеративным водоподогревом может достичь КПД 30 - 42 %. Парогазовые установки с комбинированным циклом, в которых энергия топлива вначале используется для привода газовой турбины, а затем для паровой турбины, могут достигать коэффициента полезного действия 50 - 60 %. На ТЭЦ эффективность повышается за счёт использования частично отработавшего пара для отопления и производственных нужд. При этом используется до 90 % энергии топлива и только 10 % рассеивается бесполезно в атмосфере.

Такие различия в эффективности происходят из-за особенностей термодинамического цикла паровых машин. Например, наибольшая отопительная нагрузка приходится на зимний период, поэтому КПД ТЭЦ зимой повышается.

Одна из причин снижения КПД в том, что средняя температура пара в конденсаторе несколько выше, чем температура окружающей среды (образуется т. н. температурный напор ). Средний температурный напор может быть уменьшен за счёт применения многоходовых конденсаторов. Повышает КПД также применение экономайзеров, регенеративных воздухоподогревателей и других средств оптимизации парового цикла.

У паровых машин очень важным свойством является то, что изотермическое расширение и сжатие происходят при постоянном давлении. Поэтому теплообменник может иметь любой размер, а перепад температур между рабочим телом и охладителем или нагревателем составляют чуть ли не 1 градус. В результате тепловые потери могут быть сведены к минимуму. Для сравнения, перепады температур между нагревателем или охладителем и рабочим телом в стирлингах может достигать 100 °C

Кроме поршневых паровых машин, в 19-м веке активно использовались роторные паровые машины. В России, во второй половине 19-го века они назывались «коловратные машины» (то есть «вращающие колесо» от слова «коло» - «колесо»). Их было несколько типов, но наиболее успешной и эффективной была «коловратная машина» петербургского инженера-механика Н. Н. Тверского. Паровой двигатель Н. Н. Тверского . Машина представляла собой цилиндрический корпус, в котором вращался ротор-крыльчатка, а запирали камеры расширения особые запорные барабанчики. «Коловратная машина» Н. Н. Тверского не имела ни одной детали, которая бы совершала возвратно-поступательные движения и была идеально уравновешена. Двигатель Тверского создавался и эксплуатировался преимущественно на энтузиазме его автора, однако он использовался во многих экземплярах на малых судах, на фабриках и для привода динамо-машин. Один из двигателей даже установили на императорской яхте «Штандарт», а в качестве расширительной машины - с приводом от баллона со сжатым газом аммиаком, этот двигатель приводил в движение в подводном положении одну из первых экспериментальных подводных лодок - «подводную миноноску», которая испытывалась Н. Н. Тверским в 80-х годах 19-го столетия в водах Финского залива. Однако со временем, когда паровые машины были вытеснены двигателями внутреннего сгорания и электромоторами, «коловратная машина» Н. Н. Тверского была практически забыта. Однако эти «коловратные машины» можно считать прообразами сегодняшних роторных двигателей внутреннего сгорания

п

Станцыонарные Паровые машины могут быть разделены на два типа по режиму использования:

    Машины с переменным режимом, к которым относятся машины металлопрокатных станов , паровые лебёдки и подобные устройства, которые должны часто останавливаться и менять направление вращения.

  • Силовые машины, которые редко останавливаются и не должны менять направление вращения. Они включают энергетические двигатели на электростанциях , а также промышленные двигатели, использовавшиеся на заводах, фабриках и на кабельных железных дорогах до широкого распространения электрической тяги. Двигатели малой мощности используются на судовых моделях и в специальных устройствах.

Паровая лебёдка в сущности является стационарным двигателем, но установлена на опорной раме, чтобы её можно было перемещать. Она может быть закреплена тросом за якорь и передвинута собственной тягой на новое место.

В большинстве возвратно-поступательных паровых машин пар изменяет направление движения в каждом такте рабочего цикла, поступая в цилиндр и выходя из него через один и тот же коллектор. Полный цикл двигателя занимает один полный оборот кривошипа и состоит из четырёх фаз - впуска, расширения (рабочая фаза), выпуска и сжатия. Эти фазы контролируются клапанами в «паровой коробке», смежной с цилиндром. Клапаны управляют потоком пара, последовательно соединяя коллекторы каждой стороны рабочего цилиндра с впускным и выпускным коллектором паровой машины. Клапаны приводятся в движение клапанным механизмом какого-либо типа. Простейший клапанный механизм даёт фиксированную продолжительность рабочих фаз и обычно не имеет возможности изменять направление вращения вала машины. Большинство клапанных механизмов более совершенны, имеют механизм реверса, а также позволяют регулировать мощность и крутящий момент машины путём изменения «отсечки пара», то есть изменяя соотношение фаз впуска и расширения. Так как обычно один и тот же скользящий клапан управляет и входным и выходным потоком пара, изменение этих фаз также симметрично влияет на соотношения фаз выпуска и сжатия. И здесь существует проблема, поскольку соотношение этих фаз в идеале не должно меняться: если фаза выпуска станет слишком короткой, то большая часть отработанного пара не успеет покинуть цилиндр, и создаст существенное противодавление на фазе сжатия. В 1840-х и 1850-х годах было совершено множество попыток обойти это ограничение, в основном путём создания схем с дополнительным клапаном отсечки, установленном на основном распределительном клапане, но такие механизмы не показывали удовлетворительной работы, к тому же получались слишком дорогими и сложными. С тех пор обычным компромиссным решением стало удлинение скользящих поверхностей золотниковых клапанов с тем, чтобы впускное окно было перекрыто дольше, чем выпускное. Позже были разработаны схемы с отдельными впускными и выпускными клапанами, которые могли обеспечить практически идеальный цикл работы, но эти схемы редко применялись на практике, особенно на транспорте, из-за своей сложности и возникающих эксплуатационных проблем

