Молекулярная физика. Температура и ее измерение. Температурные шкалы, термометры и их изобретатели

ТЕМПЕРАТУРА И ЕЁ ИЗМЕРЕНИЕ.

ЭКСПЕРИМЕНТАЛЬНЫЕ ГАЗОВЫЕ ЗАКОНЫ.

1.Тепловое равновесие. Температура.

Температура – это физическая величина, характеризующая степень нагретости тела. Если два тела разной температуры привести в соприкосновение, то, как показывает опыт, более нагретое тело будет охлаждаться, а менее нагретое – нагреваться, т.е. происходит теплообмен – передача энергии от более нагретого тела к менее нагретому без совершения работы.

Энергия, передаваемая при теплообмене, называется количеством теплоты .

Через некоторое время после приведения тел в соприкосновение они приобретают одинаковую степень нагретости, т.е. приходят в состояние теплового равновесия .

Тепловое равновесие – это такое состояние системы тел, находящихся в тепловом контакте, при котором теплообмен не происходит и все макропараметры тел остаются неизменными, если внешние условия не меняются.

При этом два параметра – объём и давление – могут быть различными для разных тел системы, а третий, температура, в случае теплового равновесия одинаков для всех тел системы. На этом основано определение температуры.

Физический параметр, одинаковый для всех тел системы, находящихся в состоянии теплового равновесия, называется температурой этой системы.

Например, система состоит из двух сосудов с газом. Приведём их в соприкосновение. Объём и давление газа в них могут быть различными, а температура в результате теплообмена станет одинаковой.

2.Измерение температуры.

Для измерения температуры используют физические приборы – термометры, в которых о величине температуры судят по изменению какого-либо параметра.

Для создания термометра необходимо:

    Выбрать термометрическое вещество, параметры (характеристики) которого изменяются при изменении температуры (например, ртуть, спирт и т.д.);

    Выбрать термометрическую величину, т.е. величину, которая изменяется с изменением температуры (например, высота ртутного или спиртового столбика, величина электрического сопротивления и т.д.);

    Откалибровать термометр, т.е. создать шкалу, по которой будет производиться отсчёт температуры. Для этого термометрическое тело приводится в тепловой контакт с телами, температуры которых постоянны. Например, при построении шкалы Цельсия температура смеси воды и льда в состоянии плавления принимается за 0 0 С, а температура смеси водяного пара и воды в состоянии кипения при давлении 1 атм. – за 100 0 С. Отмечается положение столбика жидкости в обоих случаях, а затем расстояние между полученными метками делится на 100 делений.

При измерении температуры термометр приводят в тепловой контакт с телом, температура которого измеряется, и после того, как установится тепловое равновесие (показания термометра перестанут меняться), считывается показание термометра.

3.Экспериментальные газовые законы.

Параметры, описывающие состояние системы, взаимозависимы. Установить зависимость друг от друга сразу трёх параметров сложно, поэтому немного упростим задачу. Рассмотрим процессы, при которых

а) количество вещества (или масса) постоянно, т.е. ν=const (m=const);

б) значение одного из параметров фиксировано, т.е. постоянно либо давление, либо объём, либо температура.

Такие процессы называются изопроцессами .

1).Изотермический процесс, т.е. процесс, происходящий с одним и тем же количеством вещества при постоянной температуре.

Исследован Бойлем (1662 г.) и Мариоттом (1676 г.).

Упрощённая схема опытов такова. Рассмотрим сосуд с газом, закрытый подвижным поршнем, на который устанавливаются грузики, уравновешивающие давление газа.

Опыт показал, что произведение давления на объём газа при постоянной температуре есть величина постоянная. Это значит

PV = const

Закон Бойля-Мариотта .

Объём V данного количества газа ν при постоянной температуре t 0 обратно пропорционален его давлению, т.е. .

Графики изотермических процессов.

График зависимости давления от объёма при постоянной температуре называется изотермой. Чем больше температура, тем выше на графике располагается изотерма.

2).Изобарный процесс, т.е. процесс, происходящий с одним и тем же количеством вещества при постоянном давлении.

Исследован Гей-Люссаком (1802 г.).

Упрощённая схема такова. Сосуд с газом закрыт подвижным поршнем, на котором установлен грузик, уравновешивающий давление газа. Сосуд с газом нагревается.

