Что такое сила сопротивления в физике. Силы сопротивления движению

Силой и всегда направлена против вектора скорости тела в среде. Наряду с подъёмной силой является составляющей полной аэродинамической силы.

Сила лобового сопротивления обычно представляется в виде суммы двух составляющих: сопротивления при нулевой подъёмной силе и индуктивного сопротивления. Каждая составляющая характеризуется своим собственным безразмерным коэффициентом сопротивления и определённой зависимостью от скорости движения.

Лобовое сопротивление может способствовать как обледенению летательных аппаратов (при низких температурах воздуха), так и вызывать нагревание лобовых поверхностей ЛА при сверхзвуковых скоростях ударной ионизацией .

Поток и форма
препятствия
Сопротивление
формы
Влияние

вязкости на трение

~0,03 ~100 %
~0,01-0,1 ~90 %
~0,3 ~10 %
1,17 ~5 %
Полусфера 1,42 ~10

Сопротивление при нулевой подъёмной силе

Эта составляющая сопротивления не зависит от величины создаваемой подъёмной силы и складывается из профильного сопротивления крыла, сопротивления элементов конструкции самолёта, не вносящих вклад в подъёмную силу, и волнового сопротивления. Последнее является существенным при движении с около- и сверхзвуковой скоростью, и вызвано образованием ударной волны, уносящей значительную долю энергии движения. Волновое сопротивление возникает при достижении самолётом скорости, соответствующей критическому числу Маха , когда часть потока, обтекающего крыло самолёта, приобретает сверхзвуковую скорость. Критическое число М тем больше, чем больше угол стреловидности крыла, чем более заострена передняя кромка крыла и чем оно тоньше.

Сила сопротивления направлена против скорости движения, её величина пропорциональна характерной площади S, плотности среды ρ и квадрату скорости V:

X 0 = C x 0 ρ V 2 2 S {\displaystyle X_{0}=C_{x0}{\frac {\rho V^{2}}{2}}S} C x 0 {\displaystyle C_{x0}} - безразмерный аэродинамический коэффициент сопротивления , получается из критериев подобия, например, чисел Рейнольдса и Фруда в аэродинамике.

Определение характерной площади зависит от формы тела:

  • в простейшем случае (шар) - площадь поперечного сечения;
  • для крыльев и оперения - площадь крыла/оперения в плане;
  • для пропеллеров и несущих винтов вертолётов - либо площадь лопастей, либо ометаемая площадь винта;
  • для подводных объектов обтекаемой формы - площадь смачиваемой поверхности;
  • для продолговатых тел вращения , ориентированных вдоль потока (фюзеляж, оболочка дирижабля) - приведённая волюметрическая площадь, равная V 2/3 , где V - объём тела.

Мощность, требуемая для преодоления данной составляющей силы лобового сопротивления, пропорциональна кубу скорости ( P = X 0 ⋅ V = C x 0 ρ V 3 2 S {\displaystyle P=X_{0}\cdot V=C_{x0}{\dfrac {\rho V^{3}}{2}}S} ).

Индуктивное сопротивление в аэродинамике

Индуктивное сопротивление (англ. lift-induced drag ) - это следствие образования подъёмной силы на крыле конечного размаха. Несимметричное обтекание крыла приводит к тому, что поток воздуха сбегает с крыла под углом к набегающему на крыло потоку (т. н. скос потока). Таким образом, во время движения крыла происходит постоянное ускорение массы набегающего воздуха в направлении, перпендикулярном направлению полёта, и направленном вниз. Это ускорение, во-первых, сопровождается образованием подъёмной силы, а во-вторых - приводит к необходимости сообщать ускоряющемуся потоку кинетическую энергию. Количество кинетической энергии, необходимое для сообщения потоку скорости, перпендикулярной направлению полёта, и будет определять величину индуктивного сопротивления. На величину индуктивного сопротивления оказывает влияние не только величина подъёмной силы (так, в случае отрицательной работы подъёмной силы направление вектора индуктивного сопротивления противоположно вектору силы, обусловленной тангенсальным трением), но и её распределение по размаху крыла. Минимальное значение индуктивного сопротивления достигается при эллиптическом распределении подъёмной силы по размаху. При проектировании крыла этого добиваются следующими методами:

  • выбором рациональной формы крыла в плане;
  • применением геометрической и аэродинамической крутки;
  • установкой вспомогательных поверхностей - вертикальных законцовок крыла.

