Без топливный двигатель на постоянных магнитах. Эфир и безтопливный мотор алексеенко

Практически все в нашей жизни зависит от электричества, но существуют определенные технологии, которые позволяют избавиться от локальной проводной энергии. Предлагаем рассмотреть, как сделать магнитный двигатель своими руками, его принцип работы, схема и устройство.

Типы и принципы работы

Существует понятие вечных двигателей первого порядка и второго. Первый порядок – это устройства, которые производят энергию сами по себе, из воздуха, второй тип – это двигатели, которым необходимо получать энергию, это может быть ветер, солнечные лучи, вода и т.д., и уже её они преобразовывают в электричество. Согласно первому началу термодинамики, обе эти теории невозможны, но с таким утверждением не согласны многие ученые, которые и начали разработку вечных двигателей второго порядка, работающих на энергии магнитного поля.

Фото – Магнитный двигатель дудышева

Над разработкой «вечного двигателя» трудилось огромное количество ученых во все времена, наиболее большой вклад в развитие теории о магнитном двигателе сделали Никола Тесла, Николай Лазарев, Василий Шкондин, также хорошо известны варианты Лоренца, Говарда Джонсона, Минато и Перендева.


Фото – Магнитный двигатель Лоренца

У каждого из них своя технология, но все они основаны на магнитном поле, которое образовывается вокруг источника. Стоит отметить, что «вечных» двигателей не существует в принципе, т.к. магниты теряют свои способности приблизительно через 300-400 лет.

Самым простым считается самодельный антигравитационный магнитный двигатель Лоренца . Он работает за счет двух разнозаряженных дисков, которые подключаются к источнику питания. Диски наполовину помещаются в полусферический магнитный экран, поле чего их начинают аккуратно вращать. Такой сверхпроводник очень легко выталкивает из себя МП.

Простейший асинхронный электромагнитный двигатель Тесла основан на принципе вращающегося магнитного поля, и способен производить электричество из его энергии. Изолированная металлическая пластина помещается как можно выше над уровнем земли. Другая металлическая пластина помещается в землю. Провод пропускается через металлическую пластину, с одной стороны конденсатора и следующий проводник идет от основания пластины к другой стороне конденсатора. Противоположный полюс конденсатора, будучи подключенным к массе, используется как резервуар для хранения отрицательных зарядов энергии.

Фото – Магнитный двигатель Тесла

Роторный кольцар Лазарева пока что считается единственным работающим ВД2, кроме того, он прост в воспроизведении, его можно собрать своими руками в домашних условиях, имея в пользовании подручные средства. На фото показана схема простого кольцевого двигателя Лазарева:

Фото – Кольцар Лазарева

На схеме видно, что емкость поделена на две части специальной пористой перегородкой, сам Лазарев применял для этого керамический диск. В этот диск установлена трубка, а емкость заполнена жидкостью. Вы для эксперимента можете налить даже простую воду, но желательно применять улетучивающийся раствор, к примеру, бензин.

Работа осуществляется следующим образом: при помощи перегородки, раствор попадает в нижнюю часть емкости, а из-за давления по трубке перемещается наверх. Это пока что только вечное движение, не зависящее от внешних факторов. Для того чтобы соорудить вечный двигатель, нужно под капающей жидкостью расположить колесико. На основе этой технологии и был создан самый простой самовращающийся магнитный электродвигатель постоянного движения, патент зарегистрирован на одну российскую компанию. Нужно под капельницу установить колесико с лопастями, а непосредственно на них разместить магниты. Из-за образовавшегося магнитного поля, колесо начнет вращаться быстрее, быстрее перекачиваться вода и образуется постоянное магнитное поле.

Линейный двигатель Шкондина произвел своего рода революцию в прогрессе. Это устройство очень простой конструкции, но в тоже время невероятно мощное и производительное. Его двигатель называется колесо в колесе, и в основном его используют в современной транспортной отрасли. Согласно отзывам, мотоцикл с мотором Шкондина может проехать 100 километров на паре литров бензина. Магнитная система работает на полное отталкивание. В системе колеса в колесе, есть парные катушки, внутри которых последовательно соединены еще одни катушки, они образовывают двойную пару, у которой разные магнитные поля, за счет чего они двигаются в разные стороны и контрольный клапан. Автономный мотор можно устанавливать на автомобиль, никого не удивит бестопливный мотоцикл на магнитном двигателе, устройства с такой катушкой часто используются для велосипеда или инвалидной коляски. Купить готовый аппарат можно в интернете за 15000 рублей (производство Китай), особенно популярен пускатель V-Gate.


Фото – Двигатель Шкондина

Альтернативный двигатель Перендева – это устройство, которое работает исключительно благодаря магнитам. Используется два круга – статичный и динамичный, на каждом из них в равной последовательности, располагаются магниты. За счет самооталкивающейся свободной силы, внутренний круг вращается бесконечно. Эта система получила широкое применение в обеспечении независимой энергии в домашнем хозяйстве и производстве.


Фото – Двигатель Перендева

Все перечисленные выше изобретения находятся в стадии развития, современные ученые продолжают их совершенствовать и искать идеальный вариант для разработки вечного двигателя второго порядка.

