Плюсы и минусы турбонаддува. Использование системы турбонаддува на бензиновых и дизельных двигателях. Двигатель внутреннего сгорания – атмосферный

Турбонаддув обязан свои появлением пресловутой немецкой рачительности и практичности во всём. Ещё Рудольфу Дизелю и Готлибу Даймлеру, в конце XIX века, не давал покоя такой вопрос. Как же так: выхлопные газы просто так выбрасываются в трубу, а энергия, которой они обладают, не приносит никакой пользы? Непорядок… В веке двадцать первом, двигатели, оснащённые турбиной, давно перестали быть экзотикой и используются повсеместно, на самой разной технике. Почему турбины получили распространение прежде всего на дизельных двигателях и каков принцип работы этих полезных агрегатов, разберём далее – в строго научно-популярной, но наглядной и понятной каждому форме.

Итак, идея «пустить в дело» энергию отработанных выхлопных газов появилась уже вскоре после изобретения и успешных опытов применения двигателей внутреннего сгорания. Немецкие инженеры и первопроходцы автомобиле- и тракторостроения, во главе с Дизелем и Даймлером, провели первые опыты по повышению мощности двигателя и снижению расхода топлива с помощью нагнетания сжатого воздуха от выхлопов.

Готдиб Даймлер выпускал вот такие автомобили, а уже задумывался о внедрении системы турбонаддува

Но первым, кто построил первый эффективно работающий турбокомпрессор, стали не они, а другой инженер – Альфред Бюхи. В 1911 году он получил патент на своё изобретение. Первые турбины были таковы, что использовать их было возможно и целесообразно только на крупных двигателях (например, судовых).

Далее турбокомпрессоры начали использоваться в авиационной промышленности. Начиная с 30-х годов ХХ века, в Соединённых Штатах регулярно запускались в «серию» военные самолёты (как истребители, так и бомбардировщики), бензиновые двигатели которых были оснащены турбонагнетателями. А первая в истории грузовая автомашина с турбированным дизельным мотором была сделана в 1938 году.

В 60-е годы корпорация «Дженерал Моторс» выпустила первые легковые «Шевроле» и «Олдсмобили» с бензиновыми карбюраторными двигателями, оснащёнными турбонаддувом. Надежность тех турбин была невелика, и они быстро исчезли с рынка.

Oldsmobile Jetfire 1962 года – первый серийный автомобиль с турбонаддувом

Мода на турбированные моторы вернулась на рубеже 70-х/80-х, когда турбонаддув начали широко использовать в создании спортивных и гоночных автомобилей. Приставка «турбо» стала чрезвычайно популярной и превратилась в своеобразный лейбл. В голливудских фильмах тех лет супергерои нажимали на панелях своих суперкаров «магические» кнопки «турбо», и машина уносилась вдаль. В реальной же действительности турбокомпрессоры тех лет ощутимо «тормозили», выдавая существенную задержку реакции. И, кстати, не только не способствовали экономии топлива, а наоборот, увеличивали его расход.

Труженик советских полей – с турбонаддувом

Первые действительно успешные попытки внедрения турбонаддува в производство автомобильных двигателей серийного производства осуществили в начале 80-х годов «SAAB» и «Mercedes». Этим передовым опытом не замедлили воспользоваться и другие мировые машиностроительные компании.

В Советском Союзе разработка и внедрение в «серию» турбированных двигателей была связана, прежде всего, с развитием производства тяжёлых промышленных и сельскохозяйственных тракторов – , «Кировец»; суперсамосвалов «БелАЗ» и т.п. мощной техники.

Почему в итоге турбины получили распространение именно на дизельных, а не бензиновых двигателях? Потому что дизельные моторы имеют гораздо большую степень сжатия воздуха, а их выхлопные газы – более низкую температуру. Соответственно, требования к жаропрочности турбины гораздо меньше, а её стоимость и эффективность использования – гораздо больше.

Система турбонаддува состоит из двух частей: из турбины и турбокомпрессора. Турбина служит для преобразования энергии отработанных газов, а компрессор – непосредственно для подачи многократно сжатого атмосферного воздуха в рабочие полости цилиндров. Главные детали системы – два лопастных колеса, турбинное и компрессорное (так называемые «крыльчатки»). Турбокомпрессор представляет собой технологичный насос для воздуха, приводимый в действие вращением ротора турбины. Единственная его задача – нагнетание сжатого воздуха в цилиндры под давлением.

Чем больше воздуха поступит в камеру сгорания, тем большее количество солярки дизель сможет сжечь за конкретную единицу времени. Результат – существенное увеличение мощности мотора, без необходимости наращивания объёма его цилиндров.

Составные части устройства турбонаддува:

  • корпус компрессора;
  • компрессорное колесо;
  • вал ротора, или ось;
  • корпус турбины;
  • турбинное колесо;
  • корпус подшипников.

Основа системы турбонаддува – это ротор, закреплённый на специальной оси и заключённый в особый жаропрочный корпус. Беспрерывный контакт всех составных частей турбины с чрезвычайно раскалёнными газами определяет необходимость создания как ротора, так и корпуса турбины из специальных жаропрочных металлосплавов.

Крыльчатка и ось турбины вращаются с очень высокой частотой и в противоположных направлениях. Это обеспечивает плотный прижим одного элемента к другому. Поток отработанных газов проникает вначале в выпускной коллектор, откуда попадает в специальный канал, что расположен в корпусе турбо-нагнетателя. Форма его корпуса напоминает панцирь улитки. После прохождения этой «улитки» отработанные газы с разгоном подаются на ротор. Так и обеспечивается поступательное вращение турбины.

