Самый экологичный вид топлива. Экологические виды топлива

Автомобильный транспорт как источник загрязнения окружающей среды. Причины образования токсичных компонентов в отработанных газах ДВС

В последние годы в связи с ростом плотности движения автомобилей в городах резко увеличилось загрязнение атмосферы продуктами сгорания двигателей. Выпускные газы двигателей внутреннего сгорания (ДВС) состоят в основном из безвредных продуктов сгорания топлива – углекислого газа и паров воды. Однако в относительно небольшом количестве в них содержатся вещества, обладающие токсическим и канцерогенным действием. Это окись углерода, углеводороды различного химического состава, окислы азота, образующиеся в основном при высоких температуре и давлении.

При горении углеводородного топлива происходит образование токсичных веществ, связанное с условиями горения, составом и состоянием смеси. В двигателях с принудительным воспламенением концентрация окиси углерода достигает больших значений из-за недостатка кислорода для полного окисления топлива при их работе на богатой топливом смеси.

При движении автомобилей в городе и на дорогах с переменным уклоном и часто меняющимися скоростями с включенной передачей и открытой дроссельной заслонкой двигателям приходится около 1/3 путевого времени работать в режиме принудительного холостого хода. На принудительном холостом ходу двигатель не отдает а, напротив, поглощает энергию, накопленную автомобилем. При этом нерационально расходуется топливо, усиленное всасывание которого приводит к наибольшему выбросу токсичных газов СО и СН в атмосферу.

Автомобильные выхлопные газы - смесь примерно 200 веществ. В них содержатся углеводороды-не сгоревшие или не полностью сгоревшие компоненты топлива, доля которых резко возрастает, если двигатель работает на малых оборотах или в момент увеличения скорости на старте, т.е. во время заторов и у красного сигнала светофора. Именно в этот момент, когда нажимают на акселератор, выделяется больше всего несгоревших частиц: примерно в 10 раз больше, чем при работе двигателя в нормальном режиме. К несгоревшим газам относят и обычную окись углерода, образующуюся в том или ином количестве повсюду, где что-то сжигают. В выхлопных газах двигателя, работающего на нормальном бензине и при нормальном режиме, содержится в среднем 2,7% оксида углерода. При снижении скорости эта доля увеличивается до 3,9%, а на малом ходу-до 6,9%.

Основными эксплуатационными факторами, влияющими на уровень вредных выбросов двигателей, являются факторы, характеризующие состояние деталей цилиндропоршневой группы (ЦПГ). Повышенный износ деталей ЦПГ и отклонения от их правильной геометрической формы являются причиной увеличения концентрации токсичных компонентов в отработавших газах (ОГ) и картерных газах (КГ).

Базовой деталью ЦПГ, от которой зависит работоспособность и экологичность двигателя, является цилиндр, т. к. герметичность камеры сгорания зависит от уплотняющей способности кольца в сопряжении с цилиндром. От технического состояния цилиндров и поршневых колец главным образом зависит интенсивность роста зазоров между кольцами и канавками поршней. Таким образом, контроль и регулировка зазора между кольцом и цилиндром в процессе эксплуатации являются существенным резервом снижения количества вредных примесей в ОГ и КГ посредством улучшения условий сгорания топлива и снижения количества масла, оставшегося в надпоршневом пространстве.

Токсичными выбросами ДВС являются отработавшие и картерные газы. С ними поступает в атмосферу около 40% токсичных примесей от общего выброса. Содержание углеводородов в отработавших газах зависит от технического состояния и регулировок двигателя и на холостом ходу колеблется от 100 до 5000% и более. При общем небольшом количестве картерных газов равном 2-10% отработавших газов в общем загрязнении атмосферы, доля картерных газов составляет около 10% у мало изношенных двигателей и вырастает до 40% при эксплуатации двигателя с изношенной цилиндропоршневой группой, т.к. концентрация углеводородов в картерных газах в 15-10 раз выше, чем в отработавших двигателя. Количество КГ, а так же их химический состав зависят от состояния деталей ЦПГ, осуществляющих уплотнение камеры сгорания. От величины зазоров между трущимися деталями ЦПГ зависит проникновение газов из цилиндра в картер и обратно. При этом увеличивается доля углеводородов с канцерогенными свойствами из-за повышенного угара масла и увеличенного расхода картерных газов через замкнутую систему вентиляции картера.

К достижению предельного износа двигателя выбросы увеличиваются в среднем на 50%. На примере ускоренных испытаний, проведенных в НАМИ, установлено что износ двигателя увеличивает выбросы ОГ углеводородов в 10 раз. Основная масса двигателей с повышенной дымностью ОГ приходится на двигатели, прошедшие капитальный ремонт.

Степень разуплотнения камеры сгорания зависит от износа деталей ЦПГ, отклонения их макрогеометри от правильной геометрической формы. При увеличении неплотностей камеры сгорания происходит возрастание СО и СН и снижение СО2 в результате ухудшения условий сгорания топлива. Кроме снижения качества организации рабочего процесса, зазоры между кольцом и цилиндром, а также зазоры между кольцом и канавкой поршня приводят к увеличению количества масла, попавшего в надпоршневое пространство, к увеличению отклонения от заданной динамики тепловыделения в процессе сгорания, а, следовательно, - к увеличению общей массы токсических выбросов. Масло составляет 30-40% твёрдых частиц ОГ.

Базовой деталью ЦПГ является цилиндр, от которого зависит экономическая и экологическая целесообразность эксплуатации двигателя. Износ гильз цилиндров имеет выраженную форму овала, большая ось которого расположена в плоскости качания шатуна. Причиной образования овальности цилиндров главным образом является увеличенная нагрузка поршней на гильзы именно в плоскости качания шатунов. На овальность цилиндров влияет также несовершенство технологии сборки блока цилиндров. Изменение макрогеометрии цилиндров (овальности и конусности) после сборки двигателя также приводит к ухудшению прилегания поршневых колец к зеркалу цилиндра. Известно, что при установке гильз в блоки различных марок ДВС, овальность в цилиндрах увеличивается в 2-3 раза.

Очень важно отметить, что характер искажения макрогеометрии гильз цилиндров после сборки и в процессе эксплуатации одинаков для большинства конструкций блоков цилиндров с “мокрыми гильзами”. Большая ось овала цилиндра, образующегося при сборке, в зоне остановки верхнего компрессионного кольца в верхней мёртвой точке поршня имеет такую же направленность, как и большая ось овала, образующегося при эксплуатации. Такой характер деформации цилиндров объясняется большей деформацией блока в местах между расточками под гильзы.