Помимо перечисленных устройств, также популярностью у современных исследователей пользуется вихревой двигатель Алексеенко, аппараты Баумана, Дудышева и Стирлинга.

Как собрать двигатель самостоятельно

Самоделки пользуются огромным спросом на любом форуме электриков, поэтому давайте рассмотрим, как можно собрать дома магнитный двигатель-генератор. Приспособление, которое мы предлагаем сконструировать, состоит из 3 соединенных между собой валов, они скреплены таким образом, что вал в центре повернут прямо к двум боковым. К середине центрального вала прикреплен диск из люцита диаметров четыре дюйма, толщиной в половину дюйма. Внешние валы также оснащены дисками диаметром два дюйма. На них расположены небольшие магниты, восемь штук на большом диске и по четыре на маленьких.


Фото – Магнитный двигатель на подвеске

Ось, на которых расположены отдельные магниты, находится в параллельной валам плоскости. Они установлены таким образом, что концы проходят возле колес с проблеском в минуту. Если эти колеса двигать рукой, то концы магнитной оси будут синхронизироваться. Для ускорения рекомендуется установить алюминиевый брусок в основание системы так, чтобы его конец немного касался магнитных деталей. После таких манипуляций, конструкция должна начать вращаться со скоростью пол оборота в одну секунду.

Приводы установлены специальным образом, при помощи которого валы вращаются аналогично друг другу. Естественно, если воздействовать на систему сторонним предметом, к примеру, пальцем, то она остановится. Этот вечный магнитный двигатель изобрел Бауман, но ему не удалось получить патент, т.к. на тот момент устройство отнесли к разряду непатентуемых ВД.

Для разработки современного варианта такого двигателя многое сделали Черняев и Емельянчиков.


Фото – Принцип работы магнита

Какие достоинства и недостатки имеют реально работающие магнитные двигатели

Достоинства:

  1. Полная автономия, экономия топлива, возможность из подручных средств организовать двигатель в любом нужном месте;
  2. Мощный прибор на неодимовых магнитах способен обеспечивать энергией жилое помещение до 10 вКт и выше;
  3. Гравитационный двигатель способен работать до полного износа и даже на последней стали работы выдавать максимальное количество энергии.

Недостатки:

  1. Магнитное поле может негативно влиять на здоровье человека, особенно этому фактору подвержен космический (реактивный) движок;
  2. Несмотря на положительные результаты опытов, большинство моделей не способны работать в нормальных условиях;
  3. Даже после приобретения готового мотора, его бывает очень сложно подключить;
  4. Если Вы решите купить магнитный импульсный или поршневой двигатель, то будьте готовы к тому, что его цена будет сильно завышена.

Работа магнитного двигателя – это чистая правда и она реально, главное правильно рассчитать мощность магнитов.

Мечты о вечном двигателе не дают людям покоя уже сотни лет. Особенно остро этот вопрос стал сейчас, когда мир не на шутку обеспокоен надвигающимся энергетическим кризисом. Наступит он или нет - вопрос другой, но однозначно сказать можно лишь то, что вне зависимости от этого человечество нуждается в решениях энергетической проблемы и поиске альтернативных источников энергии.

Что такое магнитный двигатель

В научном мире вечные двигатели разделяют на две группы: первого и второго вида. И если с первыми относительно всё ясно - это скорее элемент фантастических произведений, то второй очень даже реален. Начнём с того, что двигатель первого вида - это своего рода утопичная штука, способная извлекать энергию из ничего. А вот второй тип основан на вполне реальных вещах. Это попытка извлечения и использования энергии всего, что нас окружает: солнце, вода, ветер и, безусловно, магнитное поле.

Многие учёные разных стран и в разные эпохи пытались не только объяснить возможности магнитных полей, но и реализовать некое подобие вечного двигателя, работающего за счёт этих самых полей. Интересно то, что многие из них добились вполне впечатляющих результатов в этой области. Такие имена, как Никола Тесла, Василий Шкондин, Николай Лазарев хорошо известны не только в узком кругу специалистов и приверженцев создания вечного двигателя.

Особый интерес для них составляли постоянные магниты, способные возобновлять энергию из мирового эфира. Безусловно, доказать что-либо значимое пока никому на Земле не удалось, но благодаря изучению природы постоянных магнитов человечество имеет реальный шанс приблизиться к использованию колоссального источника энергии в виде постоянных магнитов.

И хотя магнитная тема ещё далека от полного изучения, существует множество изобретений, теорий и научно обоснованных гипотез в отношении вечного двигателя. При этом есть немало впечатляющих устройств, выдаваемых за таковые. Сам же двигатель на магнитах уже вполне себе существует, хотя и не в том виде, в котором нам бы хотелось, ведь по прошествии некоторого времени магниты всё равно утрачивают свои магнитные свойства. Но, несмотря на законы физики, учёные мужи смогли-таки создать нечто надёжное, что работает за счёт энергии, вырабатываемой магнитными полями.

На сегодня существует несколько видов линейных двигателей, которые отличаются по своему строению и технологии, но работают на одних и тех же принципах . К ним относятся:

  1. Работающие исключительно за счёт действия магнитных полей, без устройств управления и без потребления энергии извне;
  2. Импульсного действия, которые уже имеют и устройства управления, и дополнительный источник питания;
  3. Устройства, объединяющие в себе принципы работы обоих двигателей.