Ось турбонагнетателя закреплена на специальных подшипниках скольжения; смазка осуществляется подачей масла из системы смазки моторного отсека. Уплотнительные кольца и прокладки препятствуют утечкам масла, а также прорывам воздуха и отработанных газов, а также их смешиванию. Конечно, полностью исключить попадание выхлопа в сжатый атмосферный воздух не удаётся, но в этом и нет большой необходимости…

Мощность любого двигателя и производительность его работы зависит от целого ряда причин. А именно: от рабочего объёма цилиндров, от количества подаваемой воздушно-топливной смеси, от эффективности её сгорания, а также от энергетической части топлива. Мощность двигателя возрастает пропорционально росту количества сжигаемого в нём за определённую единицу времени горючего. Но для ускорения сгорания топлива необходимо увеличение запаса сжатого воздуха в рабочих полостях мотора.

То есть, чем больше за единицу времени сжигается горючего, тем большее количество воздуха потребуется «впихнуть» в мотор (не очень красивое слово «впихнуть» здесь, тем не менее, очень хорошо подходит, поскольку сам мотор не справится с забором избыточного количества сжатого воздуха, и фильтры нулевого сопротивления в этом ему не помогут).

В этом, повторимся, и состоит основное назначение турбонаддува – в наращивании подачи воздушно-топливной смеси в камеры сгорания. Это обеспечивается нагнетанием сжатого воздуха в цилиндры, которое происходит под постоянным давлением. Оно происходит вследствие преобразования энергии отработанных газов, проще говоря, из бросовой и утерянной – в полезную. Для этого, прежде чем выхлопные газы должны быть выведены в выхлопную трубу, а далее и, соответственно, в атмосферу, их поток направляется через систему турбокомпрессора.

Этот процесс обеспечивает раскручивание колеса турбины («крыльчатки»), снабжённого специальными лопастями, до 100-150ти тысяч оборотов в минуту. На одном валу с крыльчаткой закреплены и лопасти компрессора, которые нагнетают сжатый воздух в цилиндры двигателя. Полученная от преобразования энергии выхлопных газов сила используется для значительного увеличения давления воздуха. Благодаря чему и появляется возможность впрыскивания в рабочие полости цилиндров гораздо большего количества топлива за фиксированное время. Это даёт значительное увеличение как мощности, так и КПД дизеля.

Дизельная турбина в разрезе

Проще говоря, турбосистема содержит две лопастных «крыльчатки», закреплённых на одном общем валу. Но находящихся при этом в отдельных камерах, герметично отделённых друг от друга. Одна из крыльчаток вынуждена вращаться от постоянно поступающих на её лопасти выхлопных газов двигателя. Поскольку вторая крыльчатка с нею жёстко связана, то и она также начинает вращаться, захватывая при этом атмосферный воздух и подавая его в сжатом виде в цилиндры двигателя.

Не один десяток лет потребовался инженерам, чтобы создать действительно эффективно работающий турбокомпрессор. Ведь это только в теории всё выглядит гладко: от преобразования энергии отработанных газов можно «вернуть» утерянный процент КПД и значительно увеличить мощность двигателя (например, со ста до ста шестидесяти лошадиных сил). Но на практике подобного почему-то не получалось.

Кроме того, при резком нажатии на акселератор приходилось ждать увеличения оборотов мотора. Оно происходило только через некоторую паузу. Рост давления выхлопных газов, раскрутка турбины и загонку сжатого воздуха происходили не сразу, а постепенно. Данное явление, именуемое «turbolag» («турбояма») никак не удавалось укротить. А справиться с ним получилось, применив два дополнительных клапана: один – для перепускания излишнего воздуха в компрессор через трубопровод из двигательного коллектора. А другой клапан – для отработанных газов. Да и в целом, современные турбины с изменяемой геометрией лопаток даже своей формой уже значительно отличаются от классических турбин второй половины ХХ века.

Дизельный турбокомпрессор «Бош»

Другая проблема, которую пришлось решать при развитии технологий дизельных турбин, состояла в избыточной детонации. Детонация эта возникала из-за резкого увеличения температуры в рабочих полостях цилиндров при нагнетании туда дополнительных масс сжатого воздуха, особенно на завершающей стадии такта. Решать данную проблему в системе призван промежуточный охладитель наддувочного воздуха (интеркулер).

Интеркулер – это не что иное, как радиатор для охлаждения наддувочного воздуха. Кроме снижения детонации, он снижает температуру воздуха ещё и для того, чтоб не снижать его плотность. А это неизбежно во время процесса нагрева от сжатия, и от этого эффективность всей системы в значительной степени падает.

Кроме того, современная система турбонаддува двигателя не обходится без:

  • регулировочного клапана (wastegate). Он служит для поддержания оптимального давления в системе, и для его сброса, при необходимости, в приёмную трубу;
  • перепускного клапана (bypass-valve). Его предназначение – отвод наддувочного воздуха назад во впускные патрубки до турбины, если нужно снизить мощность и дроссельная заслонка закрывается;
  • и/или «стравливающего» клапана (blow-off-valve). Который стравливает наддувочный воздух в атмосферу в том случае, если дроссель закрывается и датчик массового расхода воздуха отсутствует;
  • выпускного коллектора, совместимого с турбокомпрессором;
  • герметичных патрубков: воздушных для подачи воздуха во впуск, и масляных – для охлаждения и смазки турбокомпрессора.