Индуктивное сопротивление пропорционально квадрату подъёмной силы Y, и обратно пропорционально площади крыла S, его удлинению λ {\displaystyle \lambda } , плотности среды ρ и квадрату скорости V:

X i = C x i ρ V 2 2 S = C y 2 π λ ρ V 2 2 S = 1 π λ Y 2 ρ V 2 2 S {\displaystyle X_{i}=C_{xi}{\frac {\rho V^{2}}{2}}S={\frac {C_{y}^{2}}{\pi \lambda }}{\frac {\rho V^{2}}{2}}S={\frac {1}{\pi \lambda }}{\frac {Y^{2}}{{\frac {\rho V^{2}}{2}}S}}}

Таким образом, индуктивное сопротивление вносит существенный вклад при полёте на малой скорости (и, как следствие, на больших углах атаки). Оно также увеличивается при увеличении веса самолёта.

Суммарное сопротивление

Является суммой всех видов сил сопротивления:

X = X 0 + X i {\displaystyle X=X_{0}+X_{i}}

Так как сопротивление при нулевой подъёмной силе пропорционально квадрату скорости, а индуктивное - обратно пропорционально квадрату скорости, то они вносят разный вклад при разных скоростях. С ростом скорости X 0 {\displaystyle X_{0}} растёт, а X i {\displaystyle X_{i}} - падает, и график зависимости суммарного сопротивления X {\displaystyle X} от скорости («кривая потребной тяги») имеет минимум в точке пересечения кривых X 0 {\displaystyle X_{0}} и X i {\displaystyle X_{i}} , при которой обе силы сопротивления равны по величине. При этой скорости самолёт обладает наименьшим сопротивлением при заданной подъёмной силе (равной весу), а значит, наивысшим

При совершенно любом движении будет фиксироваться появление между поверхностями тел или в среде, где оно осуществляется, сил сопротивления. Второе свойственное им название – силы трения.

Замечание 1

Силы сопротивления могут быть зависимыми от разновидностей трущихся поверхностей, реакций опоры тела, а также его скорости, при условии движения тела в вязкой среде (к примеру, в воздухе или воде).

Расчет сил сопротивления

С целью определения сил сопротивления потребуется применение третьего закона Ньютона. Такая величина, как сила сопротивления, будет численно равной силе, которую потребуется приложить с целью равномерного движения предмета по горизонтальной ровной поверхности. Это становится возможным с помощью динамометра.

Таким образом, искомая величина оказывается прямо пропорциональной массе тела. Стоит при этом учитывать во внимание, что для более точного подсчета потребуется выбрать $u$ коэффициент, зависимый от материала изготовления опоры. Также принимается во внимание материал изготовления самого предмета исследования. При расчете применяется постоянная $g$, чье значение 9,8 $м/с^2$.

В условиях движения тела на высоте, на него влияет сила трения воздуха, зависимая от скорости перемещения предмета. Искомую величину определяют на основании такой формулы (подходящей исключительно для тел с передвижением с небольшой скоростью):

$F = va$, где:

  • $v$ – скорость движения предмета,
  • $a$ – коэффициент сопротивления среды.

