Бесколлекторный двигатель характеристики. Схема со средней точкой. Использование датчика положения с микроконтроллером

Принцип работы бесколлекторного двигателя постоянного тока (БКДП) был известен очень давно, и бесщёточные моторы всегда были интересной альтернативой традиционным решениям. Несмотря на это, подобные электрические машины лишь в XXI веке нашли широкое применение в технике. Решающим фактором повсеместного внедрения стало многократное снижение стоимости электроники управления приводом БДКП.

Проблемы коллекторных двигателей

На фундаментальном уровне работа любого электродвигателя заключается в преобразовании электрической энергии в механическую. Существуют два основных физических явления, лежащих в основе устройства электрических машин:

Двигатель сконструирован таким образом, что магнитные поля, создаваемые на каждом из магнитов, всегда взаимодействуют между собой, придавая ротору вращение. Традиционный электродвигатель постоянного тока состоит из четырёх основных частей:

  • статор (неподвижный элемент с кольцом из магнитов);
  • якорь (вращающийся элемент с обмотками);
  • угольные щётки;
  • коллектор.

Такая конструкция предусматривает вращение якоря и коллектора на одном валу относительно неподвижных щёток. Ток проходит от источника через подпружиненные для хорошего контакта щётки на коммутатор, который распределяет электричество между обмотками якоря. Магнитное поле, индуцированное в последних, взаимодействует с магнитами статора, что заставляет статор вращаться.

Главный недостаток традиционного двигателя в том, что механический контакт на щётках невозможно обеспечить без трения. При увеличении скорости проблема проявляет себя сильнее. Коллекторный узел изнашивается со временем и, кроме того, склонен к искрению и способен ионизировать окружающий воздух. Таким образом, несмотря на простоту и дешевизну в изготовлении, подобные электродвигатели обладают некоторыми непреодолимыми недостатками:

  • износ щёток;
  • электрические помехи в результате искрения;
  • ограничения в максимальной скорости;
  • сложности с охлаждением вращающегося электромагнита.

Появление процессорной техники и силовых транзисторов позволило конструкторам отказаться от узла механической коммутации и изменить роль ротора и статора в электромоторе постоянного тока.

Принцип работы БДКП

В бесколлекторном электродвигателе, в отличие от предшественника, роль механического коммутатора выполняет электронный преобразователь. Это позволяет осуществить «вывернутая наизнанку» схема БДКП - его обмотки расположены на статоре, что исключает необходимость в коллекторе.

Иными словами, основное принципиальное различие между классическим двигателем и БДКП в том, что вместо стационарных магнитов и вращающихся катушек последний состоит из неподвижных обмоток и вращающихся магнитов. Несмотря на то что сама коммутация в нём происходит похожим образом, её физическая реализация в бесщёточных приводах гораздо более сложна.

Главный вопрос - точное управление бесколлекторным двигателем, предполагающее правильную последовательность и частоту переключения отдельных секций обмоток. Эта задача конструктивно разрешима лишь при возможности непрерывного определения текущего положения ротора.

Необходимые данные для обработки электроникой получают двумя способами :

  • детектированием абсолютного положения вала;
  • измерением напряжения, индуцируемого в обмотках статора.

Для реализации контроля первым способом чаще всего используют либо оптические пары, либо закреплённые неподвижно на статоре датчики Холла, реагирующие на магнитный поток ротора. Главным достоинством подобных систем сбора информации о положении вала является их работоспособность даже при очень низких скоростях и в состоянии покоя.

Бессенсорный контроль для оценки напряжения в катушках требуется хотя бы минимального вращения ротора. Поэтому в таких конструкциях предусмотрен режим запуска двигателя до оборотов, при которых напряжение на обмотках может быть оценено, а состояние покоя тестируется с помощью анализа влияния магнитного поля на тестовые импульсы тока, проходящие через катушки.

Несмотря на все перечисленные конструктивные сложности, бесщёточные двигатели завоёвывают всё большую популярность благодаря своей производительности и недоступному для коллекторных набору характеристик. Краткий перечень основных преимуществ БДКП перед классическими выглядит так:

  • отсутствие механических потерь энергии на трении щёток;
  • сравнительная бесшумность работы;
  • лёгкость ускорения и замедление вращения благодаря малой инерции ротора;
  • точность управления вращением;
  • возможность организации охлаждения за счёт теплопроводности;
  • способность к работе на высоких скоростях;
  • долговечность и надёжность.

Современное применение и перспективы

Существует немало устройств, для которых увеличение времени безотказной работы имеет важнейшее значение. В подобном оборудовании применение БДКП всегда оправданно, несмотря на их сравнительно высокую стоимость. Это могут быть водяные и топливные насосы, турбины охлаждения кондиционеров и двигателей и т. д. Бесщёточные моторы используются во многих моделях электрических транспортных средств. В настоящее время на бесколлекторные двигатели всерьёз обратила внимание автомобильная промышленность.

БДКП идеально подходят для малых приводов, работающих в сложных условиях или с высокой точностью: питатели и ленточные конвейеры, промышленных роботы, системы позиционирования. Существуют сферы, в которых бесколлекторные двигатели доминируют безальтернативно: жёсткие диски, насосы, бесшумные вентиляторы, мелкая бытовая техника, CD/DVD приводы. Малый вес и высокая выходная мощность сделали БДКП также и основой для производства современных беспроводных ручных инструментов.