Устройство магнитного двигателя

Конечно, аппараты на постоянных магнитах не имеют ничего общего с привычным нам электродвигателем. Если во втором движение происходит за счёт электротока, то магнитный, как понятно, работает исключительно за счёт постоянной энергии магнитов. Состоит он из трёх основных частей:

  • Сам двигатель;
  • Статор с электромагнитом;
  • Ротор с установленным постоянным магнитом.

На один вал с двигателем устанавливается электромеханический генератор. Статический электромагнит, выполненный в виде кольцевого магнитопровода с вырезанным сегментом или дугой, дополняет эту конструкцию. Сам электромагнит дополнительно оснащён катушкой индуктивности. К катушке подключён электронный коммутатор, за счёт чего подаётся реверсивный ток. Именно он и обеспечивает регулировку всех процессов.

Принцип работы

Так как модель вечного магнитного двигателя, работа которого основана на магнитных качествах материала, далеко не единственная в своем роде, то и принцип работы разных двигателей может отличаться. Хотя при этом используются, безусловно, свойства постоянных магнитов.

Из наиболее простых можно выделить антигравитационный агрегат Лоренца. Принцип его работы заключается в двух разнозаряженных дисках, подключаемых к источнику питания. Диски помещены наполовину в экран полусферической формы. Далее их начинают вращать. Магнитное поле легко выталкивается подобным сверхпроводником.

Простейший же асинхронный двигатель на магнитном поле придуман Теслой. В основе его работы лежит вращение магнитного поля, которое производит из него электрическую энергию. Одна металлическая пластина помещается в землю, другая - повыше неё. К одной стороне конденсатора подключают провод, пропущенный через пластину, а ко второй - проводник от основания пластины. Противоположный полюс конденсатора подключается к массе и выполняет роль резервуара для отрицательно заряжённых зарядов.

Единственным рабочим вечным двигателем считают роторное кольцо Лазарева. Он крайне прост по своему строению и реализуем в домашних условиях своими руками . Выглядит он как ёмкость, поделённая пористой перегородкой на две части. В саму перегородку строена трубка, а ёмкость заполняется жидкостью. Предпочтительнее использовать легколетучую жидкость наподобие бензина, но можно и простую воду.

С помощью перегородки жидкость попадает в нижнюю часть ёмкости и давлением выдавливается по трубке наверх. Само по себе устройство реализует лишь вечное движение. А вот для того, чтобы это стало уже вечным двигателем, необходимо под капающую из трубки жидкость установить колесо с лопастями, на которых будут располагаться магниты. В результате образовавшееся магнитное поле будет всё быстрее вращать колесо, в результате чего ускорится поток жидкости и магнитное поле станет постоянным.

А вот линейный двигатель Шкодина произвел действительно ощутимый рывок в прогрессе. Эта конструкция крайне проста технически, но одновременно имеет высокую мощность и производительность. Такой «движок» ещё называют «колесо в колесе» . Уже сегодня оно используется в транспорте. Здесь имеют место две катушки, внутри которых находятся ещё две катушки. Таким образом, образуется двойная пара с разными магнитными полями. За счёт этого они отталкиваются в разные стороны. Подобное устройство можно купить уже сегодня. Они часто используются на велосипедах и инвалидных колясках.

Двигатель Перендева работает только лишь на магнитах. Здесь используются два круга, один из которых статичный, а второй динамичный. На них в равной последовательности расположены магниты. За счёт самоотталкивания внутреннее колесо может вращаться бесконечно.

Ещё одним из современных изобретений, нашедших применение, можно назвать колесо Минато. Это устройство на магнитном поле японского изобретателя Кохея Минато, который довольно широко используется в различных механизмах.

Основными из достоинств этого изобретения можно назвать экономичность и бесшумность. Он также и прост: на роторе располагаются под разными к оси углами магниты. Мощный импульс на статор создаёт так называемую точку «коллапса», а стабилизаторы уравновешивают вращение ротора. Магнитный двигатель японского изобретателя, схема которого крайне проста, работает без выработки тепла, что пророчит ему большое будущее не только в механике, но и в электронике.

Существуют и другие устройства на постоянных магнитах, как колесо Минато. Их достаточно много и каждый из них по-своему уникален и интересен. Однако своё развитие они лишь начинают и находятся в постоянной стадии разработки и совершенствования.

Безусловно, столь увлекательная и загадочная сфера, как магнитные вечные двигатели, не может интересовать только учёных. Многие любители также вносят свою лепту в развитие этой отрасли. Но здесь вопрос скорее в том, можно ли сделать магнитный двигатель своими руками, не имея каких-то особых знаний.

Простейший экземпляр, который не раз был собран любителями, выглядит как три плотно соединённых между собой вала, один из которых (центральный) повёрнут прямо относительно двух других, располагаемых по бокам. К середине центрального вала прикрепляется диск из люцита (акрилового пластика) диаметром 4 дюйма. На два других вала устанавливают аналогичные диски, но в два раза меньше. Сюда же устанавливают магниты: 4 по бокам и 8 посередине. Чтобы система лучше ускорялась, можно в качестве основания использовать алюминиевый брусок.