На дворе двадцать первый век, и никто уже не гонится за тем, чтобы название его легкового автомобиля было с модной в веке ХХ-м приставкой «турбо». Никто и не верит более в «магическую силу турбины» для резкого ускорения автомобиля. Смысл применения и эффективность работы системы турбонаддува всё-таки не в этом.

Вот это «улитка»!

Разумеется, наиболее эффективен турбонаддув при его использовании на двигателях тракторов и тяжёлых грузовиков. Он позволяет добавить мощности и крутящего момента без возникновения перерасхода топлива, что очень важно для экономических показателей эксплуатации техники. Там он и используется. Нашли своё широкое применение турбосистемы также на тепловозных и судовых дизелях. И это наиболее мощные из созданных человеком турбин для дизельного двигателя.

Привела к появлению турбокомпрессоров. Данное решение оказалось самым эффективным как на бензиновых, так и на дизельных моторах.

Становится вполне очевидным, что итоговая мощность ДВС пропорциональна количеству топливовоздушной рабочей смеси, которая попадает в цилиндры двигателя. Закономерно, что двигатель с большим объемом способен пропускать больше воздуха и тем самым выдавать больше мощности сравнительно с двигателем меньшего объема. Если перед нами стоит задача добиться от малообъемного ДВС такой же мощности, которую демонстрируют моторы большего объема, тогда необходимо принудительно уместить как можно больше воздуха в цилиндрах такого двигателя.

Читайте в этой статье

Небольшой прирост или солидное увеличение мощности

Существует несколько способов форсирования силовой установки без турбонаддува. Можно произвести ряд доработок конструкции головки блока цилиндров, обеспечить установку спортивных распредвалов, поставить фильтр нулевого сопротивления, улучшить продувку и тем самым обеспечить подачу большего количество воздуха в цилиндры при езде в режиме максимально высоких оборотов.

Вполне можно и вовсе не стремится менять количество поступающего в мотор воздуха, а вместо этого увеличить степень сжатия и перейти на использование горючего с более высоким октановым числом. Доступно даже расточить цилиндры и нарастить их объем. Это также позволит увеличить КПД Вашего мотора.

Все указанные способы уместны и работают, но только тогда, когда мощность планируется увеличить всего на 15-20%.

Если речь заходит о кардинальных изменениях и значительном увеличении мощности мотора, тогда без компрессора уже не обойтись. Наиболее эффективным методом будет установка турбокомпрессора. Более того, установка турбонаддува способна увеличить мощность любого специально подготовленного для таких возросших нагрузок мотора.

В предыдущих статьях мы поверхностно перечислили основные элементы системы турбонаддува. Теперь давайте подробнее рассмотрим те главные этапы и процессы, когда сначала воздух проходит в системе с установленным турбокомпрессором, а затем отработавшие газы приводят в действие компрессор. Для примера возьмем турбокомпрессор дизельного ДВС.

  • В самом начале пути воздух пропускается через воздушный фильтр и оказывается на входе в турбокомпрессор;
  • Внутри турбонагнетателя попавший туда воздух проходит процесс сжатия. При этом возрастает количество необходимого для эффективного сгорания топливно-воздушной смеси кислорода на единицу объема воздуха. В этот самый момент сжатия проявляется нежелательный в данном случае эффект нагрева воздуха от сжатия и снижение его плотности;
  • Для охлаждения после сжатия в турбокомпрессоре воздух попадает в интеркулер. В интеркулере температура воздуха практически полностью возвращается на начальный уровень. Благодаря охлаждению достигается как увеличение плотности воздуха, так и снижается вероятность появления детонации от использования последующей топливовоздушной смеси;
  • За интеркулером охлажденный воздух минует дроссельную заслонку и оказывается во впускном коллекторе. Последним этапом становится такт впуска, когда рабочая смесь окажется в цилиндрах двигателя;
  • Объем цилиндра представляет собой неизменную постоянную величину, которая зависит от его диаметра и хода поршня. Благодаря турбокомпрессору этот объем активно заполняется сжатым и охлажденным воздухом. Это означает, что количество кислорода в цилиндре сильно возрастает по сравнению с атмосферными моторами. Не трудно догадаться, что чем большее количество кислорода поступило, тем больше горючего можно сжечь за рабочий такт. Сгорание большего количества горючего в результате приводит к заметному увеличению итоговой мощности мотора;
  • После эффективного сгорания топливовоздушной смеси в цилиндрах двигателя наступает такт выпуска. На этом такте отработавшие газы уходят в выпускной коллектор через . Весь этот поток разогретого (от 500С до 1100С зависимо от типа двигателя) газа проникает в турбину и начинает воздействовать на турбинное колесо. Колесо под давлением выхлопных газов передает энергию на вал турбины, а на другом конце вала находится компрессор.

Так и происходит процесс сжатия свежей порции воздуха для следующего рабочего такта. Одновременно происходит падение давления отработавших газов, а также снижается температура выхлопа. Это получается по причине того, что часть энергии газов уходит на обеспечение работы турбокомпрессора на другой стороне вала турбины;

Дополнительные элементы системы турбонаддува

Если говорить о конкретных модификациях мотора, а также о компоновке различных элементов в подкапотном пространстве, турбокомпрессор может иметь ряд дополнительных элементов. Мы уже упоминали такие детали системы, как Wastegate и Blow-Off. Давайте рассмотрим их более подробно.

