Ионный двигатель. Португалец собрал ионный двигатель в домашних условиях

Человек вышел в космос благодаря ракетным двигателям на жидком и твердом топливе. Но они же и поставили под вопрос эффективность космических полетов. Для того чтобы сравнительно небольшой хотя бы "зацепился" за его устанавливают на вершине ракеты-носителя внушительных размеров. А сама ракета, по сути, это летающая цистерна, львиная доля веса которой отведена под топливо. Когда все оно израсходуется до последней капли, на борту корабля остается мизерный запас.

Чтобы не упасть на Землю, периодически поднимает свою орбиту импульсами Топливо для них - примерно 7,5 тонны - несколько раз в году доставляют автоматические корабли. Но на пути к Марсу такой дозаправки не предвидится. Не пора ли распрощаться с устаревшими схемами и обратить внимание на более совершенный ионный двигатель?

Для того чтобы он заработал, безумных количеств топлива не потребуется. Только газ и электричество. Электроэнергия в космосе добывается улавливанием светового излучения Солнца панелями солнечных батарей. Чем дальше от светила, тем меньше их мощность, поэтому придется воспользоваться еще и Газ поступает в первичную камеру сгорания, где он бомбардируется электронами и ионизируется. Получившуюся холодную плазму отправляют на разгорев, а потом - в магнитное сопло, на разгон. Ионный двигатель выбрасывает из себя раскаленную плазму со скоростями, недоступными обычным ракетным двигателям. И получает необходимое ускорение.


Принцип работы настолько прост, что можно собрать демонстрационный ионный двигатель своими руками. Если электрод в форме вертушки предварительно сбалансировав, установить на острие иглы и подать высокое напряжение, на острых концах электрода появится синее свечение, создаваемое срывающимися с них электронами. Их истечение создаст слабую реактивную силу, электрод начнет вращаться.

Увы, ионные двигатели обладают настолько мизерной тягой, что не могут оторвать космический аппарат от поверхности Луны, не говоря уже о наземном старте. Наиболее наглядно это можно увидеть, если сравнить два корабля, отправляющихся к Марсу. Корабль с жидкостными двигателями начнет перелет после нескольких минут интенсивного разгона и потратит чуть меньше времени на торможение у Красной планеты. Корабль с ионными двигателями будет разгоняться два месяца по медленно раскручивающейся спирали, причем такая же операция ждет его в окрестностях Марса...


И все же ионный двигатель уже нашел свое применение: им оснащен ряд беспилотных космических аппаратов, отправленных в многолетние разведывательные миссии к ближним и дальним планетам Солнечной системы, в пояс астероидов.

Ионный двигатель - та самая черепаха, которая обгоняет быстроногого Ахилла. Израсходовав все топливо в считанные минуты, жидкостный двигатель умолкает навсегда и становится бесполезным куском железа. А плазменные способны работать годами. Не исключено, что ими будет оснащен первый космический аппарат, который на досветовой скорости отправится к - ближайшей к Земле звезде. Предполагается, что перелет займет всего лишь 15-20 лет.

Издание «YAHOO» приводит материал со сведениями о новом революционном ионном двигателе для космических полетов.
Космический аппарат НАСА – Dawn (Рассвет) провел более семи лет, путешествуя по Солнечной системе, чтобы перехватить астероид Веста и карликовую планету Церера. Теперь с орбиты вокруг Цереры, зонд передал первые изображения и данные от этих далеких объектов. Но здесь удивительно не только это, а то, что для этой разведывательной космической миссии использовали не обычные ракетные двигатели, а ионный двигатель на электротяге, аналогов которому нет в мире.

Такие ионные двигатели впредь будут двигать следующее поколение космических аппаратов. Электроэнергия используется здесь для создания заряженных частиц топлива, как правило, с помощью газа ксенона, и ускоряет их до чрезвычайно высоких скоростей. Скорость истечения частиц у обычных ракет ограничена химической энергией, запасенной в молекулярных связях в топливе, которое ограничивает их тягу до около 5 км / с. А вот у ионных двигателей, в принципе, ограничена только электрическая мощность, которая может быть доступной на корабле, но, как правило, скорость выхлопных газов из заряженных частиц лежит в невероятных для нашего времени пределах — от 15 км / с до 35 км / с.

Это означает на практике, что двигатели с электрическим приводом намного экономичнее, чем с химическим, так огромное количество стартовой массы космического корабля может быть спасена за счет меньшей потребности в топливе на борту. При стоимости для запуска одного килограмма массы на околоземную орбиту около $ 20 000, это может сделать космический корабль значительно более дешевым. Это может быть весьма полезным для коммерческих производителей геостационарных спутников, где электрическая силовая установка позволяет им маневрировать, добавив новые возможности для миссий спутников. Тем не менее, для научных миссий, таких как межпланетные путешествия во внешних областях Солнечной системы на огромные расстояния, электрические тяговые установки являются только средством для выполнения полезной работы с научной аппаратурой.

