Общие сведения и классификация зубчатых передач. Зубчатые передачи

Практически любой механизм в современной технике отчасти или полностью состоит из различных типов передач. В большинстве случаев в качестве передаточных устройств движения используются именно зубчатые элементы В данной статье будет подробнейшим образом рассмотрена классификация зубчатых передач. Об их разновидностях и особенностях мы и поговорим.

Определение

Итак, с технической точки зрения зубчатой передачей является механизм, который служит для передачи вращения с одного вала на другой и для изменения частоты вращения с помощью реек и колес.

Классификация зубчатых передач гласит, что расположенное на валу, передающем вращение, принято называть ведущим, а принимающее вращение - ведомым. Также тот элемент, который обладает в паре меньшими размерами, называют шестерней, а то, которое большими - колесом.

Сфера применения

Классификация, основные параметры и особенности работы которых будут описаны ниже, вполне обосновано считаются самыми распространёнными деталями в машиностроении и прочих отраслях народного хозяйства. Такая высокая востребованность объясняется возможностью передачи с их помощью мощностей в диапазоне от нескольких долей до нескольких десятков тысяч киловатт. При этом окружные скорости вращения могут составлять до 150 м/с, а передаточные числа колеблются от сотен до тысяч. Диаметр самих колес находится в пределах от считанных миллиметров (иногда даже их долей) до шести и более метров.

Дифференциация

Назначение и классификация зубчатых передач предусматривает их разделение по следующим признакам:

1. По расположению осей колес в пространстве:

  • с параллельными осями (цилиндрические передачи);
  • с пересекающимися осями (конические передачи);
  • со скрещивающимися осями (червячные и винтовые передачи).

2. По типу относительного вращения колес и расположению зубьев:

3. По форме профиля:

  • эвольвентные зубья;
  • циклоидальные;
  • с зацеплением Новикова.

4. По расположению теоретической линии зуба:

  • прямозубые колеса;
  • косозубые;
  • шевронные;
  • винтовые (с круговым зубом).

Стоит отметить, что непрямозубые передачи обладают большой плавностью своей работы, в них гораздо меньший износ и шум по сравнению с прямозубыми передачами.

5. По показателю окружной скорости:

  • тихоходные передачи (менее 3 м/с);
  • среднескоростные (от 3 м/с до 15 м/с);
  • быстроходные (свыше 15 м/с).

Градация по областям применения

Классификация зубчатых передач по функциональному назначению предусматривает их деление на:

  • Кинематические (отсчетные) передачи. Их применяют в разнообразных приборах, счетно-решающих механизмах. Главное требование к таким передачам - соблюдение высочайшей кинематической точности, то есть должна быть чёткая согласованность углов поворота как ведущего, так и ведомого колес.
  • Скоростные передачи применяются в редукторах турбомашин, коробках передач автомобилей. Требования: максимально возможная плавность работы.
  • Силовые передачи эксплуатируются в крановых и прокатных механизмах. Они работают при малых скоростях, но при этом передают внушительные крутящие моменты. Главное требование, выдвигаемое к передачам данного типа, - плотный контакт зубьев, находящихся между собой в сопряжении.

Дополнительные критерии

Классификация зубчатых передач по конструктивному оформлению учитывает, что они могут быть открытого и закрытого типа. Открытые передачи могут работать либо без смазки (крайне редко), либо же обрабатываться специальными консистентными смазочными веществами.

Закрытые передачи, в свою очередь, смазываются за счет погружения зубьев в специальное масло, которым заполоняют картер (погружное смазывание). В некоторых случаях предусмотрена централизованная подача состава в картер. При этом регулировка потока смазывающей жидкости осуществляется с помощью специальных дросселей.


В зависимости от того, как меняется частота вращения, зубчатые передачи разделяются на:

  • понижающие (их называют редукторами). В таких передачах больше или равно единице.
  • Мультипликаторы - передаточное число меньше единицы.

Кстати, бывают как постоянными, так и ступенчато-регулируемыми благодаря перемещению колес непосредственно по валу (например, коробка скоростей).

Положительные качества

Классификация зубчатых передач будет неполной, если не рассмотреть их достоинства. В сравнении с другими типами передач зубчатые характеризуются:

  • Технологичностью.
  • Постоянством передаточного отношения.
  • Высокой нагрузочной способностью (до 50000 кВт).
  • Внушительным коэффициентом полезного действия (до 0,99).
  • Малыми габаритными размерами по сравнению с прочими передачами при одинаковых условиях.
  • Большой надежностью во время работы.
  • Простотой обслуживания.

Отрицательные качества

Что касается недостатков зубчатых передач, то в их числе значатся:

  • Отсутствие возможности изменять передаточное число бесступенчато.
  • Точность изготовления и монтажа должна быть на высоком уровне.
  • Возникновение шума при больших скоростях работы.
  • Неудовлетворительные амортизирующие свойства.
  • Большие габариты в случаях, когда между осями ведомого и ведущего валов внушительное расстояние.
  • Нарезание зубьев требует наличия специального оборудования и инструмента.
  • Неспособность к компенсации динамических нагрузок по причине высокой жестокости.
  • Отсутствие предохранительной функции. Зубчатая передача не способна защитить машину или механизм от перегрузки.