Можно сказать, что в области электроприводов сейчас наблюдается значительный прогресс. Продолжающееся падение цен на цифровую электронику породило тенденцию на повсеместное применение бесколлекторных двигателей взамен традиционных.

Когда я начал разрабатывать блок управления бесколлекторным двигателем (мотор-колесом), было много вопросов о том, как сопоставить реальный двигатель с абстрактной схемой из трех обмоток и магнитов, на которой, как правило, все объясняют принцип управления бесколлекторными двигателями.

Когда я реализовал управление по датчикам Холла я еще не очень понимал, что происходит в двигателе дальше абстрактных трех обмоток и двух полюсов: почему 120 градусов и почему алгоритм управления именно такой.

Все встало на место, когда я начал разбираться в идее бездатчикового управления бесколлекторным двигателем - понимание процесса, происходящего в реальной железке, помогло разработать аппаратную часть и понять алгоритм управления.

Ниже я постараюсь расписать свой путь к пониманию принципа управления бесколлекторным двигателем постоянного тока.


Для работы бесколлекторного двигателя необходимо чтобы постоянное магнитное поле ротора увлекалось за вращающемся электромагнитным полем статора, как и в обычном ДПТ.

Вращение магнитного поля статора осуществляется коммутацией обмоток с помощью электронного блока управления.
Конструкция бесколлекторного двигателя схожа с конструкцией синхронного двигателя, если подключить бесколлекторный двигатель в трехфазную сеть переменного тока, удовлетворяющую электрическим параметрам двигателя, он будет работать.

Определенная коммутация обмоток бесколлекторного двигателя позволяет управлять им от источника постоянного тока. Чтобы понять, как составить таблицу коммутаций бесколлекторного двигателя необходимо рассмотреть управление синхронной машиной переменного тока.

Синхронная машина
Синхронная машина управляется от трехфазной сети переменного тока. Двигатель имеет 3 электрические обмотки, смещенные между собой на 120 электрических градусов.

Запустив трехфазный двигатель в генераторном режиме, постоянным магнитным полем будет наводиться ЭДС на каждую из обмоток двигателя, обмотки двигателя распределены равномерно, на каждую из фаз будет наводиться синусоидальное напряжение и данные сигналы будут смещены между собой на 1/3 периода (рисунок 1). Форма ЭДС меняется по синусоидальному закону, период синусоиды равен 2П(360), поскольку мы имеем дело с электрическими величинами (ЭДС, напряжение, ток) назовем это электрическими градусами и будем измерять период в них.

При подаче на двигатель трехфазного напряжения в каждый момент времени на каждой обмотке будет некое значение силы тока.


Рисунок 1. Вид сигнала трехфазного источника переменного тока.

Каждая обмотка формирует вектор магнитного поля пропорциональный току на обмотке. Сложив 3 вектора можно получить результирующий вектор магнитного поля. Так как с течением времени ток на обмотках двигателя меняется по синусоидальному закону, меняется величина вектора магнитного поля каждой обмотки, а результирующий суммарный вектор меняет угол поворота, при этом величина данного вектора остается постоянной.


Рисунок 2. Один электрический период трехфазного двигателя.

На рисунке 2 изображен один электрический период трехфазного двигателя, на данном периоде обозначено 3 произвольных момента, чтобы построить в каждом из этих моментов вектора магнитного поля отложим данный период, 360 электрических градусов, на окружности. Разместим 3 обмотки двигателя сдвинутые на 120 электрических градусов относительно друг друга (рисунок 3).


Рисунок 3. Момент 1. Вектора магнитного поля каждой обмотки (слева) и результирующий вектор магнитного поля (справа).

Вдоль каждой из фаз построен вектор магнитного поля, создаваемый обмоткой двигателя. Направление вектора определяется направлением постоянного тока в обмотке, если напряжение, прикладываемое к обмотке положительно, то вектор направлен в противоположную сторону от обмотки, если отрицательное, то вдоль обмотки. Величина вектора пропорциональна величине напряжения на фазе в данный момент.
Чтобы получить результирующий вектор магнитного поля необходимо сложить данные вектора по закону сложения векторов.
Аналогично построение для второго и третьего моментов времени.


Рисунок 4. Момент 2. Вектора магнитного поля каждой обмотки (слева) и результирующий вектор магнитного поля (справа).

Так, с течение времени, результирующий вектор плавно меняет свое направление, на рисунке 5 изображены получившиеся вектора и изображен полный поворот магнитного поля статора за один электрический период.


Рисунок 5. Вид вращающегося магнитного поля формируемого обмотками на статоре двигателя.

За этим вектором электрического магнитного поля увлекается магнитное поле постоянных магнитов ротора в каждый момент времени (рисунок 6).


Рисунок 6. Постоянный магнит (ротор) следует направлению магнитного поля формируемого статором.

Так работает синхронная машина переменного тока.

Имея источник постоянного тока необходимо самостоятельно формировать один электрический период со сменой направлений тока на трех обмотках двигателя. Поскольку бесколлекторный двигатель по конструкции такой же, как синхронный, в генераторном режиме имеет идентичные параметры, необходимо отталкиваться от рисунка 5, где изображено сформированное вращающееся магнитное поле.