Снижение овальности цилиндров способствует снижению интенсивности износа колец и канавок поршней, что в целом способствует улучшению работы поршневых колец и улучшению уплотнения камеры сгорания. Известно, что замена маслосъёмных колец после выработки предельного ресурса в некоторой степени восстанавливает средний уровень токсичности двигателя. Бесспорно, если при замене колец произвести регулировку овальности цилиндров до уровня предельной величины на изготовление новых гильз, то эффект будет намного значительнее.

Разработка новых способов смешения и растворения и математического описания воздействия соответствующих присадок и добавок в нефтяном топливе позволит значительно сократить время на разработку новых составов альтернативных топлив и предсказания их физико-химических свойств, что позволит довести рабочий процесс двигателя при использовании новых альтернативных топлив.

Анализ отечественной и зарубежной литературы показал, что развитие перехода на новые виды топлива будет проходить три основных этапа. На первом этапе будет использоваться стандартное нефтяное топливо, спирты, добавки водорода и водородсодержащих топлив, газовое топливо и различные их сочетания, что позволит решить проблему частичной экономии нефтяного топлива. Второй этап будет базироваться на производстве синтетических топлив, подобных нефтяным, производимых из угля, горючих сланцев и т.д. На этом этапе решатся проблемы долгосрочного снабжения существующего парка двигателей новыми видами топлива. На заключительном, третьем этапе будет характерен переход к новым видам энергоносителей и энергосиловых установок (работа двигателей на водороде, использование атомной энергии).

Перевод ДВС на водород и водородсодержащее топливо представляет собой сложный социально-экономический процесс, для осуществления которого потребуется крупная перестройка ряда отраслей промышленности, поэтому на первом этапе наиболее приемлемым вариантом является работа дизелей с добавками водородсодержащих топлив. Крайне ограниченные сведения в литературе об особенностях горения углеводородного топлива с добавками водорода и аммиака в дизелях не позволяют однозначно ответить на вопрос о влиянии водородсодержащих топлив на показатели рабочего процесса дизеля.

Также крайне слабо исследован вопрос о применении в дизелях синтетического жидкого топлива (СЖТ), вырабатываемого из угля. Различные литературные данные не позволяют дать однозначную оценку влияния СЖТ на рабочий процесс, в связи с тем, что его физико-химические свойства очень сильно зависят от исходного сырья и технологии переработки.

Наиболее вероятным источником моторного топлива могут служить спирты, однако следует учесть их крайне плохие моторные свойства в случае использования их в дизелях. Применяемые способы использования спиртовых топлив требуют дополнительного усложнения конструкции (установка карбюраторов, свечей зажигания или второй топливной системы), либо удорожания топлива (использование добавок, повышающих цетановое число). Наиболее оптимальным в этой ситуации может служить способ использования растворов этанола или метанола с дизельным топливом в дизелях.

Исследование влияния различных типов альтернативных топлив проводилось для нескольких типов быстроходных дизелей с различными способами смесеобразования, поэтому было необходимо получить как можно более полную информацию о протекании процессов топливоподачи, сгорания, сажеобразования, токсичности и т.д. Поэтому была разработана и внедрена автоматизированная система регистрации и обработки информации на базе ПК. Для этого комплекса был разработан пакет прикладных программ, включающий программу сбора информации с различных датчиков во время испытаний, программы обработки полученных данных по анализу индикаторной диаграммы, результатов оптического индицирования, топливоподачи и обсчета параметров режима.

Для одновременной подачи цикловой порции дизельного топлива и газа в цилиндр автором разработана специальная двухтопливная форсунка, которая дополнялась отдельной магистралью, состоящей из штуцера подвода газа и каналов в корпусе форсунки и распылителя. В канале корпуса форсунки выполнен обратный клапан, прижимаемый к седлу пружиной. В канал распылителя запрессована цилиндрическая вставка с винтовой нарезкой на поверхности, которая образует смесительно-аккумулирующую камеру, соединяющуюся с подъигольной полостью распылителя форсунки.

На базе разработанной форсунки была изготовлена топливная система дизеля, позволяющая подавать различные виды газообразных добавок к топливу.

Наиболее эффективно проводить рассмотрение особенностей рабочего процесса при использовании альтернативных топлив, обладая информацией о пространственном распределении полей концентрации сажи и температуры. На сегодняшний день существует в основном двухмерное представление температурно-концентрационной неоднородности в цилиндре дизеля. В результате была поставлена задача экспериментального исследования пространственного распределения полей температуры и концентраций сажи. В работе использовалось оригинальное экспериментальное оборудование для определения массовой концентрации сажи, основанное на оптическом индицировании цилиндров, и программно реализованные методики определения температурных полей.

Расчетные исследования растворимости газа (водорода, аммиака и др.) основывались на следующих предположениях: во-первых -процесс растворения идет в смесительно-аккумулирующей камере и распылителе форсунки; во-вторых - растворение протекает в соответствии с моделью обновления поверхности, т.е. поверхность контакта топлива с газом обновляется с частотой, равной частоте колебания давления топлива в нагнетательном трубопроводе высокого давления.

Одним из путей преодоления трудностей приготовления смесей дизельного топлива с альтернативными является применение третьего компонента - совместного растворителя дизельного топлива и спирта. Совместный растворитель должен иметь свойства дизельного топлива и спирта, т.е. его молекула должна иметь как полярные свойства, так и алифатическую составляющую для образования связей с углеводородами.

Попытки использования водорода в качестве топлива для двигателей внутреннего сгорания известны достаточно давно. Так, например, в двадцатые годы исследовали вариант использования водорода как добавки к основному топливу для двигателей внутреннего сгорания дирижаблей, что давало возможность увеличить дальность их полета.

Использование водорода в качестве топлива для ДВС представляет собой комплексную проблему, которая включает обширный круг вопросов:

Возможность перевода на водород современных двигателей;

Изучение рабочего процесса двигателей при работе на водороде;

Определение оптимальных способов регулирования рабочего процесса обеспечивающих минимальную токсичность и максимальную топливную экономичность;

Разработку системы топливоподачи обеспечивающую организацию эффективного рабочего процесса в цилиндрах ДВС;

Разработку эффективных способов хранения водорода на борту транспорта;

Обеспечение экологической эффективности применения водорода для ДВС;

Обеспечение возможности заправки и аккумулирования водорода для двигателей.

Решение этих вопросов имеет вариантный уровень, однако, общее состояние исследований по этой проблеме можно рассматривать, как реальную базу для практического применения водорода. Подтверждением этому являются практические испытания, исследования вариантных двигателей работающих на водороде. Так, например, фирма "Mazda" делает ставку на водородный роторно-поршневой двигатель.

Исследования в этой области отличаются широким спектром вариантов использования водорода для двигателей внешнего и внутреннего смесеобразования, при использовании водорода в качестве присадки, частично замещая топливо водородом, и работе двигателя только на водороде.