Разновидности сил сопротивления

Существуют такие разновидности сил сопротивления:

  1. Сила сопротивления качению $P_f$, зависимая от таких факторов, как: разновидности и состояния опорной поверхности, скорости движения, давления воздуха и пр. Коэффициент сопротивления качению $f$ зависеть при этом состояния и типа опорной поверхности. С повышением температуры и давления, указанный коэффициент уменьшается.
  2. Сила сопротивления воздуха (лобовое сопротивление) $Р_в$ возникает за счет разницы давлений. Данный показатель окажется тем выше, чем большим будет вихреобразование как в передней, так и в задней части объекта движения. Величина вихреобразования будет зависеть от формы движущихся тел.

Наиболее значимым будет воздействие на сопротивление движению передней части. Так, при создании закругления в передней и задней части плоскостенной фигуры, сопротивление возможно уменьшить на 72 %. Сила лобового сопротивления $Р_{вл}$ определяется по такой формуле:

$P_{вл} = {c_xpF_в}\frac{v^2}{2}$, где:

  • $с_х$– коэффициент лобового сопротивления (обтекаемости);
  • $p$- плотность воздуха;
  • $F_в$ –площадь лобового сопротивления (миделевого сечения) определяется по формуле

Сила сопротивления воздуха ориентирована в направлении, противоположном вектору скорости объекта движения (например, автомобиля). Обычно она рассматривается как сконцентрированная сила, приложенная в отношении точки (центра парусности объекта), не совпадающей при этом с центром массы исследуемого объекта.

Сила сопротивления разгону поступательно движущейся массы объекта, согласно второму закону Ньютона, определяется таким образом:

$Рj = m\frac{dV}{dt}$, где:

  • $m$– масса автомобиля;
  • $\frac{dv}{dt}$ - ускорение центра масс.

Силы сопротивления при больших скоростях

В случае, когда мы имеем дело с малыми скоростями, сопротивление будет зависеть от:

  • вязкости жидкости;
  • скорости движения;
  • линейных размеров тела.

Рассмотрим действие законов трения при больших скоростях. Так, к воздуху и в особенности, к воде законы вязкого трения будут мало применимыми. Даже при наличии таких скоростей, как 1 см/с, они будут пригодными исключительно в отношении тел крошечных размеров (в миллиметрах).

Замечание 2

Сопротивление, которое испытывает ныряющий в воду пловец, ни в коей мере не будет подчиняться действию закона вязкого трения.

При медленном движении жидкость станет плавно обтекать предмет движения. При этом сила сопротивления, которую он будет преодолевать, и окажется силой вязкого трения.

В условиях большой скорости, позади движущегося объекта возникнет уже более сложное движение жидкости. В жидкости начнут то появляться, то исчезать разные струйки, формируя при этом необычные по форме фигуры, вихри, кольца. Таким образом, картина струек будет подвержена постоянным изменениям. Возникновение подобного движения получило название турбулентного.

Турбулентное сопротивление будет зависимым от скорости и размеров предмета не так, как при вязком. Так, оно окажется пропорциональным квадратам скорости и линейных размеров. Вязкость жидкости при подобном движении перестает иметь решающее значение, а определяющим свойством выступает ее плотность. Таким образом, для силы $F$ турбулентного сопротивления справедлива формула:

$F=pv^2L^2$, где:

Во всех реальных жидкостях при перемещении одних слоев относительно других возникают более или менее значительные силы трения.

Со стороны слоя, движущегося быстрее, на слой, движущийся медленнее, действует ускоряющая сила. Со стороны же слоя, движущегося медленнее, на слой, движущийся быстрее, действует тормозящая сила. Это внутреннее трение называется вязкостью жидкости или газа. Эти силы направлены по касательной к поверхности слоев. Пусть между двумя плоскостями находится слой жидкости (рис. 1); верхняя плоскость движется относительно нижней со скоростью . Мысленно разобьем жидкость на очень тонкие слои параллельными плоскостями, отстоящими на расстоянии друг от друга. Слои жидкости, касающиеся твердых тел, прилипают к ним. Промежуточные слои имеют распределение скоростей, изображенных на рис. 1. Пусть разность скоростей между соседними слоями . Величина , которая показывает, как быстро меняется скорость при переходе от слоя к слою, называется градиентом скорости.