Также зубчатые передачи (достоинства и недостатки, классификация и виды которых указаны выше) нерационально используют свои зубья, что проявляется в одновременной работе не более двух зубьев каждого из колес, находящихся в сопряжении.

Деформация зубьев колес

Правильная проектировка и эксплуатация зубчатой передачи проявляется в отсутствии сильного шума и перегрева во время работы. Если эти два указанных критерия все же имеют несоответствия, то это вполне может привести к разрушениям зубьев колес. Классификация зубчатых передач по эксплуатационному назначению также вносит свои корректировки в работу передачи, однако в целом виды разрушений зубьев бывают следующие:

  • Пластическая деформация рабочих поверхностей.
  • Поломка.
  • Заедание.
  • Изнашивание.
  • Выкрашивание.


В тех случаях, когда зубья ломаются, зачастую происходит не только поломка передачи, но и повреждение различных смежных узлов, деталей (например, разрушаются подшипники, валы). Это происходит по причине заклинивающего действия отломившихся кусочков.

Довольно часто зубья ломаются по причине своей «усталости», которая появляется как следствие возникновения и прогрессивного развития трещины. Такой вид поломки более всего характерен для закрытых передач.

Истирание зубьев чаще всего наблюдается в открытых передачах, что объясняется проникновением в зону зацепления разнообразных частиц металла, грязи, пыли (абразивный износ). Также причиной может служить плохая смазка, поэтому от данного вида износа не застрахованы и закрытые передачи.

Производство колес

Важно знать, что зубчатые передачи, достоинства и недостатки, классификация которых зависят от их технологических и физических свойств, изготавливаются из различных материалов.

Чаще всего на практике применяются такие:

  • обыкновенного качества (Ст6, Ст5).
  • Высококачественные марки стали.
  • Легированные марки сталей.
  • Серый и высококачественный чугун.
  • Некоторые неметаллические материалы (бакелит, текстолит).


Наибольшее распространение получили передачи с зубчатыми колесами из стали, что объясняется оптимальным сочетанием прочности, надёжности и массы. Такой материал идеально подходит для высоконагруженных передач.

В свою очередь, серый чугун используется для колес, работающих нечасто, а также тихоходных открытых передач. Чугун хорош тем, что зубья колес на его основе не слишком требовательны к смазке и хорошо притираются друг к другу.

Пластмассовые зубчатые колеса производят для механизмов, где требуется максимальная бесшумность работы высокоскоростной передачи, при этом не нужна высокая точность изготовления.

Твердость и термическая обработка

Зубчатые передачи, классификация, применение которых находятся также в зависимости от несущей способности, в обязательном порядке проходят термообработку.

Зубчатые колеса из стали условно делят на две группы:

  • Колеса с твердостью зубьев менее 350 НВ. Такой показатель формируется благодаря нормализации или улучшению стали. Непосредственно зубья нарезают уже после термической обработки.
  • Колеса, твердость которых превышает 350 НВ. Такую твёрдость обеспечивает химико-термическое упрочнение: цементация, азотирование, цианирование, с помощью токов высокой частоты.

Смазывание зубчатых колес

Классификация зубчатых передач по расположению зубьев будет неполной, если не рассмотреть вопрос смазывания зубчатого зацепления. Сам по себе процесс смазки ориентирован на понижение скорости износа зубьев, отвод тепла и мелких абразивных частиц, повышение КПД всей передачи. Благодаря применению качественных смазочных материалов повышается сопротивляемость колес к заеданию. В роли смазки могут выступать пластичные, жидкие и твердые материалы.

Пластичная смазка чаще всего применяется в открытых передачах, которые работают с температурой не более +120 градусов. Твёрдая смазка эксплуатируется также в открытых передачах, но в тех, рабочая температура которых превышает 100 градусов по Цельсию. Самой востребованной смазкой является жидкая. Наибольшую популярность получили нефтяные масла. Что касается синтетических материалов смазки, то их применяют лишь в особых случаях, поскольку цена их достаточно высока.


Обозначение жидких масел следующее:

  • Индустриальное масло - литера И.
  • Для использования в гидравлических системах - Г.
  • Для тяжелонагруженных передач - Т.
  • Масло, имеющее антикоррозионные, антиокислительные, противоизносные присадки, - С.
  • Масло, не имеющее каких-либо присадок, - А.

Конические зубчатые колеса

Классификация конических зубчатых передач в упрощенном варианте имеет следующий вид:

  • Колеса конические зубчатые с прямыми зубьями.
  • С тангенциальными зубьями.
  • С криволинейными зубьями.
  • С круговыми зубьями.
  • С линией зубьев в виде эвольвенты.

Прямозубые конические колеса чаще всего применяются в открытых передачах, а вот элементы с круговыми зубьями задействованы в редукторах.

Характеристики и обозначения

Основные параметры, на которые опирается классификация зубчатых передач, таковы:

  • Число зубьев - Z.
  • Межосевое расстояние - a.
  • Ширина венца колеса - b.
  • Радиальный зазор - с.
  • Высота ножки зуба - ha.
  • Высота зуба - h.
  • Делительный диаметр - d.
  • Начальный диаметр - dw.
  • Диаметр впадин зубьев - dr.
  • Диаметр вершин зубьев - da.