Блоу-офф представляет собой перепускной клапан. Данное устройство устанавливается в воздушной системе. Местом расположения становится участок между выходом из компрессора и дроссельной заслонкой. Главной задачей блоу-офф клапана становится предотвращение выхода компрессора на характерный режим работы surge.

Под таким режимом стоит понимать момент резкого закрытия дросселя. Если описать происходящее простыми словами, то скорость воздушного потока и сам расход воздуха в системе резко понижаются, но турбина еще определенное время продолжает вращение по инерции. Инерционно турбина вращается с той скоростью, которая уже больше не соответствует новым потребностям мотора и упавшему таким образом расходу воздуха.

Последствия после циклических скачков давления воздуха за компрессором могут быть плачевны. Явным признаком скачков является характерный звук воздуха, который прорывается через компрессор. С течением времени из строя выходят опорные подшипники турбины, так как они испытывают сильные нагрузки в момент указанных скачков давления при сбросе газа и последующей работе турбины в этом переходном режиме.

Блоуофф реагирует на разницу давлений в коллекторе и срабатывает благодаря установленной внутри пружине. Это позволяет выявить момент резкого перекрытия дросселя. Если дроссель резко закрылся, тогда блоу-офф осуществляет стравливание в атмосферу внезапно появившегося в воздушном тракте избытка давления. Это позволяет существенно обезопасить турбокомпрессор и уберечь его от избытка нагрузок и последующего разрушения.

Данное решение представляет собой механический клапан. Вестгейт установливают на турбинной части или же на самом выпускном коллекторе. Задачей устройства является обеспечение контроля за тем давлением, которое создает турбокомпрессор.

Стоит отметить, что некоторые дизельные силовые агрегаты используют в своей конструкции турбины без вейстгейта. Для моторов, которые работают на бензине, в большинстве случаев наличие такого клапана является обязательным условием.

Главной задачей вейстгейта становится обеспечение возможности беспрепятственного выхода для выхлопных газов из системы в обход турбины. Запуск части отработавших газов в обход позволяет осуществлять контроль за необходимым количеством энергии этих газов. Взаимосвязь очевидна, ведь именно выхлоп вращает через вал колесо компрессора. Данный способ позволяет эффективно управлять давлением наддува, которое создается в компрессоре. Наиболее частым решением становится контроль вейстгейта за давлением наддува, который осуществляется при помощи противодавления встроенной пружины. Такая конструкция позволяет контролировать обходной поток выхлопных газов.

  • Вейстгейт может быть как встроенным, так и внешним. Встроенный вейстгейт конструктивно имеет заслонку, которая встроена в турбинный хаузинг. Хаузинг в народе попросту называют «улитка» турбины. Дополнительно wastegate имеет пневматический актуатор и тяги от данного актуатора к дроссельной заслонке.
  • Гейт внешнего типа представляет собой клапан, который установлен на выпускной коллектор перед турбиной. Необходимо заметить, что внешний гейт имеет одно неоспоримое преимущество сравнительно со встроенным. Дело в том, что сбрасываемый им обходной поток можно возвращать обратно в выхлопную систему достаточно далеко от выхода из турбины, а на спортивных авто и вовсе осуществить прямой сброс в атмосферу. Это позволяет заметно улучшить прохождение отработавших газов через турбину благодаря тому, что наблюдается отсутствие разнонаправленных потоков. Все это очень важно применительно к ограниченному компактному объему «улитки».

Выбираем турбину для мотора

Правильный подбор турбокомпрессора является главным моментом в процессе постройки качественного турбомотора. Подбирать турбину следует на основе многих данных.

Первым и основным фактором при выборе является та мощность, которую Вы хотите получить в итоге от мотора. Очень важно подходить к этому показателю разумно и реально взвешивать возможности ДВС применительно к той или иной степени наддува.

Мы знаем, что мощность силовой установки напрямую зависит от количества топливно-воздушной смеси, которая попадет в цилиндры за единицу времени. Нужно в самом начале определить желаемый показатель мощности. Только затем можно осуществлять выбор турбины, которая будет способна обеспечить достаточный поток воздуха для получения итогового показателя запланированной отдачи от построенной силовой установки.

Вторым по значимости показателем при выборе турбины становится скорость ее выхода на эффективный наддув. Более того, этот выход на наддув сопоставляется с минимальными оборотами двигателя, на которых и будет происходить нагнетание. Чем меньше турбина или меньше сам горячий хаузинг (улитка), тем больше шансов на улучшение этих показателей. Учтите, что максимальная мощность при этом однозначно будет ниже по сравнению с турбиной большего размера.

На деле все может оказаться не так плохо, ведь меньшая турбина обеспечивает больший рабочий диапазон в процессе работы двигателя. Такая турбина способна быстрее выходить на наддув при открытии дроссельной заслонки, а итоговый результат в конечном итоге может оказаться даже намного более положительным. Использование же большей турбины с большой максимальной мощностью позволит обеспечить преимущество только в достаточно узком диапазоне работы мотора на высоких оборотах.

Особенности эксплуатации турбокомпрессора

Наиболее частой причиной выхода из строя современных турбокомпрессоров является то, что масло забивает центральный картридж турбины. Закоксовка маслом происходит после быстрой остановки турбомотора после серьезных и продолжительных нагрузок. Дело в том, что усиленный теплообмен между турбиной и разогретым выпускным коллектором сопровождается отсутствием потока свежего масла и поступлений охлажденного наружного воздуха в компрессор. Возникает общий перегрев картриджа и происходит закоксовка оставшегося в турбине масла.