Расчеты показывают, что сила внутреннего трения между соседними слоями жидкости тем больше, чем больше площадь поверхности соприкосновения слоев, и зависит от быстроты изменения скорости при переходе от слоя к слою в направлении оси Ox, перпендикулярной скорости движения слоев:

где S - площадь соприкосновения слоев, - коэффициент внутреннего трения, или вязкость жидкости, - градиент скорости.

Вязкость зависит от температуры. С ростом температуры вязкость жидкости уменьшается.

При движении твердого тела в жидкости или газе также возникает сила сопротивления движению, которую называют силой вязкого трения . Но в отличие от сухого трения в жидкостях и газах отсутствует сила трения покоя. Наличие силы сопротивления движению тела в среде объясняется существованием внутреннего трения, обусловленного относительным движением слоев жидкости или газа.

Установлено, что сила вязкого трения зависит от скорости движения тела. Зависимость проекции силы вязкого трения от скорости показана на рисунке 2.


Если скорость движения тела невелика, то сила сопротивления прямо пропорциональна модулю скорости: , где k - коэффициент пропорциональности, который зависит от рода вязкой среды, формы и размеров тела. Если скорость движения тела возрастает, то возрастает и сила сопротивления:

При увеличении скорости движения тела в жидкости или газе появляются вихри, тормозящие движение: вследствие вязкости в области, прилегающей к поверхности тела, образуется пограничный слой частиц, движущихся с меньшими скоростями. В результате тормозящего действия этого слоя возникает вращение частиц, и движение жидкости в пограничном слое становится вихревым. Если тело не имеет обтекаемой формы, то пограничный слой жидкости отрывается от поверхности тела. За телом возникает течение жидкости (газа), направленное противоположно набегающему потоку. Оторвавшийся пограничный слой, следуя за этим течением, образует вихри, вращающиеся в противоположные стороны, (рис. 3, б). Жидкость, вращающаяся в вихре, движется быстрее жидкости в стационарном потоке (рис. 3, а). Поэтому с задней стороны обтекаемого тела, где образовались вихри, давление становится меньше, чем с передней. Разность давлений впереди и позади движущегося тела и создает сопротивление движению тела. В итоге с увеличением скорости сила сопротивления растет нелинейно (см. рис. 2).


Сила сопротивления зависит от формы тела. Придание телу специально рассчитанной обтекаемой формы существенно уменьшает силу сопротивления, так как в этом случае жидкость всюду прилегает к его поверхности и позади него не завихрена (рис. 3, в).

Коэффициент сопротивления дает возможность учитывать потери энергии при движении тела. Чаще всего рассматривают два типа движения: движение по поверхности и движение в веществе (жидкости или газе). Если рассматривают движение по опоре, то обычно говорят о коэффициенте трения. В том случае, если рассматривают движение тела в жидкости или газе, то имеют в виду коэффициент сопротивления формы.

Определение коэффициента сопротивления (трения) скольжения

ОПРЕДЕЛЕНИЕ

Коэффициентом сопротивления (трения) называют коэффициент пропорциональности, связывающий силу трения () и силу нормального давления (N) тела на опору. Обычно данный коэффициент обозначают греческой буквой . В таком случае коэффициент трения определим как:

Речь идет о коэффициенте трения скольжения, который зависит от совокупных свойств трущихся поверхностей и является безразмерной величиной. Коэффициент трения зависит от: качества обработки поверхностей, трущихся тел, присутствия на них грязи, скорости движения тел друг относительно друга и т.д. Коэффициент трения определяют эмпирически (опытным путем).