Производство зубчатых передач

Зубчатые колеса производятся на автоматических линиях. Эти узкоспециализированные линии делятся на короткие и комплексные. Первая группа связана лишь с нарезанием и отделкой зубчатых колес. Вторая представляет собой совокупность станков самого различного предназначения, которые обеспечивают полноценное изготовление зубчатых колес. В таких линиях применяются полуавтоматические станки для зубообработки, дополнительно укомплектованные загрузочно-разгрузочными и прочими устройствами автоматизации.

В технологических линиях производства колес между производственными станками чаще всего применяют гибкие транспортные связи в виде ленточных и цепных транспортеров, а также подвижных передаточных тележек, которые исключают возникновение забоин и прочих дефектов.

ЗУБЧАТЫЕ ПЕРЕДАЧИ

П л а н л е к ц и и

1. Общие сведения.

2. Классификация зубчатых передач.

3. Геометрические параметры зубчатых колес.

4. Точность преобразования параметров.

5. Динамические соотношения в зубчатых зацеплениях.

6. Конструкция колес. Материалы и допускаемые напряжения.

1. Общие сведения

Зубчатая передача – это механизм, который с помощью зубчатого зацепления передает или преобразует движение с изменением угловых скоростей и моментов. Зубчатая передача состоит из колес с зубьями, которые сцепляются между собой, образуя ряд последовательно работающих кулачковых механизмов.

Зубчатые передачи применяют для преобразования и передачи вращательного движения между валами с параллельными, пересекающимися или перекрещивающимися осями, а также для преобразования вращательного движения в поступательное и наоборот.

Достоинства зубчатых передач:

1. Постоянство передаточного отношения i .

2. Надежность и долговечность работы.

3. Компактность.

4. Большой диапазон передаваемых скоростей.

5. Небольшое давление на валы.

6. Высокий КПД.

7. Простота обслуживания.

Недостатки зубчатых передач:

1. Необходимость высокой точности изготовления и монтажа.

2. Шум при работе со значительными скоростями.

3. Невозможность бесступенчатого регулирования передаточного отно-

шения i .

2. Классификация зубчатых передач

Зубчатые передачи, применяемые в механических системах, разнообразны. Они используются как для понижения, так и для повышения угловой скорости.

Классификация конструкций зубчатых преобразователей группирует передачи по трем признакам:

1. По виду зацепления зубьев . В технических устройствах применяются передачи с внешним (рис. 5.1,а ), с внутренним (рис. 5.1,б ) и с реечным (рис. 5.1,в ) зацеплением.

Передачи с внешним зацеплением применяются для преобразования вращательного движения с изменением направления движения. Передаточное отношение колеблется в пределах –0,1 i –10. Внутреннее зацепление применяется в том случае, если требуется преобразовывать вращательное движение с сохранением направления. По сравнению с внешним зацеплением передача имеет меньшие габаритные размеры, бóльший коэффициент перекрытия и повышенную прочность, но более cложна в изготовлении. Реечное зацепление применяется при преобразовании вращательного движения в поступательное и обратно.

2 . По взаимному расположению осей валовразличают передачи цилиндрическими колесами с параллельными осями валов (рис. 5.1, а), коническими колесами с пересекающимися осями (рис. 5.2), колесами со скрещивающимися осями (рис. 5.3). Передачи c коническими колесами обладают меньшим передаточным отношением (1/6 i6), более сложны в изготовлении и эксплуатации, имеют дополнительные осевые нагрузки. Винтовые колеса работают с повышенным скольжением, быстрее изнашиваются, имеют малую нагрузочную способность. Эти передачи могут обеспечивать различные передаточные отношения при одинаковых диаметрах колес.

3 . По расположению зубьев относительно образующей обода колеса

различают передачи прямозубые (рис. 5.4, а ), косозубые (рис. 5.4,б ), шевронные (рис. 5.5) и с круговыми зубьями.

Косозубые передачи имеют боль-

шую плавность зацепления, меньше

технологически

равноценны

прямозубым, но в передаче возникают

дополнительные

нагрузки.

Сдвоенная косозубая со

встречными

наклонами зубьев (шевронная) переда-

ча имеет все преимущества косозубой

и уравновешенные осевые силы. Но

передача несколько сложнее в изготов-

лении и монтаже. Криволинейные

зубья чаще всего применяются в кони-

передачах

повышения

нагрузочной способности,

плавности

работы при высоких скоростях.

3. Геометрические параметры зубчатых колес

К основным геометрическим параметрам зубчатых колес (рис. 5.6) относятся: шаг зуба Р t , модульm (m =P t /), число зубьевZ , диаметрd делительной окружности, высотаh a делительной головки зуба, высотаh f делительной ножки зуба, диаметрыd a иd f окружностей вершин и впадин, ширина зубчатого венцаb .

df 1

db 1

dw 1 (d1 )

da 1

df 2

dw 2 (d2 )

da 2

db 2

Диаметр делительной окружности d =mZ . Делительной окружностью зуб колеса делится на делительную головку и делительную ножку, соотношение размеров которых определяется относительным положением заготовки колеса и инструмента в процессе нарезания зубьев.

При нулевом смещении исходного контура высота делительной головки и ножки зуба колеса соответствует таковым у исходного контура, т. е.

ha =h a * m; hf =(h a * + c* ) m,

где h a * – коэффициент высоты головки зуба;c * – коэффициент радиального

Для колес с внешними зубьями диаметр окружности вершин

da = d +2 ha =(Z +2 h a * ) m.