Типы электрических ионных двигателей

Космический корабль Рассвет, оснащен большими солнечными панелями для питания электрического двигателя.

Существуют три основных типа электрических двигателей, в зависимости от метода, используемого для ускорения.

Термоэлектрические системы используют электроэнергию, чтобы нагреть топливо либо путем пропускания тока через нагревательный элемент, или пропусканием тока через горячий ионизированный газ или саму плазму в реактивном двигателе.

Электромагнитные двигатели при ионизации ракетного топлива, взаимодействуют с электропроводящей плазмой, ускорение происходит при взаимодействии с сильным электрическим током и магнитным полем. Известный как импульсный плазменный двигатель, этот метод на самом деле очень похож на то, как работает электрический двигатель. Электростатические двигатели используют электрическое поле, генерируемое путем применения высокого напряжения на две перфорированные сетки с множеством мелких отверстий для ускорения топлива. Другой электростатическая конструкция с эффектом Холла, работает таким же образом, но вместо сеток с высоким напряжением генерирует электрическое поле путем захвата электронов в магнитном поле в плоскости выхода двигателя малой тяги.

Полвека в создании ионного двигателя

Понятие об электрической силовой установке присутствовало в течение 50 лет или более, но было сочтено слишком экспериментальным направлением, не способным взять на себя реализацию крупных проектов. Только теперь это направление начинает обретать реальные приложения. Например, для сохранения геостационарных спутников на правильной орбите, чтобы противостоять аэродинамическому сопротивлению в сильно разреженной атмосфере на высоте 200 км над поверхностью Земли. Или во время межпланетной миссии, такой как Deep Space 1- первой экспериментальной миссией, которая использовала ионные двигатели, чтобы изначально продемонстрировать возможности технологии в отношении астероида 9969 Braille и кометы Borrelly 15 лет назад, пишет «YAHOO».

Имелся и еще один проект со спутником, который в течение четырех лет до 2013 года изучал гравитационное поле Земли.

Будущие проекты с использованием ионных двигателей

Электродвигатели космических аппаратов готовы снизить стоимость развертывания спутников. С помощью компактных ионных двигателей на борту спутников, они могут поднять себя с низкой околоземной орбиты к их окончательной геостационарной орбите. Это позволит сэкономить огромное количество, необходимое для подъема спутника с помощью обычных химических ракет, топлива, и позволяют использовать гораздо меньшие ракеты-носители, которые будут значительно экономить деньги. Первые блоки с полностью электрической версией платформы спутника в 2012 году с ионным двигателем были оснащены ксеноновым питанием с сеткой.

В более долгосрочной перспективе, космические буксиры и даже пилотируемые полеты на Марс, будут основаны, наиболее вероятно, на ядерных электрических силовых установках.

Источник — phys.org/news

Статья полезна? Тогда сообщите о ней другим, нажав на кнопки социальных сетей (Twitter, Facebook и др.) ниже.
Скорее всего, вам будут интересны и полезны следующие записи:
,
а также пригодится подписка на новые интересные материалы сайта через оранжевую кнопку вверху или в боковой колонке страницы.

Добавьте статью в закладки, чтобы вновь вернуться к ней, нажав кнопки Ctrl+D .Подписку на уведомления о публикации новых статей можно осуществить через форму "Подписаться на этот сайт" в боковой колонке страницы. Если что непонятно, то, читайте .

Космические двигатели будущего

Создание ионного двигателя

Мы продоожаем рассказывать про виды двигателей .

Проблема перемещения в космосе стоит перед человечеством с момента начала орбитальных полетов. Ракета взлетая с земли расходует практически все свое топливо, плюс заряды ускорителей и ступеней. И если ракету еще можно оторвать от земли, заправив её огромным количеством топлива, на космодроме, то в открытом космосе заправляться попросту негде и нечем. А ведь после выхода на орбиту нужно двигаться дальше. А топлива нет.

И в этом то и состоит основная проблема современной космонавтики. Выбросить на орбиту корабль с запасом топлива до луны еще можно, под эту теорию строятся планы создать на луне базу дозаправки «дальнобойных» космических кораблей, летящих например на Марс. Но это все слишком сложно.

А решение проблемы было создано очень давно, еще в 1955 году, когда Алексей Иванович Морозов опубликовал статью «Об ускорении плазмы магнитным полем». В ней он описывал концепцию принципиально нового космического двигателя.