Определение коэффициент сопротивления (трения) качения

ОПРЕДЕЛЕНИЕ

Коэффициент сопротивления (трения) качения обозначают чаще буквой . Его можно определить с помощью отношения момента силы трения качения () к силе с которой тело прижимается к опоре (N):

Данный коэффициент, имеет размерность длины. Основной его единицей в системе СИ будет метр.

Определение коэффициента сопротивления формы

ОПРЕДЕЛЕНИЕ

Коэффициент сопротивления формы — физическая величина, которая определяет реакцию вещества на перемещение тела внутри нее. Можно сказать иначе: это физическая величина, которая определяет реакцию тела на движение в веществе. Данный коэффициент определяется эмпирически, его определением служит формула:

где — сила сопротивления, — плотность вещества, — скорость течения вещества (или скорость движения тела в веществе), площадь проекции тела на плоскость перпендикулярную к направлению движения (перпендикулярная потоку).

Иногда, если рассматривают движение вытянутого тела, то считают:

где V — объем тела.

Рассматриваемый коэффициент сопротивления является безразмерной величиной. Он не учитывает эффектов на поверхности тел, поэтому формула (3) может стать не пригодна, если рассматривается вещество, которое имеет большую вязкость. Коэффициент сопротивления (C) является постоянной величиной пока число Рейнольдса (Re) является неизменным. В общем случае .

Если тело имеет острые ребра, то эмпирически получено, что для таких тел коэффициент сопротивления остается постоянным в широкой области чисел Рейнольдса. Так опытным путем получено, что для круглых пластинок поставленных поперек воздушного потока, при значения коэффициента сопротивления находятся в пределах от 1,1 до 1,12. При уменьшении числа Рейнольдса () закон сопротивления переходит в закон Стокса, который для круглых пластинок имеет вид:

Сопротивление шаров было исследовано для широкой области чисел Рейнольдса до Для получили:

В справочниках представлены коэффициенты сопротивления для круглых цилиндров, шаров и круглых пластинок в зависимости от числа Рейнольдса.

В авиационной технике задача о нахождении формы тела с минимальным сопротивлением имеет особое значение.

Примеры решения задач

ПРИМЕР 1

Задание Максимальная скорость автомобиля на горизонтальном участке дороги равна при максимальной мощности его равной P. Коэффициент лобового сопротивления автомобиля C, а наибольшая площадь сечения в направлении, перпендикулярном скорости S. Автомобиль подвергся реконструкции, наибольшую площадь сечения в направлении, перпендикулярном скорости уменьшили до величины , оставив коэффициент сопротивления без изменения. Считайте силу трения о поверхность дороги неизменной, найдите какова максимальная мощность автомобиля, если его скорость на горизонтальном участке дороги стала равна . Плотность воздуха равна .
Решение Сделаем рисунок.

Мощность автомобиля определим как:

где — сила тяги автомобиля.

Считая, что автомобиль на горизонтальном участке дороги движется с постоянной скоростью, запишем второй закон Ньютона в виде:

В проекции на ось X (рис.1), имеем:

Силу сопротивления, которую испытывает автомобиль, двигаясь в воздухе, выразим как:

Тогда мощность автомобиля можно записать:

Выразим из (1.5) силу трения автомобиля о дорогу:

Запишем выражение для мощности, но с изменёнными по условию задачи параметрами автомобиля:

Учтем, что сила трения автомобиля о дорогу не изменилась, и примем во внимание выражение (1.6):

Ответ

ПРИМЕР 2

Задание Какова максимальная скорость шарика, который свободно падает в воздухе, если известны: плотность шарика (), плотность воздуха (), масса шарика (), коэффициент сопротивления C?
Решение Сделаем рисунок.

Запишем второй закон Ньютона для свободного падения шарика:

ВВЕДЕНИЕ

В транспортном потоке автомобиль движется в трех основных режимах: разгон, движение с постоянной скоростью и выбег. Способность автомобиля быстро увеличивать скорость характеризуются его динамическими свойствами.