Постоянное напряжение
Источник постоянного тока имеет только 2 провода «плюс питания» и «минус питания» это значит, что есть возможность подавать напряжение только на две из трех обмоток. Необходимо аппроксимировать рисунок 5 и выделить все моменты, при которых возможно скоммутировать 2 фазы из трех.

Число перестановок из множества 3 равняется 6, следовательно, имеется 6 вариантов подключения обмоток.
Изобразим возможные варианты коммутаций и выделим последовательность, при которой вектор будет шаг за шагом проворачиваться далее пока не дойдет до конца периода и не начнет сначала.

Электрический период будем отсчитывать от первого вектора.


Рисунок 7. Вид шести векторов магнитного поля которые можно создать от источника постоянного тока коммутацией двух из трех обмоток.

На рисунке 5 видно, что при управлении трехфазным синусоидальным напряжением имеется множество векторов плавно проворачивающихся с течением времени, а при коммутации постоянным током возможно получить вращающееся поле только из 6 векторов, то есть переключение на следующий шаг должно происходить каждые 60 электрических градусов.
Результаты из рисунка 7 сведены в таблицу 1.

Таблица 1. Полученная последовательность коммутаций обмоток двигателя.

Вид получившегося управляющего сигнала в соответствии с таблицей 1 изображен на рисунке 8. Где -V коммутация на минус источника питания (GND), а +V коммутация на плюс источника питания.


Рисунок 8. Вид управляющих сигналов от источника постоянного тока для бесколлекторного двигателя. Желтый – фаза W, синий – U, красный – V.

Однако реальная картина с фаз двигателя будет похожа на синусоидальный сигнал из рисунка 1. У сигнала образуется трапециевидная форма, так как в моменты, когда обмотка двигателя не подключена, постоянные магниты ротора наводят на нее ЭДС (рисунок 9).


Рисунок 9. Вид сигнала с обмоток бесколлекторного двигателя в рабочем режиме.

На осциллографе это выглядит так:


Рисунок 10. Вид окна осциллографа при измерении одной фазы двигателя.

Конструктивные особенности
Как было сказано ранее за 6 переключений обмоток формируется один электрический период 360 электрических градусов.
Необходимо связать данный период с реальным углом вращения ротора. Двигатели с одной парой полюсов и трехзубым статором применяются крайне редко, двигатели имеют N пар полюсов.
На рисунке 11 изображены модели двигателя с одной парой полюсов и с двумя парами полюсов.


а. б.
Рисунок 11. Модель двигателя с одной (a) и с двумя (б) парами полюсов.

Двигатель с двумя парами полюсов имеет 6 обмоток, каждая из обмоток парная, каждая группа из 3 обмоток смещена между собой на 120 электрических градусов. На рисунке 12б. отложен один период для 6 обмоток. Обмотки U1-U2, V1-V2, W1-W2 соединены между собой и в конструкции представляют 3 провода вывода фаз. Для простоты рисунка не отображены соединения, но следует запомнить, что U1-U2, V1-V2, W1-W2 одно и то же.

На рисунке 12, исходя из данных таблицы 1, изображены вектора для одной и двух пар полюсов.


а. б.
Рисунок 12. Схема векторов магнитного поля для двигателя с одной (a) и с двумя (б) парами полюсов.

На рисунке 13 изображены вектора, созданные 6 коммутациями обмоток двигателя с одной парой полюсов. Ротор состоит из постоянных магнитов, за 6 шагов ротор провернется на 360 механических градусов.
На рисунке обозначены конечные положения ротора, в промежутках между двумя соседними положениями ротор проворачивается от предыдущего к следующему скоммутированному состоянию. Когда ротор достигает данного конечного положения, должно происходить следующее переключение и ротор будет стремиться к новому заданному положению, так чтобы его вектор магнитного поля стал сонаправлен с вектором электромагнитного поля статора.


Рисунок 13. Конечные положения ротора при шестиступенчатой коммутации бесколлекторного двигателя с одной парой полюсов.

В двигателях с N парами полюсов необходимо пройти N электрических периодов для полного механического оборота.
Двигатель с двумя парами полюсов будет иметь два магнита с полюсами S и N, и 6 обмоток (рисунок 14). Каждая группа из 3 обмотки смещены друг относительно друга на 120 электрических градусов.


Рисунок 14. Конечные положения ротора при шестиступенчатой коммутации бесколлекторного двигателя с двумя парами полюсов.

Определение положения ротора бесколлекторного двигателя
Как было сказано ранее для работы двигателя необходимо в нужные моменты времени подключать напряжение на нужные обмотки статора. Подавать напряжение на обмотки двигателя нужно в зависимости от положения ротора, так чтобы магнитное поле статора всегда опережало магнитное поле ротора. Для определения положения ротора двигателя и коммутаций обмоток используют электронный блок управления.
Отслеживание положения ротора возможно несколькими способами:
1. По датчикам Холла
2. По обратной ЭДС
Как правило, датчиками Холла производители оснащают двигатель при выпуске, поэтому это самый распространённый метод управления.
Коммутирование обмоток в соответствии с сигналами обратной ЭДС позволяет отказаться от датчиков встроенных в двигатель и использовать в качестве датчика анализ свободной фазы двигателя, на которую будет наводиться магнитным полем противо-ЭДС.