Плюсы и минусы магнитных двигателей

Плюсы:

  • Экономия и полная автономия;
  • Возможность собрать двигатель из подручных средств;
  • Прибор на неодимовых магнитах достаточно мощный, чтобы обеспечить энергией 10 кВт и выше жилой дом;
  • Способен на любой стадии износа выдавать максимальную мощность.

Минусы:

Магнитные линейные двигатели сегодня стали реальностью и имеют все шансы заменить привычные нам моторы других видов. Но сегодня это ещё не совсем доработанный и идеальный продукт, способный конкурировать на рынке, но имеющий довольно высокие тенденции.

Разработаны двигатели и генераторы, производящие избыточную мощность. Т.е. на единицу потребляемой мощности, они вырабатывают во много раз большую мощность. Избыток мощности отбирается от окружающего пространства и выдается потребителю. Даные устройства очень просты по конструкции,не требуют дорогих материалов и специальных технологий. Изготовление может быть налажено на любом электромашиностроительном предприятии. Лучше других конструкций,был исследован электродвигатель. Испытание макета двигателя полностью подтвердило теорию. Выходная, механическая мощность, в три раза превысила, потребляемую электрическую.

Для эксперимента был изготовлен один из самых простых и неэффективных вариантов двигателя. Данный двигатель разместили на одной раме с автомобильным генератором от автомобиля Жигули, соединив клиноременной передачей их шкивы. Двигатель питался от сети 220 вольт. Для управления двигателем был использован механический коммутатор, а не электронный, что также значительно снизило эффективность его работы. В качестве нагрузки генератора использовались автомобильные лампы. При этом потребляемая двигателем мощность составила 140 ватт. Измерив мощность на выходе генератора на лампочках, получили 160 ватт электрической мощности. Известно, что автомобильные генераторы имеют КПД, не превышающий 60%, поэтому механическая мощность на валу двигателя была значительно выше, чем электрическая на выходе генератора.

К сожалению, не было возможности достать генератор переменного тока на 220 вольт необходимой мощности и проверить устройство в режиме самозапитки. А от того генератора, что использовался, это было невозможно. Но и в этом виде, испытания показали, что возможно получение большей механической мощности, чем затрачено электрической. Механический коммутатор не позволил работать в нужном алгоритме подачи напряжения на обмотки. Поэтому двигатель потреблял гораздо большую электрическую мощность, чем было необходимо. И в конце концов сгорел при испытаниях. Тем более, изготовлен был со значительным отступлением от авторского проекта. Используя электронный Блок Управления двигателем, можно значительно улучшить параметры. Исследования на другом макете показало, что реально достичь отношения входная электрическая/выходная механическая мощность 1/20, а немного усложнив конструкцию, показатели можно улучшить в несколько раз.

Сейчас разработан источник энергии для электромобиля,позволяющий без всяких аккумуляторов ездить пока не износится сама конструкция. Источник гораздо компактнее,легче,дешевле аккумуляторов. Срок службы может быть десятки лет.

Бестопливный двигатель

С каждым днем все больше людей во всем мире задумываются о возможности получения свободной энергии. Сегодня доступным способом получения такой энергии является альтернативная энергетика. Альтернативные источники энергии преобразуют природную энергию в нужную нам электрическую и тепловую. Но главным их недостатком является зависимость от погодных условий. Данного недостатка и некоторых других лишен изобретенный безтопливный двигатель Москвина.

Безтопливный двигатель Москвина - механическое устройство, преобразующее потенциальную энергию наружней консервативной силы, в кинетическую энергию вращения рабочего вала без потребления какого-либо вида топлива и электроэнергии. Безтопливный двигатель - своего рода вечный двигатель, работающий бесконечно долго, пока к рычагам приложено усилие и детали не изношены с непрерывным преобразованием свободной энергии. Свободная энергия, получаемая в процессе работы бестопливного двигателя, полность бесплатна, а потребление бесплатной электроэнергии от бестопливного генератора, при подключении к двигателю обычного электрогенератра, будет абсолютно законно.

Безтопливный двигатель - это экологически чистый универсальный привод для различных устройств и механизмов, работающий без вредных выбросов в атмосферу с сохранением окружающей среды.

Безтопливный генератор - основное устройство, которое стало возможным благодаря бестопливному двигателю. Безтопливный генератор электроэнерги - это возможность производить автономные бестопливные электростанции различной мощности!

В настоящее время изобретение находится на стадии экспертизы по существу, и в отличии от многочисленных аналогичных запатентованых изобретений, работоспособность которых не была проверена по различным причинам и находится под сомнением, данный безтопливный двигатель уже имеет рабочий образец. практически подтверждающий реальность получения свободной энергии.