Свести такой негативный эффект к минимуму позволяет решение водяного охлаждения турбины. Магистрали с охлаждающей жидкостью создают теплопоглощающий эффект и снижают уровень температуры в центральном картридже. Это происходит даже после полной остановки двигателя и при отсутствии принудительной циркуляции ОЖ. С учетом этого рекомендуется обеспечить минимум неравномерностей по вертикальной линии подачи ОЖ, а также осуществить разворот центрального картриджа вокруг оси турбины (это можно сделать под углом около 25 градусов).

Дополнительно в ряде случаев потребуется установка «турботаймера». Под этим решением понимается устройство, которое не позволяет двигателю сразу остановиться после того, когда водитель выключил зажигание. Устройство позволяет вынуть ключ, выйти из автомашины, поставить автомобиль под охрану сигнализации, а затем само заглушит мотор спустя заданное количество времени. Для повседневной эксплуатации турботаймер очень удобен, прост и практичен в использовании.

Виды турбин: втулочные и шарикоподшипниковые турбины

Турбины втулочного типа были сильно распространены достаточно долгое время. Они имели ряд конструктивных недостатков, которые не позволяли в полной мере наслаждаться преимуществами турбомотора. Появление более эффективных шарикоподшипниковых турбин нового поколения постепенно вытесняет втулочные решения. Для примера можно упомянуть шарикоподшипниковые турбины Garrett, которые являются венцом инженерной мысли и используются на многих гоночных двигателях.

На сегодняшний день шарикоподшипниковые турбины являются оптимальным решением, так как требуют значительно меньшего количества масла сравнительно с втулочными аналогами. Учтите, что установка масляного рестриктора на входе в турбокомпрессор является очень желательной, особенно если давление масла в системе находится на отметке выше 4 атм. Осуществлять слив масла необходимо путем специального подвода в поддон, причем с учетом того, что слив должен быть выше уровня масла.

Всегда помните, что слив масла из турбины происходит самостоятельно и под действием силы гравитации. Знание этого диктует необходимость ориентирования центрального картриджа турбины так, чтобы слив масла был направлен вниз.

Тот показатель, который определяет реакцию турбины на нажатие педали газа, демонстрирует сильную зависимость от самой конструкции центрального картриджа турбины. Шарикоподшипниковые решения от Garrett способны на 15% быстрее выйти на наддув сравнительно с втулочными аналогами. Шарикоподшипниковые турбины снижают эффект турбо-ямы и делают использование турбомотора максимально похожим на езду с таким атмосферным двигателем, который имеет большой рабочий объем.

Шарикоподшипниковые турбины имеют еще один положительный момент. Такие турбины требуют заметно меньшего потока масла, которое проходит через картридж и осуществляет смазку подшипников. Решение ощутимо снижает вероятность возникновения утечки масла через сальники. Шарикоподшипниковые турбины не являются излишне требовательными к качеству масла, а также менее подвержены закоксовке после плановой или внезапной остановки двигателя.

Подведем итоги

Использование современных турбин от ведущих производителей позволяет говорить о получении двигателей с выдающимися динамическими показателями. Эффект турбоямы, а также жесткие требования к особенностям эксплуатации турбомоторов за последнее время заметно снизились, возросла надежность массовых систем турбонаддува. Активное использование электронных блоков управления позволило поднять турбокомпрессоры на абсолютно новый качественный уровень.

Такие характеристики позволяют данному решению уверенно опережать большеобъемные атмосферники практически всем. Сегодня автомобиль с турбонаддувом для многих автовладельцев является мощным, надежным, динамичным и практически идеальным выбором как для повседневной, так и для спортивной езды!

Для того, чтобы окончательно убедиться во всесильности турбокомпрессора, просто посмотрите следующий увлекательный видеоролик. Нам же на этой позитивной ноте пора заканчивать и остается только пожелать читателям стабильного наддува и полного отсутствия турбоям!

Часто новички мне задают вопрос – а как работает турбина? Конечно же, это применительно к машинам (однако они применяются много где). Интерес к этому агрегату растет день ото дня, все потому что сейчас на рынок выходит все больше турбированных моторов. Обусловлено это увеличение производительности, а также экологическими нормами. Как не прискорбно, но думаю — через лет так скажем 10 – 15, обычных атмосферников уже и не останется …


Для начала небольшое определение.

Турбина автомобиля – это агрегат, который призван повысить производительность двигателя внутреннего сгорания, за счет увеличения крутящего момента – следовательно, и лошадиных сил. Даже при малом объеме такая силовая установка может обойти обычный атмосферный двигатель большего объема.

Как видите устройство «вроде как» полезное, причем оно поднимает , примерно на 10 – 20%, что очень существенно!

Если сказать простыми словами — то при малом объеме, мы получаем больше мощности!


Отличить обычный и турбированный двигатель, можно даже на слух, достаточно запустить их и послушать. Турбина издает небольшой свист, который будет все сильнее, если обороты двигателя растут. Если положить руку на сердце, турбину, возможно установить на любой обычный атмосферный двигатель, главное правильно ее настроить, поэтому для начала давайте вспомним обычный вариант.

Двигатель внутреннего сгорания – атмосферный

Принцип давно уже изучен и я бы сказал «избит»! Большинство моторов имеют четырехтактный цикл, конечно есть и двухтактные, но они на автомобилях применяются редко. Как мы можем знать, работа основана на компрессии, вот почему это такой важный показатель, и он должен быть всегда в норме.

ИТАК (4 такта):

1 такт – поршень идет вниз, открываются впускные клапана и в цилиндры поступает воздушно-топливная смесь.