Управление бесколлекторным двигателем с датчиками Холла
Чтобы коммутировать обмотки в нужные моменты времени необходимо отслеживать положение ротора в электрических градусах. Для этого применяются датчики Холла.
Поскольку имеется 6 состояний вектора магнитного поля необходимо 3 датчика Холла, которые будут представлять один абсолютный датчик положения с трехбитным выходом. Датчики Холла устанавливаются также как обмотки, смещенные между собой на 120 электрических градусов. Это позволяет использовать магниты ротора в качестве воздействующего элемента датчика.


Рисунок 15. Сигналы с датчиков Холла за один электрический оборот двигателя.

Для вращения двигателя необходимо чтобы магнитное поле статора опережало магнитное поле ротора, положение, когда вектор магнитного поля ротора сонаправлен с вектором магнитного поля статора является конечным для данной коммутации, именно в этот момент должно происходить переключение на следующую комбинацию, чтобы не давать ротору зависать в стационарном положении.
Cопоставим сигналы с датчиков Холла с комбинацией фаз которые необходимо скоммутировать (таблица 2)

Таблица 2. Сопоставление сигналов датчиков Холла с коммутацией фаз двигателя.

Положение двигателя HU(1) HV(2) HW(3) U V W
0 0 0 1 0 - +
1 0 1 + - 0
1 0 0 + 0 -
1 1 0 0 + -
0 1 0 - + 0
360/N 0 1 1 - 0 +

При равномерном вращении двигателя с датчиков поступает сигнал смещенный на 1/6 периода, 60 электрических градусов (рисунок 16).


Рисунок 16. Вид сигнала с датчиков Холла.

Управление с помощью сигнала обратной ЭДС
Существуют бесколлекторный двигатели без датчиков положения. Определение положения ротора осуществляется с помощью анализа сигнала ЭДС на свободной фазе двигателя. В каждый момент времени к одной из фаз подключен «+» к другой «-» питания, одна из фаз остается свободной. Вращаясь, магнитное поле ротора наводит ЭДС в свободной обмотке. По мере вращения напряжение на свободной фазе изменяется (рисунок 17).


Рисунок 17. Изменение напряжения на фазе двигателя.

Сигнал с обмотки двигателя разбит на 4 момента:
1. Обмотка подключена к 0
2. Обмотка не подключена (свободная фаза)
3. Обмотка подключена к питающему напряжению
4. Обмотка не подключена (свободная фаза)
Сопоставив сигнал с фаз с управляющим сигналом, видно, что момент перехода на следующее состояние можно детектировать пересечением средней точки (половины питающего напряжения) с фазой, которая в данный момент не подключена (рисунок 18).


Рисунок 18. Сопоставление управляющего сигнала с сигналом на фазах двигателя.

После детектирования пересечения необходимо выдержать паузу и включать следующее состояние. По данному рисунку составлен алгоритм переключений состояний обмоток (таблица 3).

Таблица 3. Алгоритм переключения обмоток двигателя

Текущее состояние U V W Следующее состояние
1 - + 2
2 - + 3
3 + - Ожидание пересечения средней точки из + в - 4
4 + Ожидание пересечения средней точки из - в + - 5
5 Ожидание пересечения средней точки из + в - + - 6
6 - + Ожидание пересечения средней точки из - в + 1

Пересечение средней точки проще всего детектировать компаратором, на один вход компаратора подается напряжение средней точки, а на второй текущее напряжение фазы.


Рисунок 19. Детектирование средней точки компаратором.

Компаратор срабатывает в момент перехода напряжения через среднюю точку и генерирует сигнал для микроконтроллера.

Обработка сигнала с фаз двигателя
Однако сигнал с фаз при регулировании скорости ШИМ отличается видом, и имеет импульсный характер (рисунок 21), в таком сигнале невозможно детектировать пересечение со средней точкой.


Рисунок 20. Вид сигнала фазы при регулировании скорости ШИМ.

Поэтому данный сигнал следует отфильтровать RC фильтром чтобы получить огибающую, а так же разделить под требования компаратора. По мере увеличения скважности шим сигнал будет возрастать по амплитуде (рисунок 22).


Рисунок 21. Схема делителя и фильтра сигнала с фазы двигателя.


Рисунок 22. Огибающая сигнала при изменении скважности ШИМ.

Схема со средней точкой


Рисунок 23. Вид виртуальная средней точки. Картинка взята с avislab.com/

С фаз снимаются сигналы через токограничительные резисторы и объединяются, получается вот такая картина:


Рисунок 24. Вид осциллограммы напряжения виртуальной средней точки.

Из-за ШИМ, напряжение средней точки не постоянно, сигнал так же необходимо фильтровать. Напряжение средней точки после сглаживания будет достаточно большим (в районе питающего напряжения двигателя), его необходимо разделить делителем напряжения до значения половины питающего напряжения.
бесколлекторный двигатель

  • ЭДС
  • BLDC
  • Добавить метки

    Возникновение бесколлекторных двигателей объясняется необходимостью создания электрической машины с множеством преимуществ. Бесколлекторный двигатель представляет собой устройство без коллектора, функцию которого берет на себя электроника.