Обширный перечень исследований определяет необходимость их систематизации и критического анализа. Использование водорода известно в двигателях, работающих на традиционных топливах нефтяного происхождения, а также в сочетании с альтернативными топливами. Так, например, со спиртами (этиловый, метиловый) или с природным газом. Возможно использование водорода в сочетании с синтетическими топливами, мазутами и другими топливами.

Исследования этой области известны как для бензиновых двигателей, так и для дизелей, а также для других типов двигателей. Некоторые авторы работ этой тематики считают, что водород является неизбежностью и необходимо лучше подготовиться к встрече с этой неизбежностью.

Отличительной особенностью водорода является его высокие энергетические показатели, уникальные кинетические характеристики, экологическая чистота и практически неограниченная сырьевая база. По массовой энергоемкости водород превосходит традиционные углеводородные топлива в 2,5-3 раза, спирты - в 5-6 раз, аммиак - в 7 раз.

Качественное влияние на рабочий процесс ДВС водорода определяется, прежде всего, его свойствами. Он обладает более высокой диффузионной способностью, большей скоростью сгорания, широкими пределами воспламенения. Энергия воспламенения водорода на порядок меньше, чем у углеводородных топлив. Реальный рабочий цикл определяет более высокую степень совершенства рабочего процесса ДВС, лучшие показатели экономичности и токсичности.

Чтобы приспособить существующие конструкции поршневых ДВС, бензиновых и дизелей к работе на водороде, как основном топливе, необходимы определенные изменения, в первую очередь - конструкции топливоподающей системы. Известно, что применение внешнего смесеобразования приводит к уменьшению наполнения двигателя свежим окислителем, а значит и снижению мощности до 40%, из-за низкой плотности и высокой летучести водорода. При использовании внутреннего смесеобразования картина меняется, энергоемкость заряда водородного дизеля может возрастать до 12%, или может быть обеспечена на уровне, соответствующем работе дизеля на традиционном углеводородном дизельном топливе. Особенности организации рабочего процесса водородного двигателя определяются свойствами водородно-воздушной смеси, а именно: пределами воспламенения, температурой и энергией воспламенения, скоростью распространения фронта пламени, расстоянием гашения пламени.

Практически во всех известных исследованиях рабочего процесса водородного двигателя отмечается трудноконтролируемое воспламенение водородно-воздушной смеси. Воздействие на преждевременное воспламенение путем подачи воды во впускной трубопровод или путем впрыска «холодного» водорода исследованы и дают положительные результаты.

Остаточные газы и горячие точки камеры сгорания интенсифицируют преждевременное воспламенение водородно-воздушной смеси. Это обстоятельство требует дополнительных мероприятий по предупреждению неконтролируемого воспламенения. В то же время, низкая энергия воспламенения в широких пределах коэффициента избытка воздуха позволяет использовать существующие системы зажигания при переводе двигателей на водород.

Самовоспламенение водородно-воздушной смеси в цилиндре двигателя при степени сжатия, соответствующей дизелям, не происходит. Для самовоспламенения этой смеси необходимо обеспечить температуру конца сжатия не менее 1023К. Возможно, воспламенение воздушной смеси от запальной порции углеводородного топлива, за счет увеличения температуры конца сжатия применением наддува или подогревом на впуске воздушного заряда.

Водород в качестве топлива для дизелей характеризуется большой скоростью распространения фронта пламени. Эта скорость может превышать 200 м/с и вызывать возникновение волны давления, перемещающейся в камере сгорания со скоростью свыше 600 м/с. Высокая скорость сгорания водородно-воздушных смесей, с одной стороны, должна оказывать положительное влияние на повышение эффективности рабочего процесса, с другой стороны, этим предопределяются высокие значения максимального давления и температуры цикла, более высокая жесткость рабочего процесса водородного двигателя. Повышение максимального давления цикла влечет снижение моторесурса двигателя, а повышение максимальной температуры приводит к интенсивному образованию окислов азота. Возможно снижение максимального давления за счет дефорсирования двигателя или сжигания водорода по мере его подачи в цилиндр на такте рабочего хода. Снижение эмисси окислов азота до незначительного уровня возможно путем обеднения рабочей смеси или путем использования воды, подаваемой во впускной трубопровод. Так, при а>1,8 эмиссия окислов азота практически отсутствует. При подаче воды по массе в 8 раз больше, чем водорода, эмиссия окислов азота снижается в 8… 10 раз.

CNG разрешено непосредственно в городских кварталах жилой и общественной застройки. Более того, во многих странах разрешена заправка транспортных средств природным газом в подземных гаражах. 1.6. Производство газового оборудования для автомобилей. В наши дни славу лучшего в мире производителя газовой автоаппаратуры перехватила Италия. И сейчас на мировом рынке наибольшим спросом пользуется...

Модель, получившая обозначение «H2R», развивает скорость свыше 300 км/ч. Перспективным представляется новое направление в двигателестроении на водородном топливе, основанное на применении двигателя Стирлинга. Этот двигатель до конца XX в. широко не применялся на автотранспорте из-за более сложной по сравнению с двигателем внутреннего сгорания конструкции, большей материалоемкости и стоимости. ...

справочная информация

Производство экологически чистого бензина, соответствующего всё более жестким стандартам, обуславливает необходимость больших инвестиций в модернизацию действующих установок изомеризации и строительство новых объектов по производству автокомпонентов.

Актуальность установок изомеризации бензинов. Экологически чистый бензин. Экологическое топливо.

Среди всех процессов производства автокомпонентов в последние годы наибольшую популярность получил процесс изомеризации легких бензиновых фракций. Это обусловлено рядом факторов и показателей (таблица 1 ).
В странах с технически развитой нефтепереработкой процесс изомеризации всегда имел большое значение. Но с введением жестких экологических стандартов по содержанию в автобензинах бензола и ароматических углеводородов требования к технологии изомеризации существенно повысились и сводятся к следующему:

  • Получение изомеризата с октановым числом от 85 до 92 пунктов (ИОЧ);
  • Утяжеление сырья и изомеризата;
  • Высокая надежность эксплуатации, устойчивость к действию микропримесей и регенерируемость катализатора;
  • Оптимизация капитальных и эксплуатационных затрат.

Таблица 1. Факторы инвестиционной привлекательности процесса изомеризации бензинов

В России и странах бывшего СССР применение в нефтепереработке изомеризации бензинов началось значительно позже. По состоянию на конец 2013 года, действуют десять установок изомеризации легких бензиновых фракций “Изомалк-2”.На графике ниже показана динамика пуска установок изомеризации бензинов в России.