Опыт показал, что при нагревании газа при постоянном давлении его объём изменяется по следующему закону: где V 0 – объём газа при температуре t 0 = 0 0 C; V – объём газа при температуре t 0 , α v – температурный коэффициент объёмного расширения,

Закон Гей-Люссака .

Объём данного количества газа при постоянном давлении линейно зависит от температуры.

Графики изобарных процессов.

График зависимости объёма газа от температуры при постоянном давлении называется изобарой.

Если экстраполировать (продолжить) изобары в область низких температур, то все они сойдутся в точке, соответствующей температуре t 0 = - 273 0 С.

3).Изохорный процесс , т.е. процесс, происходящий с одним и тем же количеством вещества при постоянном объёме.

Исследован Шарлем (1802 г.).

Упрощённая схема такова. Сосуд с газом закрыт подвижным поршнем, на который устанавливаются грузики, уравновешивающие давление газа. Сосуд нагревается.

Опыт показал, что при нагревании газа при постоянном объёме его давление изменяется по следующему закону: где P 0 – объём газа при температуре t 0 = 0 0 C; P – объём газа при температуре t 0 , α p – температурный коэффициент давления,

Закон Шарля .

Давление данного количества газа при постоянном объёме линейно зависит от температуры.

График зависимости давления газа от температуры при постоянном объёме называется изохорой.

Если экстраполировать (продолжить) изохоры в область низких температур, то все они сойдутся в точке, соответствующей температуре t 0 = - 273 0 С.

4.Абсолютная термодинамическая шкала.

Английский учёный Кельвин предложил переместить начало температурной шкалы влево на 273 0 и назвать эту точку абсолютным нулём температуры. Масштаб новой шкалы такой же, как и у шкалы Цельсия. Новая шкала называется шкалой Кельвина или абсолютной термодинамической шкалой. Единица измерения – кельвин.

Нулю градусов Цельсия соответствует 273 К. Температура по шкале Кельвина обозначается буквой Т.

T = t 0 C + 273

t 0 C = T – 273

Новая шкала оказалась более удобной для записи газовых законов.

системы. Температура (в физике) одинакова для всех частей изолированной системы, находящейся в равновесии термодинамическом . Если изолированная система не находится в равновесии, то с течением времени переход энергии (теплопередача) от более нагретых частей системы к менее нагретым приводит к выравниванию Температура (в физике) во всей системе (первый постулат, или нулевое начало термодинамики ). Температура (в физике) определяет: распределение образующих систему частиц по уровням энергии (см. Больцмана статистика ) и распределение частиц по скоростям (см. Максвелла распределение ); степень ионизации вещества (см. Саха формула ); свойства равновесного электромагнитного излучения тел - спектральную плотность излучения (см. Планка закон излучения ), полную объёмную плотность излучения (см. Стефана - Больцмана закон излучения ) и т. д. Температура (в физике) , входящую в качестве параметра в распределение Больцмана, часто называют Температура (в физике) возбуждения, в распределение Максвелла - кинетической Температура (в физике) , в формулу Саха - ионизационной Температура (в физике) , в закон Стефана - Больцмана - радиационной температурой . Поскольку для системы, находящейся в термодинамическом равновесии, все эти параметры равны друг другу, их называют просто температурой системы. В кинетической теории газов и др. разделах статистической механики Температура (в физике) количественно определяется так, что средняя кинетическая энергия поступательного движения частицы (обладающей тремя степенями свободы) равна кТ, где k - Больцмана постоянная , Т - температура тела. В общем случае Температура (в физике) определяется как производная от энергии тела в целом по его энтропии . Такая Температура (в физике) всегда положительна (поскольку кинетическая энергия положительна), её называют абсолютной Температура (в физике) или Температура (в физике) по термодинамической температурной шкале. За единицу абсолютной Температура (в физике) в Международной системе единиц (СИ) принят кельвин (К). Часто Температура (в физике) измеряют по шкале Цельсия (t ), значения t связаны с Т равенством t = Т – 273,15 К (градус Цельсия равен Кельвину). Методы измерения Температура (в физике) рассмотрены в статьях Термометрия , Термометр .

Строго определённой Температура (в физике) характеризуется лишь равновесное состояние тел. Существуют, однако, системы, состояние которых можно приближённо охарактеризовать несколькими не равными друг другу температурами. Например, в плазме, состоящей из лёгких (электроны) и тяжёлых (ионы) заряженных частиц, при столкновении частиц энергия быстро передаётся от электронов к электронам и от ионов к ионам, но медленно от электронов к ионам и обратно. Существуют состояния плазмы, в которых системы электронов и ионов в отдельности близки к равновесию, и можно ввести Температура (в физике) электронов Т э и Температура (в физике) ионов Т и, не совпадающие между собой.