    БКЭПТ - бесколлекторные электродвигатели постоянного тока, могут быть мощностью, примером, 12, 30 вольт.

    • Выбор подходящего двигателя
    • Принцип работы
    • Устройство БКЭПТ
    • Датчики и их отсутствие
    • Отсутствие датчика
    • Понятие ШИМ частоты
    • Система arduino
    • Крепеж двигателя

    Выбор подходящего двигателя

    Чтобы подобрать агрегат, необходимо сравнить принцип работы и особенности коллекторных и бесколлекторных двигателей.

    Слева направо: коллекторный двигатель и двигатель ФК 28-12 бесколлекторный

    Коллекторные стоят меньше, но развивают невысокую скорость вращения крутящего момента. Они работают от постоянного тока, имеет небольшой вес и размер, доступный ремонт по замене деталей. Проявление негативного качества выявляется при получении огромного количества оборотов. Щетки контактируют с коллектором, вызывая трение, что может повредить механизм. Работоспособность агрегата снижается.

    Щеточки не только требуют ремонта из-за быстрого износа, но и могут привести к перегреву механизма.

    Главным преимуществом бесколлекторного двигателя постоянного тока является неимение контактов крутящего момента и переключения. Значит отсутствие источников потерь, как в двигателях с постоянными магнитами. Их функции выполняют транзисторы МОП. Ранее их стоимость была высокой, поэтому они не были доступны. Сегодня цена стала приемлемой, а показатели значительно улучшились. При отсутствии в системе радиатора, мощность ограничивается от 2,5 до 4 ватт, а ток работы от 10 до 30 Ампер. КПД бесколлекторных электродвигателей очень высокий.

    Вторым преимуществом выступает настройки механики. Ось устанавливается на широкоподшипники. В структуре нет ломающих и стирающихся элементов.

    Единственным минусом является дорогой электронный блок управления.

    Рассмотрим, пример механики ЧПУ станка со шпинделем.

    Замена коллекторного двигателя на бесколлекторный оградит от поломки шпинделя для ЧПУ. Под шпинделем имеется в видувал, обладающий правыми и левыми оборотами крутящего момента. Шпиндель для ЧПУ обладает большой мощностью. Скорость крутящего момента контролируется регулятором сервотестором, а обороты управляются автоматом контроллером. Стоимость ЧПУ со шпинделем около 4 тысяч рублей.

    Принцип работы

    Главная особенность механизма - отсутствие коллектора. А постоянные магниты установлены у шпинделя, является ротором. Вокруг него располагаются проволочные обмотки, которые имеют различные магнитные поля. Отличием бесколлекторных моторов 12 вольт является сенсор управления ротором, расположенный на нем же. Сигналы подаются в блок регулятора скорости.

    Устройство БКЭПТ

    Схему расположения магнитов внутри статора обычно применяют для двухфазных двигателей с небольшим количеством полюсов. Принцип крутящего момента вокруг статора применяют при необходимости получить двухфазный двигатель с небольшими оборотами.

    На роторе расположены четыре полюса. Магниты в форме прямоугольника устанавливаются, чередуя полюсы. Однако не всегда количество полюсов равняется числу магнитов, которых может быть 12, 14. Но количество полюсов должно быть четным.Несколько магнитов могут составлять один полюс.

    На картинке изображено 8 магнитов, формирующих 4 полюса. Момент силы зависит от мощности магнитов.

    Датчики и их отсутствие

    Регуляторы хода подразделяются на две группы: с датчиком положения ротора и без.

    Токовые силы подаются на обмотки двигателя при особом положении ротора.Его определяет электронная система с помощью датчика положения. Они бывают разнообразных типов. Популярный регулятор хода - дискретный датчик с эффектом Холла. В двигателе на три фазы на 30 вольт будет использовано 3 датчика. Блок электроники постоянно располагает данными о положении ротора и направляет напряжение вовремя в нужные обмотки.

    Распространенное приспособление, изменяющие свои выводы при переключении обмоток.

    Устройство с разомкнутым контуром измеряет ток, частоту вращения. ШИМ каналы присоединяются к нижней части системы управления.

    Три ввода присоединяются к датчику Холла. В случае изменения датчика Холла, начинается процесс переработки прерывания. Для обеспечения быстрого реагирования обработки прерывания подключается датчик Холла к младшим выводам порта.

    Использование датчика положения с микроконтроллером

    Для экономии на платежах за электроэнергию наши читатели советуют "Экономитель энергии Electricity Saving Box". Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

    Контроллер силы каскада лежит в основе AVR ядра, который обеспечивает грамотное управление бесколлекторным двигателем постоянного тока. AVR представляет собой чип для выполнения определенных задач.

    Принцип работы регулятора хода может быть с датчиком и без. Программа платы AVR осуществляет:

    • пуск двигателя максимально быстро без использования внешних дополнительных приборов;
    • управление скоростью одним внешним потенциометром.

    Отдельный вид автоматического управления сма, используется в стиральных машинах.

    Отсутствие датчика

    Для определения положения ротора необходимо проводить измерение напряжения на незадействованную обмотку. Данный способ применим при вращении двигателя, иначе он не будет действовать.

    Бездатчиковые регуляторы хода изготавливаются легче, это объясняет их широкое распространение.