Может ли автомобильное топливо быть экологически чистым?

Этот вопрос становится все более актуальным в современном обществе.

Автомобильный транспорт наносит невосполнимый ущерб окружающей среде. В России из 35 млн. тонн вредных выбросов различных транспортных средств 89% приходится на автомобили, 8% - на железные дороги, 2% - на авиатранспорт и 1% - на водный транспорт.

Доля выбросов автотранспортом в общем объеме загрязнения атмосферного воздуха в среднем по стране сегодня составляет 43%, а в Москве - в два раза больше. Экологически неблагополучные районы занимают около 15 процентов территории страны, на которой проживают около 70% населения. Уровень концентрации оксидов азота, углерода и других вредных веществ на улицах крупных российских городов в 10-18 раз превышает предельно допустимые концентрации.

Основная масса выбросов вредных веществ в атмосферу происходит с отработанными газами двигателей внутреннего сгорания. Так, только один легковой автомобиль поглощает ежегодно из атмосферы в среднем больше 4 тонн кислорода, выбрасывая с выхлопными газами примерно 800 кг оксидов углерода, около 40 кг оксидов азота и почти 200 кг различных углеводородов. Отходящие газы двигателей содержат сложную смесь, их более двухсот компонентов, среди которых много канцерогенов, например, оксиды свинца, тетраэтилсвинец и т.д.

Для решения экологических проблем практически во всех развитых странах мира были приняты меры по регулированию выбросов в атмосферу вредных компонентов отработанных газов автомобилей, а экологичность транспорта на стадии проектирования стоит в одном ряду с его потребительскими качествами и безопасностью. Так в настоящее время в США и странах ЕС введены нормы «Евро-4», которые значительно ужесточили требования к предельно допустимым концентрациям вредных веществ в выхлопных газах автомобилей за последние 10 лет.

Бензины, удовлетворяющие стандартам Евро-4 и Евро-5, характеризуются не только высокими экологическими параметрами, но и улучшенными потребительскими свойствами, к числу которых относятся: детонация, мощность двигателя, интенсивность износа двигателя, образование нагара, коррозионное воздействие на двигатель и т.д.

Введение стандарта ЕВРО-4 на пути к созданию экологически чистого топлива полностью доказало свою эффективность для защиты окружающей среды (рис. 1 ). По данным Еврокомиссии, за период с 1995 по 2010 год среднее содержание СО, окиси азота (NOx) и соединений свинца в выхлопе эксплуатируемых на территории стран ЕС автомобилей сократилось более чем в 4 раза, а содержание гидрокарбонатов и летучих органических веществ (VOC), сернистого газа и бензола - более чем в 5 раз (рис. 2 ).

Россия в решении проблемы экологически чистого топлива значительно отстает, что наглядно демонстрируют данные Таблицы 1а .

Рисунок 1. Выбросы основных токсичных компонентов автотранспортных средств


Рисунок 2. Динамика изменения количества выбросов с течением времени


Таблица 1а. Соотношение выбросов загрязняющих веществ автотранспортом в России и Европе

Требования к экологической чистоте автомобильного топлива в России регулируются специальным техническим регламентом «О требованиях к автомобильному и авиационному бензинам, дизельному и судовому топливу, топливу для реактивных двигателей и топочному мазуту», который был утвержден постановлением Правительства России № 11 от 27 февраля 2008 года.

Регламент устанавливает обязательные требования к экологической безопасности топлива, соответствующие требованиям директив Европейского парламента и Совета 2003/17/ES и 98/70ES (так называемые стандарты Евро-2, 3, 4, 5). Технический регламент устанавливает минимально допустимые химические и физические параметры автомобильного бензина и дизельного топлива (см. таблицу 2 ), а также сроки прекращения производства топлива того или иного экологического класса.

Таблица 2. Минимально допустимые химические и физические параметры автомобильного бензина и дизельного топлива


Грядущее вступление в силу требований технического регламента, соответствующих спецификациям Евро-4 и 5, объективно стало серьезным стимулом для увеличения объемов инвестиций в модернизацию основных технологических процессов российских НПЗ.
Переход нефтеперерабатывающей промышленности России к производству экологически чистого автомобильного топлива требует кардинальных изменений в технологиях производства с большими финансовыми затратами.

С целью обеспечения коренного улучшения качества автомобильных бензинов требуется решение следующих задач :

  • снижение содержания сернистых соединений в бензиновых компонентах до уровня, при котором возможно производство товарных бензинов с содержанием серы не более 50 (10) ppm;
  • деароматизация компонентов и ограничение содержания олефиновых и ароматических углеводородов (в первую очередь бензола) до норм Евро-3 и Евро-4;
  • применение в составе автобензинов оксигенатов (спиртов и эфиров), моющих и многофункциональных присадок.

На данный момент соблюдение европейских стандартов моторного топлива, представленного на российском рынке, обеспечивается за счет применения производителями специальной добавки антидетонатора - метилтретбутилового эфира (МТБЭ). Эта добавка также широко применяется в странах ЕС и оказывает положительное влияние на двигатель: содержащийся в МТБЭ кислород обеспечивает полноту сгорания и тем самым снижает выбросы СО и СН. Однако повышенное содержание МТБЭ ведет к падению мощности, росту выбросов окислов азота, а также ускоряет процесс коррозии, поэтому согласно европейским нормам доля МТБЭ не должна превышать 15%. Кроме того, МТБЭ является дорогостоящим компонентом и его применение отрицательно сказывается на ценовых характеристиках бензина, произведенного по европейским стандартам - удорожание по сравнению с обычным высокооктановым бензином составляет 10%.

Одним из наиболее актуальных путей достижения качества топлива в соответствии с европейскими стандартами качества Евро-4, Евро-5 является строительство установок изомеризации. Применение технологий изомеризации при изготовлении бензинов позволяет сократить объем потребления МТБЭ, что в свою очередь приводит к сокращению себестоимости и, соответственно, цены бензина для конечных потребителей.

Целевым продуктом установки изомеризации является изомеризат, в котором отсутствует бензол и другие ароматические углеводороды, отсутствуют олефины, отсутствует сера, азот, тяжелые металлы, а октановое число составляет от 83 до 92 п. по исследовательскому методу в зависимости от технологических схем процесса.

Таким образом, изомеризация легких бензиновых фракций в настоящее время является одним из самых востребованных процессов, обеспечивающих производство экологически чистых автобензинов. Накоплен большой промышленный опыт по использованию различных технологий и технологических схем. Но совершенствование катализаторов и технологий продолжается постоянно.

В XXI столетии все большую популярность приобретает технология изомеризации на базе сульфатированных оксидных катализаторов.