В телах, частицы которых обладают магнитным моментом , энергия обычно медленно передаётся от поступательных к магнитным степеням свободы, связанным с возможностью изменения направления магнитного момента. Благодаря этому существуют состояния, в которых система магнитных моментов характеризуется Температура (в физике) , не совпадающей с кинетической Температура (в физике) , соответствующей поступательному движению частиц. Магнитная Температура (в физике) определяет магнитную часть внутренней энергии и может быть как положительной, так и отрицательной (см. Отрицательная температура ). В процессе выравнивания Температура (в физике) энергия передаётся от частиц (степеней свободы) с большей Температура (в физике) к частицам (степеням свободы) с меньшей Температура (в физике) , если они одновременно положительны или отрицательны, но в обратном направлении, если одна из них положительна, а другая отрицательна. В этом смысле отрицательная Температура (в физике) «выше» любой положительной.

Понятие Температура (в физике) применяют также для характеристики неравновесных систем (см. Термодинамика неравновесных процессов ). Например, яркость небесных тел характеризуют яркостной температурой , спектральный состав излучения - цветовой температурой и т. д.

Л. Ф. Андреев.

Статья про слово "Температура (в физике) " в Большой Советской Энциклопедии была прочитана 16628 раз

Характеризующая тепловое состояние тел.

В окружающем нас мире происходят различные явления, связанные с нагреванием и охлаждением тел. Их называют тепловыми явлениями . Так, при нагревании холодная вода сначала стано-вится теплой, а затем горячей; вынутая из пламени металлическая деталь постепенно охлаждает-ся и т. д. Степень нагретости тела, или его тепловое состояние, мы обозначаем словами «теплый», «холодный», «горячий», Для количественной оценки этого состояния и служит температура .

Температура — один из макроскопических параметров системы. В физике, тела, состоящие из очень большого числа атомов или молекул , называют макроскопическими . Размеры макроскопических тел во много раз превышают размеры атомов. Все окружающие тела — от стола или газа в воздушном шарике до песчинки — макроскопические тела.

Величины, характеризующие состояние макроскопических тел без учета их молекулярного строения, называют макроскопическими параметрами . К ним относятся объем , давление , темпе-ратура , концентрация частиц, масса , плотность , намагниченность и т. д. Температура — один из важнейших макроскопических параметров системы (газа, в частности).

Температура — характеристика теплового равновесия системы.

Известно, что для определения температуры среды следует поместить в эту среду термометр и подождать до тех нор, пока температура термометра не перестанет изменяться, приняв значе-ние, равное температуре окружающей среды. Другими словами, необходимо некоторое время для установления между средой и термометром теплового равновесия.

Тепловым , или термодинамическим , равновесием называют такое состояние, при котором все макроскопические параметры сколь угодно долго остаются неизменными. Это означает, что не меняются объем и давление в системе, не происходят фазовые превращения, не меняется температура.

Однако микроскопические процессы при тепловом равновесии не прекращаются: скорости молекул меняются, они перемещаются, сталкиваются.

Любое макроскопическое тело или группа макроскопических тел — термодинамическая система — может находиться в различных состояниях теплового равновесия. В каждом из этих состояний температура имеет свое вполне определенное значение. Другие величины могут иметь разные (но постоянные) значения. Например, давление сжатого газа в баллоне будет отличаться от давления в помещении и при температурном равновесии всей системы тел в этом помещении.

Температура характеризует состояние теплового равновесия макроскопической системы: во всех частях системы, находящихся в состоянии теплового равновесия, температура имеет одно и то же значение (это единственный макроскопический параметр, обладающий таким свойством).

Если два тела имеют одинаковую температуру, между ними не происходит теплообмен, если разную — теплообмен происходит, причем тепло передается от более нагретого тела к менее нагретому до полного выравнивания температур.

Измерение температуры основано на зависимости какой-либо физической величины (напри-мер, объема) от температуры. Эта зависимость и используется в температурной шкале термомет-ра — прибора, служащего для измерения температуры.

Действие термометра основано на тепловом расширении вещества. При нагревании столбик используемого в термометре вещества (например, ртути или спирта) увеличивается, при охлаждении — уменьшается. Использующиеся в быту термометры позволяют выразить температуру вещества в градусах Цельсия (°С) .