    Контроллеры обладают следующими свойствами:

    • значение максимального постоянного тока;
    • значение максимального рабочего напряжения;
    • число максимальных оборотов;
    • сопротивление силовых ключей;
    • импульсная частота.

    При подключении контроллера важно делать провода, как можно короче. Из-за возникновения бросков тока на старте. Если провод длинный, то могут возникнуть погрешности определения положения ротора. Поэтому контроллеры продаются с проводом 12 - 16 см.

    Контроллеры обладают множеством программных настроек:

    • контроль выключения двигателя;
    • плавное или жёсткое выключение;
    • торможение и плавное выключение;
    • опережение мощности и КПД;
    • мягкий, жесткий, быстрый старт;
    • ограничения тока;
    • режим газа;
    • смена направления.

    Контроллер LB11880, изображенный на рисунке, содержит драйвер бесколлекторного двигателя мощной нагрузки, то есть можно запустить двигатель напрямую к микросхеме без дополнительных драйверов.

    Понятие ШИМ частоты

    Когда происходит включение ключей, полная нагрузка подаётся на двигатель. Агрегат достигает максимальных оборотов. Для того чтобы управлять двигателем, нужно обеспечить регулятор питания. Именно это осуществляет широтно-импульсная модуляция (ШИМ).

    Устанавливается необходимая частота открытия и закрытия ключей. Напряжение меняется с нулевого на рабочее. Чтобы управлять оборотами, необходимо наложить сигнал ШИМ на сигналы ключей.

    Сигнал ШИМ может быть сформирован аппаратом на несколько выводов. Или создать ШИМ для отдельного ключа программой. Схема становится проще. ШИМ сигнал имеет 4- 80 килогерц.

    Увеличение частоты приводит к большему количеству процессов перехода, что даёт выделение тепла. Высота частоты ШИМ повышает количество переходных процессов, от этого происходят потери на ключах. Маленькая частота не даёт нужную плавность управления.

    Чтобы уменьшить потери на ключах при переходных процессах, ШИМ сигналы подаются на верхние или на нижние ключи по отдельности. Прямые потери рассчитываются по формуле P=R*I2, где P - мощность потерь, R - сопротивление ключа, I - сила тока.

    Меньшее сопротивление минимизируют потери, увеличивает КПД.

    Система arduino

    Часто для управления бесколлекторными двигателями используется аппаратная вычислительная платформа arduino. В основе находится плата и среда разработки на языке Wiring.

    В Плату arduino входит микроконтроллер Atmel AVR и элементная обвязка программирования и взаимодействия со схемами. На плате имеется стабилизатор напряжения. Плата Serial Arduino представляет собой несложную инвертирующую схему для конвертирования сигналов с одного уровня на другой. Программы устанавливаются через USB. В некоторых моделях, например, Arduino Mini, необходима дополнительная плата для программирования.

    Язык программирования Arduino используется стандартный Processing. Некоторые модели arduino позволяют управлять несколькими серверами одновременно. Программы обрабатывает процессор, а компилирует AVR.

    Проблемы с контроллером могут возникать из-за провалов напряжения и чрезмерной нагрузке.

    Крепеж двигателя

    Моторама- механизм крепления двигателя. Применяется в установках двигателей. Моторама представляет собой взаимосвязанные стержни и элементы каркаса. Моторамы бывают плоскими, пространственными по элементам. Моторама одиночного двигателя 30 вольт или нескольких устройств. Силовая схема моторамы состоит из совокупности стержней. Моторама устанавливается в сочетании ферменных и каркасных элементов.

    Бесколлекторный электродвигатель постоянного тока незаменимый агрегат, применяемый как в быту, так и в промышленности. Например, ЧПУ станок, медицинское оборудование, автомобильные механизмы.

    БКЭПТ выделяются надежностью, высокоточным принципом работы, автоматическим интеллектуальным управлением и регулированием.

    Бесколлекторные электродвигатели

    Бесколлекторные (brushless англ.) электродвигатели пришли в моделизм сравнительно недавно, в последние 5-7 лет. В отличие от коллекторных моторов они питаются трехфазным переменным током. Бесколлекторные двигатели эффективно работают в более широком диапазоне оборотов и имеют более высокий КПД. Конструкция двигателя при этом проще, в ней нет щеточного узла, и нет необходимости в техническом обслуживании. Можно сказать, что бесколлекторные моторы практически не изнашиваются. Стоимость бесколлекторных двигателей несколько выше, чем коллекторных. Это вызвано тем, что все бесколлекторные моторы снабжены подшипникам и, как правило, изготовлены более качественно. Хотя, разрыв в ценах между хорошим коллекторным мотором и бесколлекторным двигателем аналогичного класса не столь уж велик.