Бестопливный двигатель Москвина

1. Бестопливный двигатель, преобразующий потенциальную энергию наружной консервативной силы в кинетическую энергию вращения рабочего вала, состоящий из корпуса, ротора, рабочего вала, шарнирно закрепленного в корпусе, отличающийся тем, что для преобразования потенциальной энергии от наружной консервативной силы, приложенной, по меньшей мере, к одному входному механизму, соединенному с пустотелым валом, соосным с рабочим валом и шарнирно закрепленным на нем, применена механическая передача, обеспечивающая необходимую разность скоростей вращения рабочего и пустотелого валов и передачу крутящего момента, по меньшей мере, на один шарнирно закрепленный в маховиках ротора вал с зубчатым колесом, зубчатое колесо которого, находясь в зацеплении с зубчатым венцом, расположенным по всему диаметру в корпусе двигателя, возможно приведет во вращение ротор с рабочим валом в направлении, обратном вращению пустотелого вала.

2. Бестопливный двигатель по п.1, отличающийся тем, что механическая передача представляет собой цепную передачу от большой звездочки, закрепленной на пустотелом валу к малой звездочке, закрепленной на валу с зубчатым колесом.

3. Бестопливный двигатель по п.1, отличающийся тем, что механическая передача представляет собой ременную передачу от большого шкива, закрепленного на пустотелом валу к малому шкиву, закрепленному на валу с зубчатым колесом.

4. Бестопливный двигатель по п.1, отличающийся тем, что механическая передача представляет собой зубчатую передачу от большой шестерни, закрепленной на пустотелом валу, через промежуточную шестерню, закрепленную шарнирно на маховике ротора, к малой шестерне, закрепленной на валу с зубчатым колесом.

5. Бестопливный двигатель по п.1, отличающийся тем, что входной механизм представляет собой рычаг, соединенный с пустотелым валом и имеющий выход через окно в корпусе наружу.

Ученые: бестопливный двигатель невозможен

Новая разработка получила название EmDrive и обещала революционные перспективы. Создатели даже заявили о некоторых успехах на раннем этапе тестирования. Впрочем, скептиков в научной среде тоже хватает, и они решили выразить свои мысли на этот счет. Среди противников EmDrive оказался физик и математик Фил Плейт из Калифорнийского университета.

По мнению ученых, концепция бестопливного двигателя противоречит простым физическим законам. Пока создается тяга внутри двигателя, должен соблюдаться некий баланс сил внутри него, а по закону сохранения импульса это невозможно. «Нам придется свергнуть закон сохранения импульса, дабы говорить о чем-то подобном» - отмечает Фил Плейт. Иными словами, чтобы построить бестопливный двигатель, потребуется совершить некий прорыв в фундаментальной науке, а современные технологии не позволяют рассматривать EmDrive всерьез.

Косвенно на все это указывает и положение дел вокруг EmDrive. Рабочего образца двигателя пока что не существует, а характеристики экспериментального устройства ни о чем не говорят. Замеры показали тягу примерно в 16 миллиньютонов. Впоследствии этот показатель вырос до 50 миллиньютонов.

Напомним, что экспериментальная модель бестопливного двигателя EmDrive была представлена еще в 2003 году - разработчиком стал британец Роджер Шоер. Электричество, нужное для создания микроволн, добывается посредством солнечной энергии. Таким образом, ученые вновь дали повод говорить про вечный двигатель.

В NASA разработку своих коллег оценили неоднозначно. Была отмечена уникальность конструкции двигателя. При этом специалисты утверждают, что добиться результатов можно лишь в условиях квантового вакуума.

БЕСТОПЛИВНЫЙ ДВИГАТЕЛЬ

Патент на безтопливный двигатель выдан Василию Алексеенко, русскому Левше, 10 июня 1999 года Российским агентством по патентам и товарным знакам. Двигатель не требует вообще никакого топлива: ни нефти, запасы которой ограничены, ни газа - ничего, что мы называем сырьем. Работает уникальный двигатель от энергии магнитных полей постоянных магнитов. Если один килограмм обычного магнита может притянуть или оттолкнуть 50 или 100 кг. массы, то мощные оксидно-бариевые способны то же самое проделывать с пятью тысячами килограммов массы. Такие мощные магниты, как уточняет изобретатель, не нужны. Годятся самые известные: один к пятидесяти или один к ста. С их помощью можно получить в двигателе, который сотворил русский Левша, 20 тысяч оборотов в минуту. Мощность придется даже гасить, используя передающее устройство. Постоянные магниты, от энергии которых работает двигатель, на нем и расположены Ротор своим магнитным полем отталкивается от такого же поля статора и начинает вращаться, а магнитное поле статора следует за ним и как бы его подгоняет, ускоряя вращение. Так можно добиться чудовищной мощности. Если такой двигатель использовать, скажем, в стиральной машине, вращение обеспечат крохотные магнитики.

Русский изобретатель из Перми А. Бакаев создал приставку к автодвигателям, которая позволяет автомобилям ездить на воде без каких-либо углеводородных добавок к ней. И это не фантастический проект. Он уже внедряется. Приставками оснащены уже более 3-х тысяч автомобилей, курсирующих по дорогам России. Это в буквальном смысле подарок автолюбителям. Использование приставок избавляет автомобилистов от затрат на бензин, а атмосферу - от вредных выбросов. Чтобы создать такую приставку, А. Бакаев сначала открыл новый тип расщепления, использовав его в своем уникальном изобретении.Другой русский ученый XX века, Б. Болотов, создал автодвигатель, которому нужна чуть ли не капля бензина, и то для первоначальной раскрутки. Двигателю, который он изобрел, не нужны ни коленчатый вал, ни цилиндры, ни вообще трущиеся детали. Их заменяют два диска на подшипниках с небольшим зазором между ними. В качестве топлива работает воздух, который на огромных оборотах разделяется на кислород и азот. При 90° градусах азот сгорает в кислороде, в результате чего двигатель массой 8 кг развивает мощность в 300 лошадиных сил.Помимо безтопливного двигателя Василия Алексеенко, русские изобретатели предложили еще несколько конструкций безтопливных двигателей. Они работают на принципиально новых источниках энергии: на энергии вакуума и других.