Множественное расширение

Логичным развитием схемы компаунда стало добавление в неё дополнительных стадий расширения, что увеличивало эффективность работы. Результатом стала схема множественного расширения, известная как машины тройного или даже четырёхкратного расширения. Такие паровые машины использовали серии цилиндров двойного действия, объём которых увеличивался с каждой стадией. Иногда вместо увеличения объёма цилиндров низкого давления использовалось увеличение их количества, так же, как и на некоторых компаундных машинах.

Изображение справа показывает работу паровой машины с тройным расширением. Пар проходит через машину слева направо. Блок клапанов каждого цилиндра расположен слева от соответствующего цилиндра.

Появление этого типа паровых машин стало особенно актуальным для флота, поскольку требования к размеру и весу для судовых машин были не очень жёсткими, а главное, такая схема позволяла легко использовать конденсатор, возвращающий отработанный пар в виде пресной воды обратно в котёл (использовать солёную морскую воду для питания котлов было невозможно). Наземные паровые машины обычно не испытывали проблем с питанием водой и потому могли выбрасывать отработанный пар в атмосферу. Поэтому такая схема для них была менее актуальной, особенно с учётом её сложности, размера и веса. Доминирование паровых машин множественного расширения закончилось только с появлением и широким распространением паровых турбин. Однако в современных паровых т

Прямоточные паровые машины

Прямоточные паровые машины возникли в результате попытки преодолеть один недостаток, свойственный паровым машинам с традиционным парораспределением. Дело в том, что пар в обычной паровой машине постоянно меняет направление своего движения, поскольку и для впуска и для выпуска пара применяется одно и то же окно с каждой стороны цилиндра. Когда отработанный пар покидает цилиндр, он охлаждает его стенки и парораспределительные каналы. Свежий пар, соответственно, тратит определённую часть энергии на их нагревание, что приводит к падению эффективности. Прямоточные паровые машины имеют дополнительное окно, которое открывается поршнем в конце каждой фазы, и через которое пар покидает цилиндр. Это повышает эффективность машины, поскольку пар движется в одном направлении, и температурный градиент стенок цилиндра остаётся более или менее постоянным. Прямоточные машины одиночного расширения показывают примерно такую же эффективность, как компаундные машины с обычным парораспределением. Кроме того, они могут работать на более высоких оборотах, и потому до появления паровых турбин часто применялись для привода электрогенераторов, требующих высокой скорости вращения.

Прямоточные паровые машины бывают как одиночного, так и двойного действия.

ПАРОВОЙ РОТОРНЫЙ ДВИГАТЕЛЬ и ПАРОВОЙ АКСИАЛЬНО- ПОРШНЕВОЙ ДВИГАТЕЛЬ

Паровой роторный двигатель (паровая машина роторного типа) является уникальной силовой машиной, развитие производства которой до настоящего времени не получило должного развития.

С одной стороны- разнообразные конструкции роторных двигателей существовали ещё в последней трети 19-го века и даже неплохо работали, в том числе и для привода динамо-машин с целью выработки электрической энергии и электроснабжения всяких объектов. Но качество и точность изготовления таких паровых двигателей (паровых машин) было весьма примитивным, поэтому они имели малый КПД и невысокую мощность. С тех пор малые паровые машины ушли в прошлое, но вместе с действительно малоэффективными и бесперспективными поршневыми паровыми машинами в прошлое ушли и имеющие хорошую перспективу паровые роторные двигатели.

Главная причина- на уровне технологий конца 19-го века сделать действительно качественный, мощный и долговечный роторный двигатель не представлялось возможным.
Поэтому из всего многообразия паровых двигателей и паровых машин до нашего времени благополучно и активно дожили лишь паровые турбины огромной мощности (от 20 мВт и выше), на которых сегодня осуществляется около 75% выработки электроэнергии в нашей стране. Еще паровые турбины большой мощности дают энергию от атомных реакторов в боевых подводных лодках-ракетоносцах и на больших арктических ледоколах. Но это все огромные машины. Паровые турбины резко теряют всю свою эффективность при уменьшении их размеров.