Информация данного раздела приведена исключительно в справочных целях и собрана из различных литературных источников. Информацию о продукции и услугах ООО "НПП Нефтехим" Вы найдете в разделах «

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Оценка экологичности сжигания органических видов топлива предприятиями топливно-энергетического комплекса

В.Л. Гапонов 1 , Н.С. Самарская 2

1 Донской государственный технический университет,

Ростов-на-Дону

2 Ростовский государственный строительный университет

Аннотация

В статье авторами рассмотрены органические виды топлива как наиболее распространенные источники получения тепловой и электрической энергии на предприятиях топливно-энергетического комплекса. Выявлены преобладающие виды органического топлива - природный газ, уголь, мазут, а также проанализирован состав отходящих газов в зависимости от вида сжигаемого органического топлива. Исследовано негативное воздействие предприятий топливно-энергетического комплекса на компоненты окружающей среды. В заключении авторами сделан вывод о том, что, по сравнению с другими видами органического топлива, сжигание природного газа наносит минимальный вред окружающей среде.

Ключевые слова: органические виды топлива, сжигание топлива, загрязнение окружающей среды, отходящие газы, загрязняющие вещества.

Анализ современного состояния топливно-энергетического комплекса (ТЭК) России позволяет сделать вывод о том, что органические виды топлива - наиболее распространенные источники для получения тепловой и электрической энергии . В структуре потребления различных видов органического топлива предприятиями ТЭК преобладает природный газ (73,0%) и уголь (11,3%) (рис. 1) .

Деятельность предприятий ТЭК сопровождается существенным материальным и энергетическим загрязнением окружающей среды (табл. №1) . органический топливо отходящий газ

Степень загрязнения поверхностных и подземных водных объектов предприятиями ТЭК зависит от сжигаемого в них органического топлива, применяемой технологии сброса, типа охлаждающей системы, а, следовательно, количества используемой воды и реагентов . Предприятия ТЭК являются также источниками теплового загрязнения водоемов и водотоков, так как используют воду как охлаждающую среду.

Рис.1. - Структура потребления различных видов органического топлива предприятиями ТЭК

Таблица № 1. Возможные пути поступления загрязняющих веществ от предприятий ТЭК в окружающую среду в зависимости от типа источника и вещества

Источник загрязнения компонента окружающей среды

(А - атмосфера,

П - почва)

Загрязняющее вещество

Твердые частицы

Оксиды серы

Оксиды азота

Оксиды углерода

Органические соединения

Кислоты/щелочи/соли и т.п.

Металлы и их соли

Хлор (в виде гипохлорида)

Ртуть и/или кадмий

Диоксины

Хранение и транспортировка топлива

Водоподготовка

Дымовые газы

Очистка дымовых газов

Сток с площадки, включая ливневые стоки

Очистка сточных вод

Продувка системы охлаждения

Выбросы градирен

Акустическое (шумовое и вибрационное) загрязнения от предприятий ТЭК связано в основном с использованием котлов, паровых и газовых турбин, а также процессами транспортировки и погрузки топлива, отходов и побочных продуктов, использованием крупных насосов и вентиляторов; предохранительных клапанов; систем охлаждения и т.п. Однако, как правило, зона воздействия шума и вибрации, производимого предприятием, относительно невелика.

Состав отходящих газов и количество выбрасываемых загрязняющих веществ существенно зависит от вида сжигаемого топлива (рис. 2) .

При сжигании природного газа значимым загрязнителем являются оксиды азота, присутствуют также оксиды углерода. Концентрация бензапирена ничтожна мала. Причем, особенности сжигания природного газа определяют снижение выбросов оксидов азота в отходящих газах на 20-25% по сравнению с твердыми видами топлива.

Наличие в отходящих газах оксидов серы, оксидов азота, золы, соединений ванадия, солей натрия и др. характерно для сжигания жидких видов органического топлива, в первую очередь мазута. При сжигании твердого топлива, помимо вышеперечисленных загрязняющих веществ, выделяется значительное количество твердых частицы, состоящих из золовых частиц (летучая зола), несгоревшего твердого топлива и сажи, причем основную долю составляют золовые частицы.

Рис. 2. - Удельные показатели (кг/т, кг/тыс. м 3) выделения основных загрязняющих веществ с отходящими газами предприятий ТЭК

Образуются также золошлаковые отходы, для размещения которых требуется отчуждение значительного количества земель. Земли, отведенные под золошлаковые отходы, практически безвозвратно изымаются из полезного использования, так как золошлаки могут содержать примеси различных микроэлементов (никель Ni, кобальт Co, кадмий Cd, свинец Pb, сурьма Sb, хром Cr, марганец Mn, мышьяк As, ртуть Hg и и др.).

Бенз(а)пирен также содержится в составе жидкого и твердого топлива. Поэтому возможен его переход из топлива в продукты сгорания вместе с невыгоревшими сажистыми и коксовыми частицами.

Анализ использования различных видов органического топлива котельными показал, что природный газ характеризуется относительной экологической безопасностью продуктов сгорания, которые практически не содержат твердых частиц и сернистых соединений. Использование природного газа улучшает состояние воздушного бассейна городов и крупных промышленных центров, а уголь, которого в нашей стране сжигается меньше, чем природного газа, вызывает серьезные негативные экологические последствия.

Литература

1. Новак А. В. Итоги работы Минэнерго России и основные результаты функционирования ТЭК в 2014 г.: Задачи на среднесрочную перспективу URL: minenergo.gov.ru/upload/iblock/36e/prezentatsiya-itogovoy-kollegii.pdf.

2. Синяк Ю. В., Некрасов А. С., Воронина С. А. и др. Топливно-энергетический комплекс России: возможности и перспективы // Проблемы прогнозирования. 2013. № 1. С. 4-21.

3. Энергетическая стратегия России на период до 2030 г. (Утверждена распоряжением Правительства РФ от 13 ноября 2009 г., № 1715-р) URL: minenergo.gov.ru/aboutminen/energostrategy/

4. Комплексное предотвращение и контроль загрязнения окружающей среды. Справочный документ по наилучшим доступным технологиям. Экономические аспекты и вопросы воздействия на различные компоненты окружающей среды URL: 14000.ru/

5. Сигал И. Я. Защита воздушного бассейна при сжигании топлива. Л.: Недра, 1988. 312 с.