Расчет скорости и пути автомобиля необходим в следующих случаях: проектирование системы управления движением на магистрали, расследование ДТП с обгоном транспортных средств, определение размеров площадки для контроля тормозных свойств автомобиля и др.

Движение автомобиля описывается дифференциальными уравнениями. Чтобы рассчитать скорость и путь автомобиля выполняют интегрирование этих уравнений. Расчет вручную, на калькуляторе, движения автомобиля занимает много времени, а погрешность расчета составляет 5…15%.

При движении автомобиль перемещается в продольной и поперечной плоскости дороги, кузов и неподрессоренные массы совершают колебания на подвеске. В разработанной программе учитывается движение только в продольной плоскости дороги. Колебания масс не учитываются. Последнее упрощение связано с тем, что в литературе отсутствуют числовые данные по моментам инерции, жесткостям и демпфированию подвесок для автомобилей различных марок. В тоже время учет колебаний позволяет повысить точность расчета лишь на 0,5…1%.

В программе рассчитываются три основных варианта движения: трогание с места, разгон движущегося автомобиля и выбег. Частным случаем второго варианта является движение автомобиля с постоянной скоростью.

Интегрирование дифференциальных уравнений выполняется по методу Эйлера по времени, с постоянным шагом 0,001 c. При расчете малых величин применяются числа двойной точности. Все расчеты выполняются в системе единиц измерения СИ.

Работа с программой организована в режиме диалога с персональным компьютером. Пользователь вводит параметры автомобиля, задает начальные условия, вариант движения и конец участка. Результаты расчета выводятся на экран дисплея и в файл. Пользователь может контролировать изменение всех параметров автомобиля по времени с помощью графиков. Файлы с результатами расчета можно использовать для построения графиков по программе Excel.

Силы сопротивления движению

На автомобиль действуют силы сопротивления движению и тяговая сила. Силы сопротивления движению зависят от условий движения и параметров автомобиля. Тяговая сила зависит от мощности двигателя, режима его работы и параметров трансмиссии.

Сила сопротивления качению

Сила Pf сопротивления качению автомобиля складывается из сил сопротивления качению его колес:

где f - коэффициент сопротивления качению (безразмерный); G - вес автомобиля в Н.

Коэффициент сопротивления качению зависит от скорости V движения автомобиля:

f = f0 (1 + k V2), (2)

где f0 - коэффициент сопротивления качению при низкой скорости. Значение f0 указывается в задании на курсовой проект. Обычно принимают коэффициент f0 = 0,015. На чистой, ровной, сухой дороге и при применении шин с низким сопротивлением качению f0 снижается до 0,01. На дороге в неудовлетворительном состоянии f0 увеличивается до 0,03. Коэффициент k отражает влияние скорости V автомобиля на сопротивление качению. Значение k обычно принимают 0,000144 с2/м2. При скорости автомобиля менее 22…25 м/с (80…90 км/ч) влиянием скорости можно пренебречь.

Сила сопротивления подъему

Сила сопротивления подъему зависит от угла подъема дороги i, рад. Обычно угол i имеет небольшую величину, и значение i называют коэффициентом сопротивления подъему. Силу Pi - сопротивления подъему вычисляют по формуле:

Сила сопротивления воздуха

Сила сопротивления воздуха зависит от обтекаемости автомобиля, лобовой его площади и скорости:

PW = k F V2, (4)

где k - коэффициент обтекаемости в Нс2/м4; F - лобовая площадь автомобиля (площадь Миделя) в м2; V - скорость автомобиля в м/с.

Произведение k F называют фактором обтекаемости W. Значения коэффициентов обтекаемости и площади автомобилей различного типа приведены в табл. 1.

Таблица 1 Значения коэффициента обтекаемости k, площади F и фактора обтекаемости для автомобилей различного типа

Тип автомобиля

Легковой, с закрытым кузовом

Легковой, с открытым кузовом

Грузовой

Гоночный