Устройство ионно плазменного двигателя

Принцип действия плазменного двигателя состоит в том, что рабочим телом выступает не сгорающее топливо, как в , а разогнанный магнитным полем до безумных скоростей поток ионов.

Источником ионов служит газ, как правило это аргон или водород, бак с газом стоит в самом начале двигателя, оттуда газ подается в отсек ионизации, получается холодная плазма, которая разогревается в следующем отсеке посредством ионного циклотронного резонансного нагрева. После нагрева, высокоэнергетическая плазма подается в магнитное сопло, где она формируется в поток посредством магнитного поля, разгоняется и выбрасывается в окружающую среду. Таки образом достигается тяга.

С тех пор плазменные двигатели прошли большой путь и разделились на несколько основных типов, это электротермические двигатели, электростатические двигатели, сильноточные или магнитодинамические двигатели и импульсные двигатели.

В свою очередь электростатические двигатели делятся на ионные и плазменные (ускорители частиц на квазинейтральной плазме).

В данной статье мы напишем про современные ионные двигатели и их перспективные разработки, так как на наш взгляд именно за ними будущее космического флота.

Ионный двигатель использует в качестве топлива ксенон или ртуть. Первый ионный двигатель назывался сетчатый электростатический ионный двигатель.

Принцип его действия таков:

В ионизатор подается ксенон , который сам по себе нейтрален, но при бомбардировании высокоэнергетическими электронами ионизируется. Таким образом в камере образуется смесь из положительных ионов и отрицательных электронов. Для «отфильтровывания» электронов в камеру выводится трубка с катодными сетками, которая притягивает к себе электроны.

Положительные же ионы притягиваются к системе извлечения, состоящей из 2 или 3 сеток. Между сетками поддерживается большая разница электростатических потенциалов (+1090 вольт на внутренней против – 225 на внешней). В результате попадания ионов между сетками, они разгоняются и выбрасываются в пространство, ускоряя корабль, согласно третьему закону Ньютона.

Российские ионные двигатели. На всех хорошо видны катодные трубки, направленные в сторону сопла

Электроны, пойманные в катодную трубку выбрасываются из двигателя под небольшим углом к соплу и потоку ионов. Это делается по двум причинам:

Во первых чтобы корпус корабля оставался нейтрально заряженным, а во вторых чтобы ионы «нейтрализованные» таким образом не притягивались обратно к кораблю.

Чтобы ионный двигатель работал нужны всего две вещи – газ и электричество. С первым все просто отлично, двигателю американского межпланетного аппарата Dawn, который стартовал осенью 2007-го, для полета в течении почти 6 лет потребуется всего 425 килограммов ксенона. Для сравнения для корректировки орбиты МКС с помощью обычных ракетных двигателей каждый год затрачивается 7,5 тонн горючего.

Одно плохо – ионные двигатели имеют очень небольшую тягу, порядка 50-100 миллиньютонов, что абсолютно недостаточно при перемещении в атмосфере Земли. Но в космосе, где нет практически никаких сопротивлений, ионный двигатель при длительном разгоне может достигнуть значительных скоростей. Общее приращение скорости за всё время миссии Dawn составит порядка 10 километров в секунду.

Тест ионного двигателя для корабля Deep Space

Недавние испытания проведенные американской компанией Ad Astra Rocket, проведенные в вакуумной камере показали, что их новый Магнитоплазменный двигатель с переменным удельным импульсом” (Variable Specific Impulse Magnetoplasma Rocket) VASIMR VX-200 может дать тягу уже в 5 ньютонов.

Второй вопрос – электричество. Тот же VX-200 потребляет 201 кВт энергии. Солнечных батарей такому двигателю просто мало. Следовательно необходимо изобретать новые способы получения энергии в космосе. Тут есть два пути – заправляемые батареи например тритиевые, выводимые на орбиту вместе с кораблем, либо автономный атомный реактор, который и будет питать кораблю на протяжении всего полета.

Во втором случае, в условиях космоса и его низких температур более интересно выглядит проект корабля с термоядерным реактором на борту, но пока НАСА разрабатывает только ядерный реактор.

Эти исследования проходят в рамках проекта Prometheus. В планах НАСА запустить в солнечную систему ядерный зонд, оснащенный мощными ионными двигателями, питающимися от бортового ядерного реактора.

Напоследок видео испытаний ионного двигателя VX-200.

Плазма между анодом и катодом ионного двигателя.

Фотография: Joao Duarte / eLab hackerspace

Португалец Жуан Дуарте собрал в домашних условиях простую рабочую модель ионного двигателя. Рассказ о своем проекте разработчик опубликовал на портале eLab hackerspace. В его двигателе используются несколько держателей, подставка, корпус и сопло, напечатанные из пластика на 3D-принтере, семь гвоздей, семь медных трубок и высоковольтный трансформатор.