    По конструкции бесколлекторные моторы делятся на две группы: inrunner (произносится как "инраннер") и outrunner (произносится как "аутраннер"). Двигатели первой группы имеют расположенные по внутренней поверхности корпуса обмотки, и вращающийся внутри магнитный ротор. Двигатели второй группы - "аутраннеры", имеют неподвижные обмотки, внутри двигателя, вокруг которых вращается корпус с помещенными на его внутреннюю стенку постоянными магнитами. Количество полюсов магнитов, используемых в бесколлекторных двигателях, может быть разным. По количеству полюсов можно судить о крутящем моменте и оборотах и двигателя. Моторы с двухполюсными роторами имеют наибольшую скорость вращения при наименьшем крутящем моменте. Эти моторы по конструкции могут быть только "инраннерами". Такие двигатели часто продаются уже с закрепленными на них планетарными редукторами, так как их обороты слишком велики для прямого вращения пропеллера. Иногда такие моторы используют и без редуктора - например, ставят на гоночные авиамодели. Моторы с большим количеством полюсов имеют меньшую скорость вращения, но зато больший крутящий момент. Такие моторы позволяют использовать пропеллеры большого диаметра, без необходимости применять редукторы. Вообще, пропеллеры большого диаметра и небольшого шага, при относительно низкой частоте вращения обеспечивают большую тягу, но сообщают модели небольшую скорость, в то время как маленькие по диаметру пропеллеры с большим шагом на высоких оборотах обеспечивают высокую скорость, при сравнительно небольшой тяге. Таким образом, многополюсные моторы идеально подходят для моделей, которым нужна высокая тяговооруженность, а двухполюсные без редуктора - для скоростных моделей. Для более точного подбора двигателя и пропеллера к определенной модели, можно воспользоваться специальной программой MotoCalc.

    Так как бесколлекторные моторы питаются переменным током, для работы им необходим специальный контроллер (регулятор), преобразующий постоянный ток от батарей в переменный. Регуляторы для бесколлекторных двигателей представляют собой программируемое устройство, позволяющее контролировать все жизненно важные параметры двигателя. Они позволяют не только менять обороты и направление работы мотора, но и обеспечивать в зависимости от необходимости плавный или резкий старт, ограничение по максимальному току, функцию "тормоза" и ряд других тонких настроек двигателя под нужды моделиста. Для программирования регулятора используются устройства для подключению его к компьютеру, либо в полевых условиях это можно делать с помощью передатчика и специальной перемычки.

    Производителей бесколлекторных моторов и регуляторов к ним очень много. Конструктивно и по размерам бесколлекторные двигатели тоже сильно различаются. Более того, самостоятельное изготовление бесколлекторных двигателей на основе деталей от CD-приводов и других промышленных бесколлекторных моторов стало весьма распространенным явлением в последнее время. Возможно, именно по этой причине у бесколлекторных двигателей сегодня нет даже такой приблизительной общей классификации как у коллекторных собратьев. Подведем краткий итог. На сегодняшний день, коллекторные двигатели в основном используют на недорогих хоббийных моделях, или спортивных моделях начального уровня. Эти двигатели не дороги, просты в эксплуатации, и по-прежнему составляют самый массовый вид модельных электромоторов. Им на смену идут бесколлекторные моторы. Единственным сдерживающим фактором пока остается их цена. Вместе с регулятором бесколлекторный мотор стоит на 30-70% дороже. Однако, цены на электронику и моторы падают, и постепенное вытеснение из моделизма коллекторных электромоторов - лишь вопрос времени.

    AVR492: Управление бесколлекторным электродвигателем постоянного тока с помощью AT90PWM3

    Отличительные особенности:

    • Общие сведения о БКЭПТ
    • Использует контроллер силового каскада
    • Аппаратная реализация
    • Пример программного кода

    Введение

    В данных рекомендациях по применению описывается, как реализовать устройство управления бесколлекторным электродвигателем постоянного тока (БКЭПТ) с использованием датчиков положения на основе AVR-микроконтроллера AT90PWM3.

    Высокопроизводительное AVR-ядро микроконтроллера, которое содержит контроллер силового каскада, позволяет реализовать устройство управления высокоскоростным бесколлекторным электродвигателем постоянного тока.

    В данном документе дается короткое описание принципа действия бесколлекторного электродвигателя постоянного тока, а в деталях рассматривается управление БКЭПТ в сенсорном режиме, а также приводится описание принципиальной схемы опорной разработки ATAVRMC100, на которой основаны данные рекомендации по применению.

    Обсуждается также программная реализация с программно-реализованным контуром управления на основе ПИД-регулятора. Для управления процессом коммутации подразумевается использование только датчиков положения на основе эффекте Холла.

    Принцип действия

    Области применения БКЭПТ непрерывно увеличиваются, что связано с рядом их преимуществ:

    1. Отсутствие коллекторного узла, что упрощает или даже вообще исключает техническое обслуживание.
    2. Генерация более низкого уровня акустического и электрического шума по сравнению с универсальными коллекторными двигателями постоянного тока.
    3. Возможность работы в опасных средах (с воспламеняемыми продуктами).
    4. Хорошее соотношение массогабаритных характеристик и мощности...

    Двигатели такого типа характеризуются небольшой инерционностью ротора, т.к. обмотки расположены на статоре. Коммутация управляется электроникой. Моменты коммутации определяются либо по информации от датчиков положения, либо путем измерения обратной э.д.с., генерируемой обмотками.

    При управлении с использованием датчиков БКЭПТ состоит, как правило, из трех основных частей: статор, ротор и датчики Холла.

    Статор классического трехфазного БКЭПТ содержит три обмотки. Во многих двигателях обмотки разделяются на несколько секций, что позволяет уменьшить пульсации вращающего момента.