6. Mikulandric R., Lonсar D., Cvetinovic D. Improvement of environmental aspects of thermal power plant operation by advanced control concepts // Thermal Science. 2013. Vol. 16. Issue 3. Рp. 759-772

7. Paliwal S., Chandra H., Tripathi A. Investigation and analysis of air pollution emitted from thermal power plants: a critical review // International journal of mechanical engineering and technology (IJMET). 2013. Vol. 4, Issue 4. Рp. 2-37

8. Манжина С.А., Денисова И.А., Популиди К.К. Экономические аспекты диверсификации тепловой энергетики с учетом экологических требований // Инженерный вестник Дона, 2014, №1 URL: ivdon.ru/ru/magazine/archive/n1y2014/2260

9. Ганичева Л. З. Анализ состояния атмосферного воздуха в промышленных городах Ростовской области // Инженерный вестник Дона, 2013, №2 URL: ivdon.ru/ru/magazine/archive/n2y2013/1701/

10. Ахмедов Р. Б., Цирульников Л. М. Технология сжигания горючих газов и жидких топлив. Л.: НЕДРА, 1984. 238 с.

11. Котлер В. Р., Беликов В. Р. Промышленно-отопительные котельные: сжигание топлив и защита атмосферы. СПб.: Энерготех, 2001. 272 с.

References

1. Itogi raboty Minenergo Rossii i osnovnye rezul"taty funktsionirovaniya TEK v 2014 g.: Zadachi na srednesrochnuyu perspektivu URL: minenergo.gov.ru/upload/iblock/36e/prezentatsiya-itogovoy-kollegii.pdf.

2. Sinyak Yu. V., Nekrasov A. S., Voronina S. A. i dr. Problemy prognozirovaniya. 2013. № 1. Pр. 4-21.

3. Energeticheskaya strategiya Rossii na period do 2030 g. URL: minenergo.gov.ru/aboutminen/energostrategy/

4. Kompleksnoe predotvrashchenie i kontrol" zagryazneniya okruzhayushchey sredy. Spravochnyy dokument po nailuchshim dostupnym tekhnologiyam. Ekonomicheskie aspekty i voprosy vozdeystviya na razlichnye komponenty okruzhayushchey sredy URL: http://www.14000.ru/

5. Sigal I. Ya. Zashchita vozdushnogo basseyna pri szhiganii topliva . L.: Nedra, 1988. 312 p.

6. Mikulandric R., Lonsar D., Cvetinovic D. Thermal Science. 2013. Vol. 16. Issue 3. Pp. 759-772

7. Paliwal S., Chandra H., Tripathi A. International journal of mechanical engineering and technology (IJMET). 2013. Vol. 4, Issue 4. Pp. 2-37

8. Manzhina S.A., Denisova I.A., Populidi K.K. Inћenernyj vestnik Dona (Rus), 2014, №1 URL: ivdon.ru/ru/magazine/archive/n1y2014/2260

9. Ganicheva L. Z. Inћenernyj vestnik Dona (Rus), 2013, №2 URL: ivdon.ru/ru/magazine/archive/n2y2013/1701/

10. Akhmedov R. B., Tsirul"nikov L. M. Tekhnologiya szhiganiya goryuchikh gazov i zhidkikh topliv . L.: NEDRA, 1984. 238 p.

11. Kotler V. R., Belikov V. R. Promyshlenno-otopitel"nye kotel"nye: szhiganie topliv i zashchita atmosfery . SPb.: Energotekh, 2001. 272 p.

Размещено на Allbest.ru

...

Подобные документы

    Классификация загрязняющих веществ по степени опасности для здоровья человека. Расчет предельно-допустимых норм загрязнения и экологические нормативы. Характеристика наиболее опасных загрязняющих веществ объектов топливно-энергетического комплекса.

    контрольная работа , добавлен 17.07.2010

    Структура топливно-энергетического комплекса: нефтяная, угольная, газовая промышленность, электроэнергетика. Влияние энергетики на окружающую среду. Основные факторы загрязнения. Источники природного топлива. Использование альтернативной энергетики.

    презентация , добавлен 26.10.2013

    Анализ степени и механизмов воздействия ракетного топлива на окружающую среду. Обоснование приоритетных токсичных соединений ракетного топлива. Проведение оценки экологического риска, связанного с использованием космического ракетного комплекса "Союз-2".

    дипломная работа , добавлен 25.05.2014

    Общая характеристика теплоэнергетики и её выбросов. Воздействие предприятий на атмосферу при использовании твердого, жидкого топлива. Экологические технологии сжигания топлива. Влияние на атмосферу использования природного газа. Охрана окружающей среды.

    контрольная работа , добавлен 06.11.2008

    Основные компоненты, выбрасываемые в атмосферу при сжигании различных видов топлива в энергоустановках. Расчет суммарного расхода топлива и высоты дымовой трубы. Анализ зависимости концентрации вредных примесей от расстояния до источника выбросов.

    контрольная работа , добавлен 10.04.2011

    Текущее состояние экологичности российского топлива. Бензин со свинцовыми добавками. Перспективы России по производству евродвигателей и экологичных видов топлива. Перечень регионов, в которых реализуется дизтопливо, соответствующее стандарту "Евро-4".

    реферат , добавлен 27.12.2012

    Структура и компоненты, а также оценка негативного влияние топливно-энергетического комплекса на окружающую среду. Климатические характеристики района и анализ влияния Приводинского линейно-производственного управления магистральных газопроводов.

    дипломная работа , добавлен 09.11.2016

    Анализ экологических проблем, связанных с действием топливно-энергетического комплекса и тепловых электрических станций на окружающую среду. Характер техногенного воздействия. Уровни распространения вредных выбросов. Требования к экологически чистым ТЭС.

    реферат , добавлен 20.11.2010

    Общая характеристика внешней среды промышленного предприятия. Статистика расходов на охрану окружающей среды. Проблемы воздействия теплоэнергетики на атмосферу. Загрязнители атмосферы, образующиеся при сжигании топлива. Инвентаризация источников выбросов.

    курсовая работа , добавлен 19.07.2013

    Прогноз дальнейшего развития топливно-энергетического комплекса России. Основные исходные данные для расчета ветровой эрозии золоотвала. Характеристика эродируемых частиц. Расчет текущего пылевого выноса и рассеивания золовых частиц в атмосфере.

Во всем мире в качестве источника энергии повсеместно продолжает использоваться ископаемое топливо, которое хоть и экологически улучшается с каждым годом, загрязнение от выхлопов которого, остается одной из главных экологических проблем. Это заставляет ученых и инженеров задуматься о возможности использования альтернативного топлива в качестве других источников энергии.

Таких разработок много, однако в серийное использование продвигаются не так много видов экологически чистого топлива.

Давление сжатого воздуха

Пневмопривод был разработан во Франции и Индии практически одновременно. Ныне такие автомобили уже производятся серийно. Для движения используется сила, создаваемая сжатым воздухом. Такое транспортное средство развивает скорость до 35 км/час (с использованием мизерного количества топлива до 90 км/ч). Расход сжатого воздуха в бензиновом эквиваленте составляет порядка одного литра на 100 километров.