2 такт — сжатие – поршень идет «максимально» вверх, сжимая смесь.

3 такт – воспламенение – сжатая смесь воспламеняется от свечей зажигания, происходит мини взрыв, который толкает поршень вниз.

4 такт — выход отработанных газов – открываются другие клапана, которые выводят эти газы, выталкивает их поршень, который также идет наверх.


Эта «классика» работает вот уже много лет, с момента основания двигателя внутреннего сгорания. Сразу хочется отметить мощность у такого классического строения – повышается за счет увеличения объема цилиндров. ТО есть двигатель объемом в 1,4 литра будет заведомо слабее, чем вариант в 2,0 литра. Но относительно недавно (если брать историю моторостроения), появились первые турбины, которые устанавливаются на этот классический двигатель, и меняют расклад сил.

Как работает турбина?

Завораживающее слово «ТУРБО», для многих мальчишек это просто предел мечтаний – некоторые так и хотят прокачать свою ПРИОРУ и «лихачить» по городу. Однако чтобы тюнинговать свой автомобиль, нужно знать устройство турбины.


Итак – основная задача, этого аппарата нагнетать в двигатель как можно больше воздуха. Я бы даже сказал нагнетать с силой!

Для чего это делается – как мы уже поговорили сверху, поршни приводятся в движение за счет сжигания воздушно – топливной смеси, которая поступает в цилиндры. Чем больше ее поступило, чем больше мощность может развить силовой агрегат. Сам мотор может засосать ограниченное количество воздуха – вот бы было хорошо, если бы кто-то его туда закачал в большем объеме!

И этим как раз и занимается турбина. Она раскручивается до безумных значений, порядка 200 – 240 000 оборотов в минуту. И под давлением подает максимально много воздушной смеси в цилиндры двигателя. Это означает что при одинаковом объеме, можно сжигать намного больше этой смеси, что напрямую передается и мощности!

Если взять строение турбины – то здесь можно выделить две крыльчатки .


Первая вращается от давления отработанных газов, которые идут через глушитель, к ней жестко подсоединен вал.

Вторая крыльчатка, также сидит на валу, только с другой стороны и ей передается это вращение. Она начинает засасывать воздух (если хотите как пылесос), и под давлением нагнетать его в двигатель.


Вал, на котором сидят две крыльчатки (условно назовем их «горячая» и «холодная»), имеет подшипники, которые смазываются маслом двигателя (помимо смазывания, оно забирает и лишнюю температуру), чтобы масло не уходило в отсеки с крыльчатками, за подшипниками есть специальные изоляторы, которые тормозят его расход.


Как видите принцип работы очень простой. Если все же не поняли, посмотрите мое видео с разъяснением.

Турбо-яма

Минусом работы турбированного агрегата, является такое явление как «турбо-яма» (). При низких оборотах турбина раскручивается не сильно, а поэтому не способна нагнетать большое количество воздуха. Если вы резко давите на педаль газа — то нужно какое-то время чтобы отработанные газы дошли до крыльчатки турбины и раскрутили ее! Однако пройдет немного времени, 1 – 2 секунды, прежде чем произойдет «выстрел» динамики.

В народе это явление называется турбо-ямой, то есть прежде чем резко ускориться, нужно подождать 1 или 2 секунды, пока раскрутится турбина.

Конечно, сейчас есть такое понятие как – к обычной турбине подсоединяют еще одну, как правило – механическую (а с недавнего времени и ), которая работает на низких оборотах, нагнетая нужное количество воздуха на низах, затем когда обороты вырастают, включается основная. Таким образом, турбо – яма побеждается.


Про него также у меня есть статья (). Воздух, который нагнетается в цилиндры, под «бешеными» оборотами крыльчатки – нагревается. А при нагреве падает плотность и концентрация кислорода. Чтобы его охладить применяется такое устройство как – интеркуллер, он охлаждает поток, делая его более плотным, что положительно сказывается на производительности.


Минусы турбин

Минусы у этого агрегата также существенны:

1) Это более частая замена масла, потому как подшипники очень требовательны к качеству смазки (все же там просто огромные обороты).

2) Ресурс не такой большой, обычно ходят по 150 000 километров.

3) Дорогостоящий ремонт, если менять на немецком автомобиле, то это примерно от 70 000 рублей.

4) Топливо – с турбиной нужно заправляться высокооктановыми бензинами, не ниже 95, что «бьет» по кошельку.

5) Охлаждение турбины – старые варианты таких устройств, нужно было правильно охлаждать. Иначе если вы просто заглушите машину, то от перепада температур, крыльчатку просто может «покоробить», далее ремонт. Поэтому, они не дают двигателю сразу заглохнуть, а несколько минут работают на низких оборотах – охлаждая крыльчатку.

Вот такой вот агрегат эта турбина, из сегодняшней статьи вы поняли – как она работает, теперь вы «подкованы».

НА этом заканчиваю, думаю было интересно.

Сегодня мы поговорим о том, как небольшой по своим размерам механизм, с виду очень похожий на улитку, способен повысить мощность двигателя в несколько раз. Мы спросили автоинструкторов , что же такое турбонаддув, как с данным механизмом обращаться, и вот что они нам рассказали.

Конструкция «турбины»

В первую очередь мы хотим отметить, что больших различий в конструкции турбонаддувов для разных моделей машин нет. Есть лишь вариации в размерах и дизайне некоторых узлов. По словам инструкторов по вождению , большинство автомобилистов используют термин «турбина», хотя это не совсем верно.