…. Именно поэтому силовых паровых машин и паровых двигателей мощности ниже 2000 — 1500 кВт (2 — 1,5 мВт), которые бы эффективно работали на паре, получаемом от сжигания дешевого твердого топлива и различных бесплатных горючих отходов, сейчас в мире нет.
Вот в этой –то пустой сегодня области техники (и абсолютно голой, но очень нуждающейся в товарном предложении коммерческой нише), в этой рыночной нише силовых машин небольшой мощности, могут и должны занять своё очень достойное место паровые роторные двигатели. И потребность в них только в нашей стране — на десятки и десятки тысяч… Особенно такие малые и средние по мощности силовые машины для автономное электрогенерации и независимого электроснабжения нуждаются малые и средние предприятия в отдаленных от больших городов и крупных электростанций местностях: — на малых лесопилках, отдаленных приисках, на полевых станах и лесных делянках, и пр. и др.
…..

..
Давайте рассмотрим показатели, из-за которых паровые роторные двигатели оказываются лучше, чем их ближайшие сородичи — паровые машины в образе поршневых паровых двигателей и паровых турбин.
… — 1)
Роторные двигатели являются силовыми машинами объемного расширения – как поршневые двигатели. Т.е. они обладают небольшим потреблением пара на единицу мощности, потому что пар подается в их рабочие полости время от времени, и строго дозированными порциями, а не постоянным обильным потоком, как в паровых турбинах. Именно поэтому паровые роторные двигатели гораздо экономичнее паровых турбин на единицу выдаваемой мощности.
— 2) Роторные паровые двигатели имеют плечо приложения действующих газовых сил (плечо крутящего момента) значительно (в разы) больше, чем поршневые паровые двигатели. Поэтому развиваемая ими мощность гораздо выше, чем у паровых поршневых машин.
— 3) Паровые роторные двигатели имеют гораздо большее рабочий ход, чем поршневые паровые двигатели, т.е. имеют возможность переводить большую часть внутренней энергии пара в полезную работу.
— 4) Паровые роторные двигатели могут эффективно работать на насыщенном (влажном) паре, без затруднений допускать конденсацию значительной части пара с переходом её в воду прямо в рабочих секциях парового роторного двигателя. Это так же повышает КПД работы паросиловой установки с использованием парового роторного двигателя.
— 5 ) Паровые роторные двигатели работают на оборотах в 2-3 тыс. оборотов в минуту, что является оптимальной частотой вращения для выработки электричества, в отличие от слишком тихоходных поршневых двигателей (200-600 оборотов в минуту) традиционных паровых машин паровозного типа, или от слишком быстроходных турбин (10-20 тыс. оборотов в минуту).

При этом технологически паровые роторные двигатели относительно просты в изготовлении, что делает затраты на их изготовление относительно невысокими. В отличие от крайне дорогостоящих в производстве паровых турбин.

ИТАК, КРАТКИЙ ИТОГ ЭТОЙ СТАТЬИ — паровой роторный двигатель является весьма эффективной паровой силовой машиной для преобразования давления пара от тепла сгорающего твердого топлива и горючих отходов в механическую мощность и в электрическую энергию.

Автором настоящего сайта, уже получены более 5 патентов на изобретения по разным аспектам конструкций паровых роторных двигателей. А так же произведено некоторое количество небольших роторных двигателей мощностью от 3 до 7 кВт. Сейчас идет проектирование паровых роторных двигателей мощностью от 100 до 200 кВт.
Но у роторных двигателей есть «родовой недостаток» — сложная система уплотнений, которые для маленьких по размерам двигателей оказываются слишком сложными, миниатюрными и дорогими в изготовлении.

При этом автором сайта ведется разработка паровых аксиально поршневых двигателей с оппозитным — встречным движением поршней. Данная компоновка является наиболее энерго — производительной по мощности вариацией из всех возможных схем применения поршневой системы.
Данные двигатели в малых размерах получаются несколько дешевле и проще роторных моторов и уплотнения в них использхуються самые традиционные и самые простые.

Внизу размещено видео использования маленького аксиально-поршневого оппозитного двигателя с встречным движением поршней.

В настоящее время идет изготовление такого аксиально-поршневого оппозитного двигателя на 30 кВт. Ресурс двигателя ожидается в несколько сотен тысячах моточасов ибо обороты парового двигателя в 3-4 раза ниже оборотов двигателя внутреннего сгорания, в пара трения «поршень- цилиндр» — подвергнута ионно -плазменному азотированию в вакуумной среде и твердость поверхностей трения составляет 62-64 ед по HRC. Подробно о процессе упрочения поверхности методом азотирования смотри .


Вот анимация принципа работы похожего по компоновке такого аксиально- поршневого оппозитного двигателя с встречным движением поршней