Диаметр окружности впадин

df = d –2 hf =(Z –2 h a * –2 c* ) m.

При m ≥ 1 ммh a * = 1,c * = 0,25,d a = (Z – 2,5)m .

Для колес с внутренними зубьями диаметры окружностей вершин и впадин следующие:

da = d –2 ha =(Z –2 h a * ) m;

df = d +2 hf =(Z +2 h a * +2 c* ) m.

Для колес, нарезанных со смещением, диаметры вершин и впадин определяются с учетом величины коэффициента смещения по более сложным зависимостям.

Если два колеса, нарезанные без смещения, ввести в зацепление, то их делительные окружности будут касаться, т. е. совпадут с начальными окружностями. Угол зацепления при этом будет равен углу профиля исходного контура, т. е. начальные ножки и головки совпадут с делительными ножками и головками. Межосевое расстояние будет равняться делительному межосевому расстоянию, определяемому через диаметры делительных окружностей:

aw = a =(d1 + d2 )/2 = m(Z1 + Z2 )/2.

Для колес, нарезанных со смещением, имеется различие для начальных и делительных диаметров, т. е.

d w 1 ≠d 1 ;d w 2 ≠d 2 ;a w ≠a ; αw = α.

4. Точность преобразования параметров

В процессе эксплуатации зубчатой передачи теоретически постоянное передаточное отношение претерпевает непрерывные изменения. Эти изменения вызываются неизбежными погрешностями изготовления размеров и формы зубьев. Проблема изготовления зубчатых зацеплений с малой чувствительностью к погрешностям решается в двух направлениях:

а) применение специальных видов профилей (например, часовое зацепление);

б) ограничение погрешностей изготовления.

В отличие от таких простых деталей, как валы и втулки, зубчатые колеса являются сложными деталями, и погрешности выполнения их отдельных элементов не только сказываются на сопряжении двух отдельных зубьев, но и оказывают влияние на динамические и прочностные характеристики зубчатой передачи в целом, а также на точность передачи и преобразования вращательного движения.

Погрешности зубчатых колес и передач в зависимости от их влияния на эксплуатационные показатели передачи можно разделить на четыре группы:

1) погрешности, влияющие на кинематическую точность, т. е. точность передачи и преобразования вращательного движения;

2) погрешности, влияющие на плавность работы зубчатой передачи;

3) погрешности пятна контакта зубьев;

4) погрешности, приводящие к изменению бокового зазора и влияющие на мертвый ход передачи.

В каждой из этих групп могут быть выделены комплексные погрешности, наиболее полно характеризующие данную группу, и поэлементные, частично характеризующие эксплуатационные показатели передачи.

Такое разделение погрешностей на группы положено в основу стандартов на допуски и отклонения зубчатых передач: ГОСТ 1643–81 и ГОСТ 9178–81.

Для оценки кинематической точности передачи, плавности вращения, характеристики контакта зубьев и мертвого хода в рассматриваемых стандартах установлено 12 степеней точности изготовления зубчатых колес

и передач. Степени точности в порядке убывания обозначаются числами 1–12. Степени точности 1 и 2 по ГОСТ 1643–81 дляm > 1 мм и по ГОСТ 9178–81 для 0,1

Допускается использование зубчатых колес и передач, группы погрешностей которых могут принадлежать к различным степеням точности. Однако ряд погрешностей, принадлежащих к различным группам по своему влиянию на точность передачи, взаимосвязаны, поэтому устанавливаются ограничения на комбинирование норм точности. Так, нормы плавности могут быть не более чем на две степени точнее или на одну степень грубее норм кинематической точности, а нормы контакта зубьев можно назначать по любым степеням, более точным, чем нормы плавности. Комбинирование норм точности позволяет проектировщику создавать наиболее экономичные передачи, выбирая при этом такие степени точности на отдельные показа-

тели, которые отвечают эксплуатационным требованиям, предъявляемым к данной передаче, не завышая затрат на изготовление передачи. Выбор степеней точности зависит от назначения, области применения колес и окружной скорости вращения зубьев.

Рассмотрим более подробно погрешности зубчатых колес и передач, влияющие на их качество.

5. Динамические соотношения в зубчатых зацеплениях

Зубчатые передачи преобразуют не только параметры движения, но и параметры нагрузки. В процессе преобразования механической энергии часть мощности P тр , подводимой к входу преобразователя, расходуется на преодоление трения качения и скольжения в кинематических парах зубчатых колес. В результате мощность на выходе уменьшается. Для оценки потери

мощности используется понятие коэффициента полезного действия (КПД), определяемого как отношение мощности на выходе преобразователя к мощности, подводимой к его входу, т. е.

η = P вых /P вх .

Если зубчатая передача преобразует вращательное движение, то соответственно мощности на входе и выходе можно определить как

Обозначим ωвых /ωвх черезi , а величинуT вых /T вх черезi м , которое назовем передаточным отношением моментов. Тогда выражение (5.3) примет вид

η = i м .

Величина η колеблется в пределах 0,94–0,96 и зависит от типа передачи и передаваемой нагрузки.