    На рисунке 1 показана электрическая схема замещения статора. Он состоит из трех обмоток, каждая из которых содержит три последовательно включенных элемента: индуктивность, сопротивление и обратная э.д.с.


    Рисунок 1. Электрическая схема замещения статора (три фазы, три обмотки)

    Ротор БКЭПТ состоит из четного числа постоянных магнитов. Количество магнитных полюсов в роторе также оказывает влияние на размер шага вращения и пульсации вращающего момента. Чем большее количество полюсов, тем меньше размер шага вращения и меньше пульсации вращающего момента. Могут использоваться постоянные магниты с 1..5 парами полюсов. В некоторых случаях число пар полюсов увеличивается до 8 (рисунок 2).



    Рисунок 2. Статор и ротор трехфазного, трехобмоточного БКЭПТ

    Обмотки установлены стационарно, а магнит вращается. Ротор БКЭПТ характеризуется более легким весом относительно ротора обычного универсального двигателя постоянного тока, у которого обмотки расположены на роторе.

    Датчик Холла

    Для оценки положения ротора в корпус двигателя встраиваются три датчика Холла. Датчики установлены под углом 120° по отношению друг к другу. С помощью данных датчиков возможно выполнить 6 различных переключений.

    Коммутация фаз зависит от состояния датчиков Холла.

    Подача напряжений питания на обмотки изменяется после изменения состояний выходов датчиков Холла. При правильном выполнении синхронизированной коммутации вращающий момент остается приблизительно постоянным и высоким.



    Рисунок 3. Сигналы датчиков Холла в процессе вращения

    Коммутация фаз

    В целях упрощенного описания работы трехфазного БКЭПТ рассмотрим только его версию с тремя обмотками. Как было показано ранее, коммутация фаз зависит от выходных значений датчиков Холла. При корректной подаче напряжения на обмотки двигателя создается магнитное поле и инициируется вращение. Наиболее распространенным и простым способом управления коммутацией, используемый для управления БКЭПТ, является схема включения-отключения, когда обмотка либо проводит ток, либо нет. В один момент времени могут быть запитаны только две обмотки, а третья остается отключенной. Подключение обмоток к шинам питания вызывает протекание электрического тока. Данный способ называется трапецеидальной коммутацией или блочной коммутацией.

    Для управления БКЭПТ используется силовой каскад, состоящих из 3 полумостов. Схема силового каскада показана на рисунке 4.



    Рисунок 4. Силовой каскад

    По считанным значениям датчиков Холла определяется, какие ключи должны быть замкнутыми.

    Двигатели в мультироторных аппаратах бывают двух типов: коллекторные и бесколлекторные. Их главное отличие в том, что у коллекторного двигателя обмотки находятся на роторе (вращающейся части), а у бесколлекторного — на статоре. Не вдаваясь в подробности скажем, что бесколлекторный двигатель предпочтительнее коллекторного поскольку наиболее удовлетворяет требованиям, ставящимся перед ним. Поэтому в этой статье речь пойдёт именно о таком типе моторов. Подробно о разнице между бесколлекторными и коллекторными двигателями можно прочесть в .

    Несмотря на то, что применяться БК-моторы начали сравнительно недавно, сама идея их устройства появилась достаточно давно. Однако появление транзисторных ключей и мощных неодимовых магнитов сделало возможным их коммерческое использование.

    Устройство БК — моторов

    Конструкция бесколлекторного двигателя состоит из ротора на котором закреплены магниты и статора на котором располагаются обмотки. Как раз по взаиморасположению этих компонентов БК-двигатели делятся на inrunner и outrunner.

    В мультироторных системах чаще применяется схема Outrunner, поскольку она позволяет получать наибольший вращательный момент.

    Плюсы и минусы БК — двигателей

    Плюсы:

    • Упрощённая конструкция мотора за счёт исключения из неё коллектора.
    • Более высокий КПД.
    • Хорошее охлаждение
    • БК-двигатели могут работать в воде! Однако не стоит забывать, что из-за воды на механических частях двигателя может образоваться ржавчина и он сломается через какое-то время. Для избежания подобных ситуаций рекомендуется обрабатывать двигатели при помощи водоотталкивающей смазки.
    • Наименьшие радиопомехи

    Минусы:

    Из минусов можно отметить только невозможность применения данных двигателей без ESC (регуляторы скорости вращения). Это несколько усложняет конструкцию и делает БК-двигатели дороже коллекторных. Однако если сложность конструкции является приоритетным параметром, то существуют БК-двигатели с встроенными регуляторами скорости.

    Как выбрать двигатели для коптера?

    При выборе бесколлекторных двигателей в первую очередь следует обратить внимание на следующие характеристики:

    • Максимальный ток — эта характеристика показывает какой максимальный ток может выдержать обмотка двигателя за небольшой промежуток времени. Если превысить это время, то неизбежен выход двигателя из строя. Так же этот параметр влияет на выбор ESC.
    • Максимальное напряжение — так же как и максимальный ток, показывает какое напряжение можно подать на обмотку в течение короткого промежутка времени.
    • KV - количество оборотов двигателя на один вольт. Поскольку этот показатель напрямую зависит от нагрузки на вал мотора, то его указывают для случая, когда нагрузки нет.
    • Сопротивление — от сопротивления зависит КПД двигателя. Поэтому чем сопротивление меньше - тем лучше.