Турбиной называют одну из составляющих турбонаддува, состоящую из корпуса, системы уплотнений, вала с крыльчатками, двух улиток (в них вращаются крыльчатки), одного упорного и двух опорных подшипников скольжения. Сюда же крепится пневмопривод, который приводит в работу перепускной клапан. Заметим, что в некоторых моделях его нет. Основная цель перепускного клапана заключается в регулировке оборотов турбины и производительности компрессора.

Когда на выходе давление воздуха превышает оптимальное, то пневмопривод, который открывает клапан, срабатывает, таким образом, какая-то небольшая часть выхлопных газов выходит напрямую в выхлопную систему, и из-за этого обороты турбины становятся меньше.

Турбина — это крыльчатка на валу, приводящая во вращение компрессор. Турбина изготавливается из жаростойкого сплава, вал — из среднелегированной стали, а компрессор — из алюминия. Напомним, что данные детали не ремонтируются, а просто заменяются. Исключением является вал, который иногда получается перешлифовать и сделать под него новые подшипники.

Для чего нужен турбонаддув?

Как известно, для горения топлива нужен кислород. В цилиндрах сгорает топливно-воздушная смесь, а не топливо. Топливо смешивается с воздухом не на глазок, а в определенном соотношении. Например, для бензиновых двигателей — это 1:15 (топливо и воздух соответственно).

Как видно из примера, воздуха требуется довольно много. При увеличении подачи топлива, подача воздуха увеличивается. Стандартные двигатели получают его из-за небольшой разницы давлений в атмосфере и самом цилиндре. Данная зависимость прямая, ведь чем больше объем цилиндра, тем в него попадет больше кислорода.

Выхлопные газы, идущие из двигателя автомобиля, вращают определенным образом ротор турбины, а он приводит в движение другой механизм — компрессор, который доводит сжатый воздух непосредственно в цилиндры.

Но перед этим воздух проходит сквозь интеркулер, тем самым охлаждаясь.

Итак, чем больше в турбину попадает выхлопных газов, тем быстрее эта турбина вращается, то есть в цилиндры поступает больше воздуха, и соответственно становится выше.

Почему турбонаддув столь непопулярен?

На «самообслуживание» наддува нужно совсем немного энергии мотора (около 1,5%). Кроме того, даровая энергия, затрачиваемая на сжатие воздуха, увеличивает КПД двигателя. Отсюда меньшие потери на трение, небольшой вес двигателя. Казалось бы, машины с турбонаддувом должны быть более экономичными, а это именно то, чего конструкторы хотели добиться. Но не все так гладко, как кажется на первый взгляд.

Скорость вращения турбины иногда достигает 200 000 об/мин, к тому же температура газов может достигать 1000°C. А чтобы сделать турбонаддув, способный выдерживать большие нагрузки долгое время, нужны не только значительные материальные средства, но и время.

Именно поэтому турбонаддув был широко распространен лишь в авиации во время 2-ой мировой войны. В 50-х г.г. прошлого столетия американская фирма Caterpillar стала использовать турбонаддув в тракторах, а Cummins — в своих грузовиках. Лишь в 1962 году турбонаддувами оснастили Chevrolet Corvair Monza и, взять хотя бы, Oldsmobile Jetfire.

Очевидные минусы

Дороговизна и сложность конструкции турбонаддува не являются основными недостатками данного устройства. Эффективность функционирования турбины зависит от оборотов мотора . Если обороты небольшие, и выхлопных газов мало, то ротор раскручивается слабо. В этом случае компрессор практически не дает цилиндрам дополнительный воздух. Именно поэтому бывает так, что до 3 000 оборотов двигатель не дотягивает, и «выстреливает» лишь после 4-5 тысяч. Это называется турбоямой.

Кстати, чем больше турбина, тем дольше она раскручивается, а это значит, что двигатели, оснащенные турбинами высокого давления, и с довольно высокой мощностью страдают турбоямой, как правило, в первую очередь.

У турбин, обеспечивающих низкое давление, подобных провалов тяги практически нет, однако и мощность они могут поднять не очень сильно. От турбоямы поможет избавиться схема с последовательным наддувом. В этом случае на малых оборотах начинает работать малоинерционный турбокомпрессор, который увеличивает тягу на «низах», а на высоких оборотах с повышением давления на выпуске включается другой механизм.

В прошлом столетии последовательный наддув применялся на суперкаре Porsche 959. В настоящее время можно упомянуть фирмы Land Rover и BMW. В случае бензиновых двигателей, к примеру, на Volkswagen, роль «заводилы» отдана приводному нагнетателю.

Пара «улиток»

На рядных двигателях часто ставится одиночный турбокомпрессор пара «улиток» (twin-scroll), где есть двойной рабочий аппарат. В каждую из этих «улиток» выхлопные газы попадают от различных групп цилиндров. При этом оба механизма дают газы одновременно на одну турбину, довольно эффективно раскручивая ее как на больших, так и на малых оборотах.

Чаще всего по-прежнему используется пара одинаковых турбокомпрессоров, которые параллельно обслуживают отдельные группы цилиндров.

Видеоматериал о том, как проверить давление турбонаддува в движении при помощи манометра:

Удачи на дорогах!

В статье использовано изображение с сайта mashintop.ru

Турбина является одной из главных составляющих системы двигателя. За счет увеличения плотности воздуха, турбина способствует сжиганию большего количества топлива. Таким образом, сгоревшее топливо превращается в энергию, приводящуюю к ее увеличению, а также созданию большего крутящего момента.