Для зубчатой цилиндрической передачи КПД можно определить из зависимости

η = 1 – cf π(1/Z 1 + 1/Z 2 ),

где с – поправочный коэффициент, учитывающий уменьшение КПД с уменьшением передаваемой мощности;

20Т вых 292mZ 2

20Т вых 17,4mZ 2

где Т вых – момент на выходе, H мм;f – коэффициент трения между зубьями. Для определения действительных усилий на зубья передачи рассмот-

рим процесс преобразования нагрузки (рис. 5.7). Пусть движущий входной момент T 1 приложен к ведущему зубчатому колесу1 с диаметром начальной окружностиd w l , а момент сопротивленияT 2 ведомого колеса2 направлен в сторону, противоположную вращению колеса. В эвольвентном зубчатом зацеплении точка контакта находится всегда на линии, являющейся общей нормалью к соприкасаемым профилям. Следовательно, сила давления зубаF ведущего колеса на зуб ведомого будет направлена по нормали. Перенесем силу по линии действия в полюс зацепленияP и разложим ее на две составляющие.

Ft ’

Ft ’

Касательная составляющая F t называется

окружной силой. Она

совершает полезную работу, преодолевая момент сопротивления T и приводя в движение колеса. Ее величину можно вычислить по формуле

F t = 2T /d w .

Составляющая по вертикали называется радиальной силой и обозначаетсяF r . Эта сила работы не совершает, она только создает дополнительную нагрузку на валы и опоры передачи.

При определении величины обеих сил можно пренебречь силами трения между зубьями. В этом случае между полным усилием давления зубьев и его составляющими существуют следующие зависимости:

F n =F t /(cos α cos);

F r =F t tg α/ cos ,

где α – угол зацепления.

Зацепление цилиндрических прямозубых колес имеет ряд существенных динамических недостатков: ограниченные значения коэффициента перекрытия, значительный шум и удары при высоких скоростях. Для уменьшения габаритов передачи и уменьшения плавности работы часто прямозубое зацепление заменяют косозубым, боковые профили зубьев которого представляют собой эвольвентные винтовые поверхности.

В косозубых передачах полное усилие F направлено перпендикулярно зубу. Разложим эту силу на две составляющие:F t – окружное усилие колеса иF a – осевая сила, направленная вдоль геометрической оси колеса;

F a =F t tg β,

где – угол наклона зуба.


Таким образом, в косозубом зацеплении в отличие от прямозубого действуют три взаимно перпендикулярные силы F a ,F r ,F t , из которых толькоF t совершает полезную работу.

6. Конструкция колес. Материалы и допускаемые напряжения

Конструкция колес. При изучении принципов конструирования зубчатых передач основной целью является усвоение методики определения формы и основных параметров колес по условиям работоспособности и эксплуатации. Достижение указанной цели возможно при решении следующих задач:

а) выбор оптимальных материалов колес и определение допускаемых механических характеристик;

б) расчет размеров колес по условиям контактной и изгибной прочности;

в) разработка конструкции зубчатых колес.

Зубчатые передачи являются типовыми преобразователями, для которых разработано достаточно много обоснованных конструктивных оптимальных вариантов. Обобщающая схема конструкции зубчатого колеса может быть представлена как сочетание трех основных конструктивных элементов: зубчатого венца, ступицы и центрального диска (рис. 5.9). Форму и размеры зубчатого колеса определяют в зависимости от числа зубьев, модуля, диаметра вала, а также от материала и технологии изготовления колес.

На рис. 5.8 показаны примеры конструкций зубчатых колес механизмов. Размеры колес рекомендуется брать в соответствии с указаниями ГОСТ 13733–77.

А сколько
стоит написать твою работу?

Тип работы Дипломная работа (бакалавр/специалист) Курсовая с практикой Курсовая теория Реферат Контрольная работа Задачи Эссе Аттестационная работа (ВАР/ВКР) Бизнес-план Вопросы к экзамену Диплом МВА Дипломная работа (колледж/техникум) Другое Кейсы Лабораторная работа, РГР Магистерский диплом Он-лайн помощь Отчёт по практике Поиск информации Презентация в PowerPoint Реферат для аспирантуры Сопроводительные материалы к диплому Статья Тест Часть дипломной работы Чертежи Срок 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Сдачи Январь Февраль Март Апрель Май Июнь Июль Август Сентябрь Октябрь Ноябрь Декабрь цену

Вместе с оценкой стоимости вы получите бесплатно
БОНУС: спец доступ к платной базе работ!

и получить бонус

Спасибо, вам отправлено письмо. Проверьте почту.

Если в течение 5 минут не придет письмо, возможно, допущена ошибка в адресе.

Зубчатые передачи

    Зубчатые передачи

    1. Конструкции

    Износ и ремонт зубчатых передач

    1. Замена и ремонт зубчатых колес

      Методы с коростного ремонта зубчатых передач

Список использованной литературы


1. ЗУБЧАТЫЕ ПЕРЕДАЧИ


1.1 Конструкции


Зубчатые передачи применяются почти во всех механизмах, которыми оснащены металлургические цехи (краны и подъемники, рольганги, лебедки перекидных устройств, приводы станов и т.п.)

Основными деталями зубчатых передач являются зубчатые колеса (шестерни). Они служат для передачи вращения от одного вала к другому, когда валы находятся не на одной оси.

В зависимости от взаимного расположения валов применяют передачи: цилиндрическую, коническую и винтовую.

Цилиндрическая зубчатая передача служит для передачи вращения с одного на другой параллельно расположенный вал (рис.1, а).

Коническая зубчатая передача служит для передачи вращения с вала на вал, расположенные с пересечением осей (рис.1,6).