А. Цельсий (1701-1744) — шведский ученый, предложивший использовать стоградусную шкалу температур. В температурной шкале Цельсия за нуль (с середины XVIII в.) принимается температура тающего льда, а за 100 градусом — температура кипения воды при нормальном атмосферном давлении.

Поскольку различные жидкости расширяются с повышением температуры по-разному, то температурные шкалы в термометрах с разными жидкостями различны.

Поэтому в физике используют идеальную газовую шкалу температур , основанную на зависимости объема (при постоянном давлении) или давления (при постоянном объеме) газа от тем-пературы.

Температура (в физике) Температура (от лат. temperatura - надлежащее смешение, соразмерность, нормальное состояние), физическая величина, характеризующая состояние термодинамического равновесия макроскопической системы. Т. одинакова для всех частей изолированной системы, находящейся в равновесии термодинамическом Если изолированная система не находится в равновесии, то с течением времени переход энергии (теплопередача) от более нагретых частей системы к менее нагретым приводит к выравниванию Т. во всей системе (первый постулат, или нулевое начало термодинамики ). Т. определяет: распределение образующих систему частиц по уровням энергии (см. Больцмана статистика ) и распределение частиц по скоростям (см. Максвелла распределение ); степень ионизации вещества (см. Саха формула ); свойства равновесного электромагнитного излучения тел - спектральную плотность излучения (см. Планка закон излучения ), полную объёмную плотность излучения (см. Стефана - Больцмана закон излучения ) и т. д. Т., входящую в качестве параметра в распределение Больцмана, часто называют Т. возбуждения, в распределение Максвелла - кинетической Т., в формулу Саха - ионизационной Т., в закон Стефана - Больцмана - радиационной температурой Поскольку для системы, находящейся в термодинамическом равновесии, все эти параметры равны друг другу, их называют просто температурой системы. В кинетической теории газов и др. разделах статистической механики Т. количественно определяется так, что средняя кинетическая энергия поступательного движения частицы (обладающей тремя степенями свободы) равнакТ, где k - Больцмана постоянная , Т - температура тела. В общем случае Т. определяется как производная от энергии тела в целом по его энтропии Такая Т. всегда положительна (поскольку кинетическая энергия положительна), её называют абсолютной Т. или Т. по термодинамической температурной шкале. За единицу абсолютной Т. в Международной системе единиц (СИ) принят кельвин (К). Часто Т. измеряют по шкале Цельсия (t ), значения t связаны с Т равенством t = Т √ 273,15 К (градус Цельсия равен Кельвину). Методы измерения Т. рассмотрены в статьях Термометрия , Термометр

Строго определённой Т. характеризуется лишь равновесное состояние тел. Существуют, однако, системы, состояние которых можно приближённо охарактеризовать несколькими не равными друг другу температурами. Например, в плазме, состоящей из лёгких (электроны) и тяжёлых (ионы) заряженных частиц, при столкновении частиц энергия быстро передаётся от электронов к электронам и от ионов к ионам, но медленно от электронов к ионам и обратно. Существуют состояния плазмы, в которых системы электронов и ионов в отдельности близки к равновесию, и можно ввести Т. электронов Тэ и Т. ионов Ти , не совпадающие между собой.

В телах, частицы которых обладают магнитным моментом , энергия обычно медленно передаётся от поступательных к магнитным степеням свободы, связанным с возможностью изменения направления магнитного момента. Благодаря этому существуют состояния, в которых система магнитных моментов характеризуется Т., не совпадающей с кинетической Т., соответствующей поступательному движению частиц. Магнитная Т. определяет магнитную часть внутренней энергии и может быть как положительной, так и отрицательной (см. Отрицательная температура ). В процессе выравнивания Т. энергия передаётся от частиц (степеней свободы) с большей Т. к частицам (степеням свободы) с меньшей Т., если они одновременно положительны или отрицательны, но в обратном направлении, если одна из них положительна, а другая отрицательна. В этом смысле отрицательная Т. «выше» любой положительной.

Понятие Т. применяют также для характеристики неравновесных систем (см. Термодинамика неравновесных процессов ). Например, яркость небесных тел характеризуют яркостной температурой , спектральный состав излучения - цветовой температурой и т. д.

Л. Ф. Андреев.

Большая советская энциклопедия. - М.: Советская энциклопедия 1969-1978