Спиртовой двигатель

Этанол или этиловый спирт - один из наиболее распространенных видов альтернативного топлива. В США и Бразилии порядка 32 тысяч заправочных станций реализуют этиловое топливо. Более 230 млн. транспортных средств во всем мире используют именно его. Вещество, получаемое во время брожения различных культур, обеспечивает достаточное количество энергии, а продукты его горения не несут никакого вреда экологии.

Биодизель или энергия растительного масла

Конструкция дизельного двигателя сама по себе эффективнее бензинового. А если его заправить его растительным маслом, то еще и экологически чистая. Речь о специально переработанном масле. Получить такое топливо можно даже в домашних условиях, используя несложные технологические процессы. У такой технологии множество плюсов: нет необходимости менять конструкцию двигателей на уже собранных авто, для его производства используются восстанавливаемые ресурсы, а выхлоп совершенно безопасен для окружающей среды.

Водородный двигатель

В начале XXI века был разработан водородный двигатель. Технологически можно использовать водородное топливо и в обычном двигателе внутреннего сгорания, но тогда мощность падает на 60 - 82%. Если внести необходимые изменения в системе зажигания, то напротив, мощность только увеличится на 117%, в этом случае увеличение выхода окислы азота приводит к подгоранию поршней и клапанов, а также вступление водорода в реакцию с другими материалами приводит быстрому износу двигателя. Его усовершенствованная версия в будущем сможет, возможно, использовать в качестве топлива даже воду. Кроме того, водород обладает сильной летучестью, поэтому его трудно сохранить в жидком виде, в топливном баке BMW Hydrogen (автомобиль на изображении ) всего за неделю неиспользования испаряется полбака водородного топлива.

Электродвигатель

Есть тип двигателя, который вообще не производит выхлопа - электрический. Технология начинает свою историю еще в XIX веке. Популярность электрическому двигателю способствовали трамваи и троллейбусы в качестве городского транспорта, но в таком случае транспорту необходим был постоянный электрический ток в виде проводов. Электромобиль так и не набрал в свое время популярности, хоть и появился раньше, чем автомобиль с двигателем внутреннего сгорания. Ныне электромобили выпускаются серийно, в городах оборудуются электрические заправки для них и технология набирает популярность.

Гибридный автомобиль

Особенно, популярны гибридные автомобили с одновременным использованием электродвигателя и двигателя внутреннего сгорания, позволяющим приводить в движение автомобиль, как и от электрического заряда, так и от привычного топлива. Гибридные автомобили, конечно, не избавляют атмосферу полностью от вредных выхлопов, но уменьшают количество отработавших газов, при этом позволяют в разы экономить топливо и уменьшать эксплуатационные характеристики.

Многие годы исследователи бьются над поиском альтернативы бензину как основному типа топлива для автотранспорта. Экологические и ресурсные причины нет смысла перечислять - о токсичности выхлопных газов не говорит только ленивый. Решение проблемы ученые находят в самых, порой, необычных видах топлива. Recycle выбрал наиболее интересные идеи, бросающие вызов топливной гегемонии бензина.


Биодизель на растительных маслах

Биодизель - разновидность биотоплива на основе растительных масел, которая применяется как в чистом виде, так и в качестве различных смесей с дизельным топливом. Идея применения растительного масла в качестве топлива принадлежит еще Рудольфу Дизелю, который в 1895 году создал первый дизельный двигатель для работы на растительном масле.

Как правило, для получения биодизеля используют рапсовое, подсолнечное и соевое масла. Разумеется, сами по себе растительные масла в качестве топлива в бензобак не заливаются. В растительном масле содержатся жиры — эфиры жирных кислот с глицерином. В процессе получения «биосоляры» эфиры глицерина разрушают и заменяют глицерин (он выделяется как побочный продукт) на более простые спирты — метанол и, реже, этанол. Это и становится компонентом биодизеля.

Во многих европейских странах, а также в США, Японии и Бразилии, биодизель уже стал неплохой альтернативой обычному бензину. Так, в Германии рапсовый метиловый эфир продается уже более чем на 800 заправочных станциях. В июле 2010 года в странах Евросоюза работали 245 заводов по производству биодизеля суммарной мощностью 22 млн тонн. Аналитики компании Oil World прогнозируют, что к 2020 г. доля биодизеля в структуре потребляемого моторного топлива в Бразилии, Европе, Китае и Индии составит 20%.

Биодизель — экологичное топливо для транспорта: в сравнении с обычным дизельным топливом он почти не содержит серы и при этом подвергается практически полному биологическому распаду. В почве или в воде микроорганизмы за 28 дней перерабатывают 99% биодизеля — это минимизирует степень загрязнения рек и озёр.


Сжатый воздух

Модели пневмоавтомобилей — машин, ездящих на сжатом воздухе — выпущены уже несколькими компаниями. Инженеры Peugeot в свое время произвели фурор в автомобильной индустрии, заявив о создании гибрида, у которого в помощь к двигателю внутреннего сгорания добавляется энергия сжатого воздуха. Французские инженеры рассчитывали, что такая разработка поможет малолитражкам сократить расход топлива до 3 л на 100 км. Специалисты Peugeot утверждают, что в городе пневмогибрид может до 80% времени передвигаться на сжатом воздухе, не создав ни миллиграмма вредных выбросов.

Принцип работы «воздухомобиля» довольно прост: в движение машину приводит не сгорающая в цилиндрах мотора бензиновая смесь, а мощный поток воздуха из баллона (давление в баллоне — около 300 атмосфер). Пневматический мотор конвертирует энергию сжатого воздуха во вращение полуосей.

К сожалению, машины целиком на сжатом воздухе или air-гибриды создаются, в основном, мизерными партиями — для работы в специфических условиях и на ограниченном пространстве (например, на производственных площадках, требующих максимального уровня пожарной безопасности). Хотя существуют некоторые модели и для «стандартных» покупателей.

Экологически чистый микрогрузовичок Gator от компании Engineair - первый в Австралии автомобиль на сжатом воздухе, поступивший в реальную коммерческую эксплуатацию. Его уже можно видеть на улицах Мельбурна. Грузоподъёмность - 500 кг, объём баллонов с воздухом - 105 литров. Пробег грузовичка на одной заправке - 16 км.


Продукты жизнедеятельности

До чего дошел прогресс — некоторым автомобилям для работы двигателя нужен не бензин, а попадающие в канализацию отходы жизнедеятельности человека. Такое чудо автопрома создали в Великобритании. На улицы Бристоля выкатили автомобиль, который использует в качестве топлива метан, выделенный из человеческих экскрементов. Прототипической моделью стал Volkswagen Beetle, а производитель машины VW Bio-Bug на инновационном топливе - компания GENeco. Установленный на кабриолете «Фольксваген» перерабатывающий фекалии двигатель позволил проехать 15 тысяч километров.