Винтовая зубчатая передача применяется для передачи вращения с вала на вал, расположенные с перекрещивающимися, но не пересекающимися осями (рис. 1, в).


Рис. 1. Зубчатые передачи: а - цилиндрическая: б - коническая: в - винтовяя: г-шевронная шестерня.


Зубчатое колесо и рейка служат для преобразования вращательного движения в поступательно-возвратное

Зубья цилиндрических колес могут быть прямыми (рис. 1, а и б), косыми и шевронными (елочными) - рис. 1, г.

Шевронная шестерня состоит как бы из двух шестерен с косыми зубьями, соединенными вместе.

При работе зубчатых колес с прямыми зубьями в зацеплении одновременно находятся один или два зуба, вследствие чего работа передачи сопровождается некоторыми толчками.

Более плавная работа зубчатой передачи достигается применением косых или шевронных зубьев, так как при этом количество зубьев, участвующих в зацеплении, увеличивается.

Зубчатые колеса изготовляют из стальных поковок, стального литья и проката или из чугунных отливок. Для ответственных передач (например, грузоподъемных машин) применение чугунных зубчатых колес не допускается.

Классификация зубчатых колес. В зависимости от назначения передачи, типа зуба и скорости вращения зубчатые колеса подразделяются на четыре класса точности передач по допускам на изготовление и сборку (табл. 119).


Таблица 1 Классификация зубчатых колес



Допускаемая


Тип передач

окружная ско-

Примечание


рость, м/сек


Цилиндрическая

Применим, где точность



и плавность не имеют





значения, а также в


Коническая

ручных и ненагружен-





ных передачах

Цилиндрическая






Коническая





Цилиндрическая "






Коническая





Цилиндрическая

1 При требованиях боль-



1 шой плавности переда-


Коническая

ли, а также в отсчет-



ных механизмах


Зубчатые передачи делают открытыми, полуоткрытыми и закрытыми.

Открытыми называют передачи, которые не имеют кожуха (резервуара) для масляной ванны; смазываются такие передачи периодически консистентной смазкой. Обычно эти передачи тихоходные и применяются преимущественно в простых машинах и механизмах.

Полуоткрытые передачи отличаются от открытых наличием резервуара для жидкой масляной ванны.

Закрытыми называют передачи, которые вместе с подшипниками смонтированы в специальных корпусах.

Смазка шестерен редуктора производится различными способами:

1) при окружных скоростях шестерен выше 12--14 м/сек- струйным способом с подачей, струи в зону начала зацепления зубчатых колес;

2) при окружных скоростях шестерен ниже 12 м/сек - методом окунания.

При смазке методом окунания следует учитывать следующее:

а) большее зубчатое колесо пары должно быть погружено в масло на двух-трехкратную высоту зуба;

б) если у редуктора имеется несколько ступеней, то уровень масла определяется с учетом быстроходности передач.

В последнем случае уровень б (рис. 2) допускается, когда зубчатое колесо 1 тихоходной ступени вращается с небольшой скоростью. В редукторах, имеющих средние и большие


Рис. 2. Струйная смазка шестерен.



Рис. 3. Схема смазки шестерен окунанием.


скорости низко расположенных колес, последние погружают на двух-трехкратную высоту зуба большего колеса, а масло наливают до уровня а. смазки первой ступени ставят вспомогательное зубчатое колесо 3 с узким зубом, подающее смазку на рабочее колесо.

Вязкость заливаемого в редуктор масла выбирают в зависимости от скорости и нагрузки -обычно от 4 до 12°Е при температуре определения вязкости 50° С. При этом учитывают также температурные условия, в которых работает агрегат; при повышении температуры применяют масло большей вязкости, при понижении - меньшей вязкости.

Открытые передачи смазывают обычно консистентными смазками (солидол, консталин и т. д.).

Набивку уплотнений, предусмотренных (чертежами) в подшипниках и по линии стыка корпуса редуктора, следует выполнять весьма тщательно во избежание утечки масла и попадания пыли в редуктор.

    Износ и ремонт зубчатых передач

Зубчатые колеса выходят из строя по двум основным причинам: по износу зубьев и по поломкам их.

Износ обычно является следствием: 1) неполного сцепления и 2) повышенного трения (постепенный износ).

Износ в первом случае является, главным образом, результатом плохого монтажа и при правильной сборке (строгом соблюдении радиального зазора) обычно отсутствует. Однако изменение радиального зазора может быть также следствием выработки вкладышей подшипников, причем в результате выработки подшипников может быть как увеличение радиального зазора, так и его уменьшение (работа в распор).

Если нагрузка на вкладыши передается в стороны, противоположные сцеплению в процессе работы по мере выработки вкладышей возможно увеличение радиального зазора.

Если нагрузка на вкладыши передается в сторону оцепления (например, у зубчатых колес бегунков кранов, в процессе работы по мере выработки вкладыша (в данном примере вкладыша бегунка) возможно уменьшение радиального зазора.

В обоих случаях после смены вкладышей радиальный зазор восстанавливается.

Постепенный износ от повышенного трения зависит от ряда условий, в число которых входит твердость материала, из которого изготовлены шестерни, термообработка, правильность подбора смазки, недостаточная чистота масла и несвоевременность смены его, перегрузка передачи и т. п.