Источники: www.susam.ru, energetiku.jimdo.com, bankpatentov.ru, naked-science.ru, maksonovosti.livejournal.com

Война богов и людей

Много веков жизнь продолжалась согласно установленному порядку. Но однажды произошла война богов и людей. Этому предшествовал мятеж...

Имя заявителя:
Имя изобретателя: Бароев Т.Р.; Бароев О.Т.; Бароев Р.Т.
Имя патентообладателя: Горский государственный аграрный университет
Адрес для переписки: 362040, РСО, Владикавказ, ул.Кирова 37, ГГАУ, патентный отдел
Дата начала действия патента: 1995.11.24Ноу-хау разработки, а именно данное изобретение автора относится к области машиностроения, в частности к конструкции двигателей автотранспортных средств. Техническим результатом является повышение эффективности использования автотранспортных средств. Бестопливный двигатель содержит генератор, с которого подается определенная частота тока в колебательный контур, в состав которого входят катушка индуктивности, два конденсатора переменной емкости, которые служат для регулирования частоты колебания тока в колебательном контуре, подаваемого на соленоид, внутри которого находится ферромагнитный поршень, который совершает возвратно-поступательные движения под действием магнитострикционного эффекта.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Ноу-хау разработки, а именно данное изобретение автора относится к области машиностроения, в частности к конструкциям двигателей автотранспортных средств. Известны конструкции двигателей внутреннего сгорания автомашин ("Москвич", "Жигули", "Волга", а также автобусы, грузовые машины, тракторы, комбайны всех видов и марок) , предназначенные для их механического движения, в результате чего они развивают определенную мощность, совершают работу, приобретают различные скорости относительно неподвижных тел, т.е. относительно инерциальных систем отчета. Наиболее близким по технической сущности к заявляемому устройству является выбранное в качестве прототипа по заявке Франции N 2390040 A, H 02 N, 1978. Недостатком известного устройства является неэффективная конструкция двигателя. Задачей изобретения является повышение эффективности использования бестопливного двигателя под действием магнитострикционного эффекта. Поставленная задача достигается тем , что предлагается бестопливный двигатель автотранспортных средств, содержащий корпус. кривошипно-шатунный механизм, коленчатый вал, трансмиссионное устройство, генератор, поршень, установленный с возможностью возвратно-поступательного движения, причем генератор размещен с возможностью передачи определенной частоты тока в колебательный контур, в состав которого входит катушка индуктивности, два конденсатора переменной емкости, которые служат для регулирования частоты колебания тока, подаваемого на соленоид, поршень выполнен ферромагнитным и размещен внутри соленоида с возможностью возвратно-поступательного движения под действием магнитострикционного эффекта.Транспорт будет расходовать в несколько десятков раз меньше энергии на перевозку одного пассажира или единицы массы груза, чем привычные нам транспортные средства за счет повышения КПД с 30 до 95% . Нетрудно подсчитать, какой экономический эффект даст использование такого транспорта на сотнях тысяч километров, даже несмотря на большие начальные затраты. Вначале придется преодолеть много трудностей как технических, так и психологических.Таким образом сравнение заявляемого решения не только с прототипом, но и с другими техническими решениями в данной области техники позволяет сделать вывод о соответствии критерию изобретения "новизна" и "существенные отличия".

На фиг. 1 представлена блок-схема бестопливного двигателя автотранспортных средств.

Бестопливный двигатель автотранспортных средств содержит генератор переменного тока 1, катушку индуктивности 2, конденсаторы переменной емкости 3, соленоид 4, ферромагнитный поршень 5, изготовленный из железоалюминиевого сплава.