Изобретение GENeco поспешили назвать прорывом во внедрении энергосберегающих технологий и экологически чистого топлива. Обывателю идея кажется сюрреалистической, поэтому стоит разъяснить: в автомобиль загружается, конечно, уже переработанное топливо — в виде готового к использованию метана, полученного заблаговременно из отходов жизнедеятельности.

При этом двигатель VW Bio-Bug использует два вида топлива одновременно: машина стартует от бензина, но, как только двигатель прогревается, а автомобиль набирает определенную скорость, включается подача переработанного на заводах GENeco человеческого желудочного газа. Потребители могут даже не заметить разницы. Впрочем, остается главная маркетинговая проблема — человеческое негативное восприятие того сырья, из которого получают биогаз.


Солнечные батареи

Производство автомобилей, питающихся солнечной энергией — пожалуй, самое развитое направление автопрома, ориентированного на использование эко-топлива. Машины на солнечных батареях создаются по всему миру и в самых разных вариациях. Еще в 1982 году изобретатель Ханс Толструп на солнцемобиле «Quiet Achiever» («Тихий рекордсмен») пересёк Австралию с запада на восток (правда, со скоростью всего лишь 20 км в час).

В сентябре 2014 года автомобилю Stella на удалось проехать маршрут от Лос-Анджелеса до Сан-Франциско, а это 560 км. Солнцемобиль, разработанный группой из голландского Университета Эйндховена, оснащён панелями, собирающими солнечную энергию, и 60-килограммовым блоком батарей ёмкостью шесть киловатт-часов. Stella имеет среднюю скорость 70 км в час. При отсутствии солнечного света запаса батарей хватает на 600 км. В октябре 2014 года студенты из Эйндховена на своей чудо-машине приняли участие в World Solar Challenge — 3000-километровой ралли по Австралии для машин на солнечных батареях.

Самым скоростным электрокаром на солнечных батареях на данный момент является Sunswift, созданный командой студентов из австралийского Университета Нового Южного Уэльса. На испытаниях в августе 2014 года этот солнцемобиль на одном заряде аккумулятора преодолел 500 километров с потрясающей для такого транспорта средней скоростью 100 км в час.


Биодизель на кулинарных отходах

В 2011 году Министерство сельского хозяйства США вместе с Национальной лабораторией возобновляемых видов энергии проводило исследование альтернативных типов топлива. Одним из удивительных результатов стал вывод о перспективности использования биодизельного топлива на основе сырья животного происхождения. Биодизель из остатков жиров — технология еще не слишком развитая, но уже используемая в азиатских странах.

Каждый год в Японии после приготовления национального блюда, тэмпура, остается приблизительно 400 тысяч тонн использованного кулинарного жира. Раньше он перерабатывался в корм для животных, удобрения и мыло, однако в начале 1990-х годов экономные японцы нашли ему еще одно применение, наладив на его основе производство растительного дизельного топлива.

По сравнению с бензином такой нестандартный вид автозаправки выделяет в атмосферу меньшее количество окиси серы — главной причины кислотных дождей — и на две трети сокращает количество других ядовитых выбросов выхлопных газов. Чтобы сделать новое топливо более популярным, его производители придумали любопытную схему. Каждому, кто пришлет на завод по выработке РДТ десять партий пластмассовых бутылок с использованным кулинарном жиром, выделяется 3,3 квадратных метра леса в одной из японских префектур.

До России технология в таком объеме еще не дошла, а зря: ежегодное количество отходов российской пищевой промышленности составляет 14 млн тонн, что по своему энергетическому потенциалу эквивалентно 7 млн тонн нефти. В России пущенные на биодизель отходы закрыли бы потребность транспорта на 10 процентов.


Жидкий водород

Жидкий водород уже давно считается одним из главных видов топлива, способных бросить вызов бензину и дизелю. Транспортные средства на водородном топливе не являются редкостью, но в силу многих факторов так и не завоевали широкую популярность. Хотя в последнее время благодаря новой волне озабоченности «зелеными» технологиями идея водородного двигателя приобрела новых сторонников.

Сразу несколько крупных производителей сейчас имеют в своем модельном ряду машины с водородным двигателем. Один из самых известных примеров - BMW Hydrogen 7, автомобиль с двигателем внутреннего сгорания, который может работать и на бензине, и на жидком водороде. BMW Hydrogen 7 имеет бензиновый бак на 74 литра и резервуар для хранения 8 кг жидкого водорода.

Таким образом, автомобиль может использовать оба вида топлива во время одной поездки: переключение с одного типа горючего на другое происходит автоматически, при этом предпочтение отдается водороду. Таким же типом двигателя оснащен, например, гибридный водородно-бензиновый автомобиль Aston Martin Rapide S. В нем двигатель может работать на обоих видах топлива, а переключение между ними осуществляет интеллектуальная система оптимизации расхода и выбросов вредных веществ в атмосферу.

Водородное топливо собираются осваивать и другие авто-гиганты - Mazda, Nissan и Toyota. Считается, что жидкий водород экологически безопасен, так как при горении в среде чистого кислорода не выделяет никаких загрязняющих веществ.


Зеленые водоросли

Водорослевое топливо — экзотичный способ получения энергии для автомобиля. Рассматривать водоросли в качестве биотоплива стали, прежде всего, в США и Японии.

Япония не обладает большим запасом плодородных земель для выращивания рапса или сорго (которые используются в других странах для получения биотоплива из растительных масел). Зато Страна Восходящего Солнца добывает огромное количество зеленых водорослей. Раньше их употребляли в пищу, а сейчас на их основе стали делать заправку для современных автомобилей. Не так давно в японском городе Фудзисава на улицах появился пассажирский автобус DeuSEL от компании Isuzu, который передвигается на топливе, часть которого получена на основе водорослей. Одним из главных элементов стала эвглена зеленая.

Сейчас «водорослевые» добавки составляют всего несколько процентов от общей массы топлива в транспортных баках, но в будущем азиатская компания-производитель обещает разработать двигатель, который позволит использовать биосоставляющую на все 100 процентов.

В США тоже плотно занялись вопросом биотоплива на базе водорослей. Сеть заправок Propel в Северной Калифорнии начала продажи биодизеля Soladiesel всем желающим. Топливо получают из водорослей путем их сбраживания и последующего выделения углеводородов. Изобретатели биотоплива обещают двадцатипроцентное уменьшение выбросов углекислоты и заметное снижение токсичности по другим показателям.