Правильный монтаж и хороший надзор в процессе эксплуатации - основные условия продолжительной и бесперебойной работы оборудования.

Поломки зубьев шестерен происходят по следующим причинам: перегрузка шестерен, односторонняя (с одного конца зуба) нагрузка, подрез зуба, незаметные трещины в материале заготовки и микротрещины, как результат плохо проведенной термообработки, слабая сопротивляемость металла толчкам (в частности, как следствие непроведения отжига отливок и поковок), повышенные удары, попадание между зубьями твердых предметов и т. д.


2.1 Замена и ремонт зубчатых колес.


Рис. 4. Ремонт зубьев при помощи ввертышей с последующей наваркой


Как правило, зубчатые колеса с изношенными и поломанными зубьями подлежат не ремонту, а замене, причем замену рекомендуется производить одновременно обоих колес, входящих в данное зацепление. Однако, когда в зацеплении большое колесо во много раз превышает размер малого, необходимо своевременно заменить малое колесо, которое изнашивается быстрее большого примерно в передаточное число раз. Своевременная замена малого колеса предохранит от износа большое колесо.

Износ зубьев зубчатых колес не должен превышать 10-20 % : толщины зуба, считая по дуге начальной окружности. В малоответственных передачах износ зубьев допускается до 30% толщины зуба, в передачах ответственных механизмов значительно ниже (например, для механизмов подъема груза износ не должен превышать 15%: толщины зуба,- а у зубчатых колес механизмов подъема кранов, транспортирующих жидкий и горячий металл - до 10%").

Шестерни с цементированными зубьями следует заменять при износе слоя цементации свыше 80 %1 его толщины, а также при растрескивании, выкрашивании или отлущивании цементированного слоя.

При поломке зубьев, но не более двух подряд в не особо ответственных передачах (например, механизмы передвижения кранов) допускается восстановление их, которое производится следующим способом: поломанные зубья вырубают до основания, по ширине зуба просверливают два-три отверстия и в них нарезают резьбу, изготовляют шпильки и туго ввертывают их в подготовленные отверстия, приваривают шпильки к шестерне и электросваркой наплавляют металл, придавая ему форму зуба, на зуборезном, фрезерном или строгальном станке или путем опиливания вручную придают наплавленному металлу форму зуба, после чего восстановленный профиль проверяют сцеплением с сопряженной деталью и по шаблону.

Последовательность операций восстановления зуба наплавкой показана на рис. 298.

Для облегчения процесса посленаплавочной обработки зубьев L-редних и больших модулей рекомендуется наплавлять их по



Рис. 5. Последовательность операций при наварке зубьев:

1 - поломанный зуб; 2- место вырубленного зуба; 3 - наплавленный зуб по шпилькам; 4- обработанный (опиленный) зуб.


медному шаблону (рис. 299), применение которого основано на том, что медный шаблон, имеющий форму впадин шестерни, образует грани зуба. При сварке, вследствие высокой теплопроводности меди, металл к шаблону не приваривается и после наплавки шаблон легко вынимается, а наплавленный металл наваривается, образуя форму зуба.

Рис. 6. Метод наплавки зубьев сваркой:

1 - ремонтируемая шестерня;

2 - наплавленный зуб; 3 - медный шаблон.


Наплавка должна вестись обязательно качественными (толстообмазанными) электродами марки не ниже. После наплавки желателен отжиг.

Для особо ответственных механизмов (например, механизмов подъема кранов) наплавка (ремонт) зубьев не допускается, зубчатые колеса в этих случаях- должны заменяться новыми.

Не следует закреплять зубья различного рода ввертышами без сварки или в паз в виде ласточкина хвоста, так как эти способы ненадежны и не обеспечивают нормальной работы оборудования.

Зубчатые колеса с лопнувшим ободом ремонтируют обычно дуговой сваркой, разрабатывая сварочную технологию так, чтобы в результате сварки не образовалось дополнительных напряжений, вызывающих трещины в других элементах колеса (рекомендуется нагрев всей шестерни до красного каления, а также отжиг ее после сварки).

Зубчатые колеса с трещиной в ступице ремонтируют посадкой на ступицу специально откованного или отлитого и проточенного на станке стального бандажа, нагретого до 300-400° С.

Зубчатые колеса особо ответственных передач (например, механизмов подъема кранов), имеющие трещины в ©боде, спицах и ступице, заменяют; ремонт их сваркой или другим методом не разрешается.

Шестерни, вращающиеся с большим числом оборотов, а также зубчатые колеса большого диаметра при средних числах оборотов, необходимо подвергать статической балансировке.


2.2 Методы скоростного ремонта зубчатых передач


Скоростной ремонт зубчатых передач, как и других элементов оборудования, по. своей методике должен быть узловым.

При скоростных узловых ремонтах замена отдельных шестерен или зубчатых колес:не производится, замену их проводят заранее собранными узлами, причем, как это указано ранее, при рассмотрении, типов узлов, как ремонтно-монтажных единиц, может быть три:

    крупные узлы, в состав которых входят спорные корпусы
    (например, корпусы редукторов) и весь комплекс зубчатых зацеплений, смонтированных в данных корпусах;

    группа связанных между собой при помощи зубчатых зацеплений индивидуальных узлов (например, валы, поз. /, 2, 3, совместно с, теми; деталями, которые смонтированы на них);

    отдельные индивидуальные узлы, в состав которых входят зубчатые колеса.