ПРЕДЛАГАЕМЫЙ ДВИГАТЕЛЬ РАБОТАЕТ СЛЕДУЮЩИМ ОБРАЗОМ

Генератор переменного тока 1 вырабатывает ток определенной частоты. Эта частота подается на колебательный контур, состоящий из катушки индуктивности 2 и двух конденсаторов 3 переменной емкости. В колебательном контуре путем измерения емкости конденсаторов 3 можно регулировать в больших пределах частоту тока, подаваемого с генератора переменного тока 1. Затем высокая частота тока с колебательного контура подается на соленоид 4. В соленоиде 4 возникает переменное магнитное поле в соответствии с частотой тока, подаваемого с колебательного контура. Внутри соленоида 4 находится ферромагнитный поршень, который на основании магнитострикционного эффекта совершает возвратно-поступательные движения, подобно возвратно-поступательным движениям поршня в цилиндре двигателей внутреннего сгорания.Возвратно-поступательные движения ферромагнитного поршня 5, с помощью кривошипно-шатунного механизма, коленчатого вала и трансмиссионного устройства передаются колесом (на чертежах не указаны, так как это известные устройства в двигателях внутреннего сгорания), благодаря чему автотранспортные средства приобретают определенные скорости относительно инерционных систем отсчета.
Так как бестопливные двигатели автотранспортных средств, так же, как и двигатели внутреннего сгорания, являются и двухцилиндровыми, четырехцилиндровыми шестицилиндровыми, восьмицилиндровыми, десятицилиндровыми, двенадцатицилиндровыми, то есть многоцилидровыми, то параллельно соленоиду 4 с ферромагнитным поршнем 5 подсоединяют соответствующее количество соленоидов с ферромагнитными поршнями (см. фиг. 2 (а, б) ). На фиг. 2 (а, б) показаны многоцилиндровые бестопливные двигатели автотранспортных средств, где 6 - ферромагнитные поршни. Все соленоиды с ферромагнитными поршнями могут быть подсоединены к одному колебательному контуру с одним генератором переменного тока. Или по необходимости каждый соленоид с ферромагнитным поршнем может иметь попарно или отдельно свой колебательный контур. В зависимости от мощности бестопливного двигателя количество катушек индуктивности и количества конденсаторов в колебательном контуре будет различным. Кроме того, в зависимости от вида и мощности автотранспортных средств размеры соленоида и ферромагнитного поршня также будет различными. Причем в зависимости от вида, типа и конструкций бестопливных двигателей автотранспортных средств, ферромагнитные поршни в многоцилиндровых двигателях могут иметь или один соленоид, или попарно один соленоид, или каждый ферромагнитный поршень свой собственный соленоид. Кроме того, могут иметь один или несколько колебательных контуров с различным количеством катушек индуктивности и конденсаторов переменной и постоянной емкости.
Использование предлагаемого устройства обеспечивает по сравнению с существующими двигателями следующие преимущества:
    имеет большой КПД (90...95%) ; радикально преобразуется техника машиностроения, а это дает громадный экономический эффект, исчисляемый сотнями миллиардов рублей; существенно увеличиватся скорость движения автотранспортных средств, что даст большую экономию времени и уменьшит транспортные расходы; транспорт будет расходовать в несколько десятков раз меньше энергии, что даст большой экономический эффект на сотнях тысяч километров.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Бестопливный двигатель автотранспортных средств, содержащий корпус, кривошипно-шатунный механизм, коленчатый вал, трансмиссионное устройство, генератор, поршень, установленный с возможностью возвратно-поступательного движения, отличающийся тем, что генератор размещен с возможностью передачи определенной частоты тока в колебательный контур, в состав которого входят катушка индуктивности, два конденсатора переменной емкости, которые служат для регулирования частоты колебания тока, подаваемого на соленоид, поршень выполнен ферромагнитным и размещен внутри соленоида с возможностью возвратно-поступательного движения под действием магнитострикционного эффекта.

Разместил статью:

Безтопливный двигатель работает, но никто знает, почему June 18th, 2016

Так называемый EmDrive создаёт тягу за счёт отскакивание микроволн от стенок в закрытой камере, используя только солнечную энергию.

Многие считают проект очередным надувательством, утверждая, что это идёт вразрез с законами физики.

Но теперь появилась группа учёных, которые заявляют, что у них есть новая теория, объясняющая, почему работает EmDrive.

Межзвездные путешествия при нынешнем состоянии технологий невозможны — говорит сама физика с ее законом сохранения импульса. Перефразируя известного персонажа, чтобы разогнать что-нибудь нужное, сперва следует выбросить в противоположном направлении что-нибудь ненужное — вроде ракетного топлива, которого не накопишь на путешествие за границы Солнечной системы.

Чтобы выйти из этого тупика, энтузиасты освоения космоса периодически анонсируют устройства вроде двигателя EmDrive — которые, как нам обещают, не нуждаются в выбросе топлива, чтобы набирать скорость. Идея создания EmDrive была предложена в 2000 году исследователем Роджером Шойером.

На вид гипотетический двигатель представляет собой ведро с магнетроном (генератором микроволн, как в СВЧ-печи) внутри. По утверждению изобретателей, раз микроволны не выходят из ведра, значит выброса чего-либо материального не происходит, при этом само «ведро» создает тягу, фиксируемую в экспериментах с 2002 года и по сей день. Причем один такой опыт проделали в НАСА, другой совсем недавно провел Мартин Таджмар (Martin Tajmar), глава немецкого Института аэрокосмического инжиниринга при Техническом университете в Дрездене. Оба учреждения трудно назвать прибежищем научных фриков — быть может, за аномальной тягой EmDrive что-то есть?


Их оппонентов, впрочем, это не смущает. Одни, как Шон Кэролл (Sean Carroll) из Калифорнийского технологического института, просто характеризует EmDrive словами , которые невозможно повторить в русскоязычных СМИ. Те, кто сдержаннее, высказывают ту же мысль иначе: EmDrive нарушает закон сохранения импульса . А Эрик Дэвис (Eric W. Davis) из Института продвинутых исследований в Остине (США) добавляет: даже если бы тяга действительно создавалась, но как в испытаниях обнаруживалась бы лишь десятками микроньютонов, то профессионалам, работающим в аэрокосмической отрасли, «вообще неинтересны новые методы передвижения, [...] порождающие тягу измеряемую лишь в микроньютонах» — слишком уж она невелика.