Турбина состоит из двух главных элементов: компрессора и самой турбины. В ее корпусе находится вентилятор (по-другому крыльчатка), который раскручивает клубы выпускного газа. Круговые движения вентилятора переходят на компрессор. Таким образом в нем воздух нагнетается и направляется в двигатель.

Известно, что давление увеличивается тогда, когда в двигатель поступает больше воздуха. На самом деле давление в агрегате не может бесконечно увеличиваться. Например, когда его чересчур много, то возникает лишнее тепло, которое приводит к таким последствиям как: пульсация, обратное давление, протекание масла, низкий срок службы подшипников, потрескивания на корпусе турбины, внезапные поломки двигателя. Поэтому злоупотреблять превышением давления не стоит. Самыми оптимальными считаются такие показатели, как 8 - 14 psi.

Замена турбины

Поломки у турбины можно с легкостью предотвратить. Обычно в этом случае устанавливается более эффективный высокопоточный компрессор и крыльчатка. Известно, что при маленьком или недостаточном давлении выпускные газы воздействуют на турбину меньше. Можно заменить турбину и компрессор на детали больших размеров, что позволит им в дальнейшем пропускать количество выхлопных газов значительно выше.

Стоит отметить, что в любом случае турбина и компрессор должны подходить по размеру.

Сегодня особой популярностью пользуются гибридные модели. В этом случае инженеры автоконцернов выбирают такую турбину, которая будет обеспечивать хорошую тягу сниза.

Известно, что турбины, производящие больше давления, отличаются повышенными качествами надежности. Например, в большинстве турбин используется упорный подшипник в 180 градусов, который находится в корпусе. . При стандартном давлении он будет работать без перебоев, но при увеличенном давлении он будет быстро изнашиваться. К примеру, подшипник в 360 градусов нормально переносит высокие показатели давления, поэтому турбина с таким типом подшипника будет более надежной.

Какие можно сделать замены?

Во-первых, можно приобрести турбину японского качества, бывшую в употреблении. Не пугайтесь, что еона уже была в использовании. На самом деле относительно турбин в этом случае ничего страшного нет. Кроме того, вы сэкономите деньги. Можно выбрать, например, IHI RHB31, Garrett T3 и т.д.

Помните, что двигатель, от которого вы приобретает турбину, должен быть аналогичным по размеру с вашим агрегатом.

Виды современных турбин

Сегодня существует множество турбин, которые имеют свои размеры и, конечно, специфические особенности. Известно, что большинство из них изготавливается из керамики. Дело в том, что она меньше по плотности, чем сталь, поэтому, в результате инерции, турбина способна раскручиваться быстрее. Сегодня часто можно встретить турбины, в основе которых лежат сплавы из никеля. Вообще изначально керамические турбины устанавливались на автомобили Nissan. Именно инженеры этого автоконцерна обнаружили положительные качества керамики. По сравнению с обычными турбинами керамические турбины были эффективнее в плане отдачи до 45%.

Все турбины, изготовленные из керамики, нуждаются в деликатном обращении, поэтому их лучше не ронять. Кроме того, на них негативно влияют части, которые поступают из выпускного коллектора.

Шариковые подшипники

Известно, что при помощи шариков уменьшается трение и, следовательно, увеличивается сила выпуска. Сегодня мир знает шариковые, роллерные турбины Garrett, которые обычно имеют по 6 болтов в корпусе. Компания Garrett является лидером среди производства таких подшипников. Известно, что свои детали она поставляет HKS.

Подобная модель имеет два раздельных пути, которые в последствие ссоединяются в одну турбину. Они ведутся к одной турбине благодаря пульсу, который образуется из выхлопных газов. Таким образом 2 цилиндра влияют друг на друга положительно в результате чего улучшается отдача. Сегодня турбины с удвоенным пульсом или с двойным входом выпускают тюнинговые автокомпании. ? Ярким примером такого турбодвигателя является автомобиль Toyota 3S-GTE.

Изменяющаяся геометрия

Сопло турбины представляет собой изменяющуюся геометрию. Так по кругу корпуса турбины есть лопатки, которые соединены со специальным механизмом. Он отвечает за регулирование углов. Таким образом происходят изменения раскручивания турбины из-за появления зазоров между лопатками. Поэтому подобные модели турбин нуждаются в дополнительном механизме, который будет способствовать оптимальной работе. Многие из них считаются, во-первых - дорогими, во-вторых - ненадежными.

Перепускные клапана

Перепускные клапана служат для того, чтобы пустить в обход турбин некоторые части выпускного газа. Таким образом происходит сокращение скорости вращения турбин и, следовательно, давления на коллекторе. Из-за этого турбина работает не эффективно. В этом случае газ может попасть в нее, тем самым повредить ее. С другой стороны может возникнуть эффект турбулентности, так как газ, идущий в обход и из турбины, может встретиться, что приведет к заметному понижению показателей мощности.

Обычно такие клапаны ставятся неподалеку от самой турбины. Известно, что перепускные клапаны имеют все гоночные автомобили. Главным преимуществом внешнего клапана является то, что его механизм можно с легкостью регулировать. Лучшими производителями клапанов считаются такие фирмы, как Garrett, Turbonetics и HKS.

Отношение A/R

Данное отношение нужно всегда учитывать. Оно исчисляется в качестве входа турбины по отношению к радиусу центральной части. Обычно, когда стоит больший номер, то это означает, что турбина будет раскручиваться медленнее. Перед покупкой турбины ее нужно проверить на стенде, который поможет определить ее мощность.