В зависимости от специфических условий, характерных для данного ремонта, в план организации работ принимается один из указанных видов узлового ремонта.

Наиболее качественным является скоростной ремонт, проводимый путем замены отдельных крупных узлов - редукторов.

Однако в этом случае необходимо, чтобы, во-первых, демонтируемый и вновь монтируемый редукторы были взаимозаменяемы, и, во-вторых, заранее была подготовлена соответствующая такелажно-монтажная оснастка.

Типизация редукторов, т. е. утверждение для данного цеха или предприятия в целом определенных типов и размеров взаимозаменяемых редукторов является важнейшим мероприятием, обеспечивающим проведение скоростных высококачественных ремонтов.


Список использованной литературы

    Сборка машин в тяжелом машиностроение / Б.В. Федоров, В.А. Вавуленко и др. 2-е изд.. М.: Маш-е, 1987г.

    Справочник-технолога- машиностроителя: в 2-х т. Под редакцией А.Г.Косиловой М.: Маш-е, 1985г.

    Металлорежущие станки. Учеб. Пособие для втузов. Н.С. Колев и др. М.: Маш-ие, 1980г.

    Схиртладзе А.Г., Новиков В.Ю., Тулаев Ю.И. Технологическое оборудование машин-ных производств. Учеб. Пособие. М.: Изд-во «Станкин», 1997г.

Похожие рефераты:

Выбор электродвигателя, кинематический расчет и схема привода. Частоты вращения и угловые скорости валов редуктора и приводного барабана. Расчет зубчатых колес редуктора. Выносливость зубьев по напряжениям изгиба. Расчёт вращающих моментов вала.

Классификация зубчатых передач по эксплуатационному назначению. Система допусков для цилиндрических зубчатых передач. Методы и средства контроля зубчатых колес и передач. Приборы для контроля цилиндрических зубчатых колес, прикладные методы их применения.

Расчет срока службы приводного устройства. Выбор двигателя, кинематический расчет привода. Выбор материалов зубчатых передач. Определение допустимых напряжений. Расчет закрытой конической зубчатой передачи. Определение сил в зацеплении закрытых передач.

Изучение конструкции цилиндрического двухступенчатого редуктора, измерение габаритных и присоединительных размеров. Определение параметров зубчатого зацепления. Расчет допускаемой нагрузки из условия обеспечения контактной выносливости зубчатой передачи.

Проектирование прямозубого редуктора. Выбор электродвигателя привода. Расчетное напряжение изгиба в опасном сечении зуба шестерни. Конструктивные размеры зубчатых колес и элементов корпуса. Основные параметры зубчатой пары. Ориентировочный расчет валов.

Кинематический, силовой расчёты привода. Определение мощности на валу исполнительного механизма. Определение расчётной мощности вала электродвигателя. Определение частоты вращения вала исполнительного механизма. Расчет закрытых цилиндрических передач.

Шарнирно-рычажные механизмы применяются для преобразования вращательного или поступательного движения в любое движение с требуемыми параметрами. Фрикционные - для изменения скорости вращательного движения или преобразования вращательного в поступательное.

Изучение теоретических основ нарезания зубчатых колес методом обкатки зубчатой рейкой. Построение профилей колес с помощью прибора. Фрезерование зубьев цилиндрического колеса. Форма зуба в зависимости от смещения. Положение рейки относительно колеса.

Кинематическая схема привода ленточного конвейера. Кинематический расчет электродвигателя. Определение требуемуй мощности электродвигателя, результатов кинематических расчетов на валах, угловой скорости вала двигателя. Расчет зубчатых колес редуктора.

Описание внешнего вида механизма зубчатой передачи. Кинематический расчёт. Расчёт геометрии передачи и её деталей. Силовой расчёт механизма. Расчёт зацепления на прочность, прочности одного из валов механизма. Выбор конструкционных материалов.

Определение расчетной мощности электродвигателя, передаточного числа привода. Расчет мощностей, передаваемых валами привода, и крутящих моментов. Проектный расчет тихоходной и конической зубчатых передач, подшипников вала по статической грузоподъемности.

Методика проектирования трехступенчатого цилиндрического редуктора. Порядок определения допускаемых напряжений. Особенности расчета 3-х ступеней редуктора, промежуточных валов и подшипников для них. Специфика проверки прочности шпоночных соединений.

Преимущества и недостатки планетарных передач над обычными, область применения. Принцип работы и основные звенья планетарных передач. Волновые зубчатые передачи, конструктивная схема, принцип работы, преимущества и недостатки волновых передач.

Параметры цилиндрических косозубых колес. Конструкции и материалы зубчатых колес, их размеры и форма. Конические зубчатые передачи и ее геометрический расчет. Конструкция и расчет червячных передач. Основные достоинства и недостатки червячных передач.

Проектирование червячной передачи. Проектирование цилиндрической зубчатой передачи. Расчет мертвого хода редуктора. Точность зубчатых и червячных передач. Допуски формы и расположения поверхностей зубчатых колес, червяков. Конструктивные элементы валов.

Кинематический расчет передачи и выбор электродвигателя. Расчет цилиндрической передачи. Ориентировочный расчет валов. Расчет основных размеров корпуса редуктора. Подбор подшипников и муфт. Выбор смазочного материала для зубчатой передачи и подшипников.