При строительстве ионного двигателя важна высокая электрическая проводимость всех элементов. Для ее увеличения Дуарте покрыл гвозди тонким слоем меди. Он зачистил гвозди от ржавчины, а затем опустил их вместе с окислившимися медными монетами в раствор соли и уксуса. Благодаря меднению электрическая проводимость на поверхности гвоздей увеличилась.

Затем португалец взял медную трубу диаметром два сантиметра и нарезал ее на пять частей длиной пять сантиметров каждая. После этого Дуарте распечатал на принтере держатели для трубок и гвоздей, подставку, кожух двигателя и сопло. Для эффективной работы ионного двигателя кончики медненных гвоздей должны находиться точно в центре окружности медных трубок.


На каком расстоянии от трубок следует разместить гвозди от трубок Дуарте не уточнил, но отметил, что оно должно быть одинаковым для всех гвоздей. Для регулирования тяги португалец сделал держатель с гвоздям подвижным в горизонтальной плоскости. К трубкам и гвоздям Дуарте подключил трансформатор, способный выдавать напряжение в девять киловольт и силу тока в 50 миллиампер.

В конструкции двигателя гвозди выступают в качестве катода, а медные трубки - анода. При включении напряжения воздух вокруг гвоздей ионизируется и притягивается анодом, возникает воздушный поток, который и формирует незначительную тягу за соплом двигателя. Сдвинутся с места такая силовая установка не может, но способна колыхать обрезки бумаги.

Концепцию ионного двигателя впервые предложил американский ученый Роберт Годдард. В 1954 году технологию детально описал ученый Эрнст Штулингер, а первый функционирующий двигатель был собран в 1959 году в NASA. Он смог проработать на протяжении 31 минуты. В качестве маршевого двигателя ионная силовая установка была впервые использована на космическом аппарате Deep Space в 1998 году.

Современные ионные двигатели способны непрерывно работать на протяжении трех лет. В них для создания реактивной тяги используются как правило аргон или ксенон. Эти инертные газы разгоняются в электрическом поле. Положительными качествами ионного двигателя является малое энергопотребление и расход топлива, а серьезным недостатком - микроскопическая тяга, составляющая до 250 миллиньютонов.

Европейское космическое агентство провело испытания прямоточного ионного двигателя, использующего в качестве рабочего тела воздух из окружающей атмосферы. Предполагается, что небольшие спутники с таким двигателем смогут практически неограниченно находиться на орбитах с высотой 200 или менее километров, сообщается в пресс-релизе агентства.

Принцип работы ионных двигателей основан на ионизации частиц газа и их разгоне с помощью электростатического поля. Частицы газа в таких двигателях разгоняются до значительно больших скоростей, чем в химических двигателях, из-за чего ионные двигатели имеют гораздо больший удельный импульс и расходуют меньше топлива. Но у ионных двигатель есть и важный недостаток - крайне малая тяга, по сравнению с химическими двигателями. Из-за этого они редко применяются на практике, в основном на небольших аппаратах. К примеру, такие двигатели используются на зонде Dawn, сейчас на орбите карликовой планеты Церера, и будут использоваться в миссии BepiColombo , которая должна отправиться к Меркурию в конце 2018 года.

Как и в химических двигателях, в используемых сейчас ионных двигателях применяется запас топлива, как правило, ксенона. Но существует и концепция прямоточных ионных двигателей, которая, правда, пока не применялась на летавших в космос аппаратах. Ее отличие заключается в том, что в качестве рабочего тела предлагается использовать не конечный запас газа, загружаемый в бак перед запуском, а воздух из атмосферы Земли или другого атмосферного тела.


Схема работы двигателя

ESA–A. Di Giacomo

Предполагается, что относительно небольшой аппарат с таким двигателем сможет практически неограниченно находиться на низких орбитах с высотой примерно от 150 километров, компенсируя атмосферное торможение тягой двигателя, работающего на поступающем в него воздухе из атмосферы. В 2009 году ESA запустило спутник GOCE , который смог за счет постоянно включенного ионного двигателя с запасом ксенона пробыть на 255-километровой орбите в течение почти пяти лет. После этого агентство занялось разработкой прямоточного ионного двигателя для аналогичных низкоорбитальных спутников, и теперь провело первые испытания такого двигателя.

Испытания проходили в вакуумной камере, в которой располагался двигатель. Изначально в него подавали ускоренный ксенон. После этого в газозаборное устройство начали добавлять смесь кислорода с азотом, имитирующую атмосферу на высоте 200 километров. В конце испытаний инженеры провели тесты с исключительно воздушной смесью для проверки работоспособности в основном режиме.


Испытания двигателя с воздухом в качестве топлива


Прямоточный ионный двигатель