Здесь следует отметить, что последнее утверждение довольно рискованно. По данным упомянутых экспериментов НАСА, зарегистрированная тяга составила 0,4 ньютона на киловатт — и несмотря на то, что эта цифра действительно ничтожна, двигатель с такими параметрами доставил бы New Horizons к Плутону за полтора года, вместо десятилетия, потребовавшегося на практике. Иными словами, для действительно дальних перелетов ситуация крайне далека от «незаинтересованности».



Принцип работы EmDrive, Изображение: M. Tajmar and G. Fiedler / Institute of Aerospace Engineering, Technische Universität Dresden, 01062 Dresden, German

Но таинственный двигатель поставил учёных в тупик, так как мы уже говорили очевидно, что этот двигатель нарушал закон сохранения импульса, гласящий, что каждое действие должно быть равно противодействию.

Это означает, что ракета может двигаться с ускорением вперёд только тогда, когда прилагается сила равной величины в другом направлении — в виде выхлопных газов ракеты.

«EmDrive работает точно так же, как и любой другой двигатель», — говорит автор статьи профессор физики в Университете Хельсинки доктор Арто Аннила.

«Его топливом являются входящие фотоны микроволновой длины».

Исследователи предполагают, что фотоны, выходящие из двигателя, взаимодействуют друг с другом, и поэтому общий эффект получается нулевым.

«В камере фотоны будут отскакивать в разные стороны, и неизменно некоторые из них будут оказывать деструктивное воздействие».

«Тогда два фотона будут определённо находиться в противоположных фазах на 180 градусов».

«При полной интерференции электромагнитные поля двух фотонов нивелируются, но сами фотоны продолжают распространяться.

Идея схожа с тем, как распространяются волны на воде, когда гребень одной волны точно приходится на нижнюю точку другой волны, ослабляя друг друга.

«Спаренные фотоны без электромагнитного поля выйдут из камеры, — сказал доктор Аннила. - Этот выход спаренных фотонов является выхлопом EmDrive».

«Когда камера несимметрична, то истечение спаренных фотонов также будет асимметричным. Поэтому потеря импульса спаренных фотонов происходит неравномерно. Другими словами, возникает тяга».

«Тяга без выхлопных газов, конечно, невозможна, — утверждают авторы статьи. — Тем не менее, некоторые резонансные камеры, получающие топливо в виде микроволн, обеспечивают тягу без видимых выхлопных газов».

Согласно их теории, EmDrive вырабатывает выхлопные газы, но их просто не видно.

Учёные считают, что фотоны теоретически можно обнаружить с помощью интерферометра, инструмента, который используется для обнаружения гравитационных волн.


Сложнее вопрос о том, работает ли EmDrive на самом деле, или в экспериментах «регистрируется» несуществующая тяга. Мартин Таджмар — известный «разрушитель мифов», экспериментатор, поставивший несколько «аномальных» экспериментов, найдя источники их аномалий в трудно обнаруживаемых ошибках измерения. В этот раз он привлек крутильные весы и проводил сам эксперимент в глубоком вакууме, чтобы исключить влияние конвекции воздуха. Все это не помогло убрать аномальную тягу.

Однако оппоненты не утратили своего скепсиса. Тот факт, что тяга не исчезала сразу после выключения EmDrive, может указывать на то, что речь идет о каком-то тепловом эффекте, влияющем на показания регистрирующих приборов. Следует отметить, что Таджмар в своей работе детально описывает предпринятые меры по теплозащите и магнитному экранированию, которых его критики (являющиеся физиками-теоретиками) почему-то не замечают.

Более всего смущает тезис Эрика Дэвиса о том, что работа Таджмара «не будет принята рецензируемыми журналами», только потому, что она не предлагает теоретического механизма, который мог бы объяснять наблюдавшуюся аномальную тягу. Очевидно, Дэвис в курсе того, как в XIX веке Майкельсон и Морли в American Journal of Science описание эксперимента, также не предложив никакого внятного теоретического механизма, который мог бы объяснить его. Если бы тогда журнал стоял на позициях Дэвиса, результаты важнейшего эксперимента, вызвавшего кризис теории эфира и в конечном счете возникновение теории относительности, просто не были бы опубликованы. Эксперименты по бета-распаду в 1914-1930 годах формально и вовсе нарушали закон сохранения энергии, но трудно представить себе, как кто-то из физиков той поры говорит: «данные об этом не попадут в рецензируемые журналы, потому что не объяснены теоретически».

Повторимся: отсутствие теоретического объяснения тяги EmDrive действительно означает, что, скорее всего, он не работает — по крайней мере, не работает так, как это описывает его создатель Роджер Шойер (Roger Shawyer). Но и позиция Дэвиса, сводящаяся к утверждению «не стоит тратить время на эксперименты, если у них нет теоретического объяснения», несомненно, необычна для ученого.