Асинхронный электродвигатель

Зачастую основное внимание уделяется изучению трёхфазных электродвигателей, частично в связи с тем, что трёхфазные электродвигатели применяются чаще, чем однофазные. Однофазные электродвигатели имеют тот же принцип действия, что и трёхфазные электродвигатели, только с более низкими пусковыми моментами. Они подразделяются по типам в зависимости от способа пуска.



Стандартный однофазный статор имеет две обмотки, расположенные под углом 90° по отношению друг к другу. Одна из них считается главной обмоткой, другая - вспомогательной, или пусковой. В соответствии с количеством полюсов каждая обмотка может делиться не несколько секций.


На рисунке приведен пример двухполюсной однофазной обмотки с четырьмя секциями в главной обмотке и двумя секциями во вспомогательной.




Следует помнить, что использование однофазного электродвигателя - это всегда, своего рода, компромисс. Конструкция того или иного двигателя зависит, прежде всего, от поставленной задачи. Это значит, что все электродвигатели разрабатываются в соответствии с тем, что наиболее важно в каждом конкретном случае: например, КПД, вращающий момент, рабочий цикл и т.д. Из-за пульсирующего поля однофазные электродвигатели CSIR и RSIR могут иметь более высокий уровень шума по сравнению с двухфазными электродвигателями PSC и CSCR, которые работают намного тише, так как в них используется пусковой конденсатор. Конденсатор, через который производится пуск электродвигателя, способствует его плавной работе.

Основные типы однофазных индукционных электродвигателей

Бытовая техника и приборы низкой мощности работают от однофазного переменного тока, кроме того, не везде может быть обеспечено трёхфазное электропитание. Поэтому однофазные электродвигатели переменного тока получили широкое распространение, особенно в США. Очень часто электродвигателям переменного тока отдают предпочтение, так как их отличает прочная конструкция, низкая стоимость, к тому же они не требуют технического обслуживания.


Как видно из названия, однофазный индукционный электродвигатель работает по принципу индукции; тот же принцип действует и для трёхфазных электродвигателей. Однако между ними есть различия: однофазные электродвигатели, как правило, работают при переменном токе и напряжении 110 -240 В, поле статора этих двигателей не вращается. Вместо этого каждый раз при скачке синусоидального напряжения от отрицательного к положительному меняются полюса.


В однофазных электродвигателях поле статора постоянно выравнивается в одном направлении, а полюса меняют своё положение один раз в каждом цикле. Это означает, что однофазный индукционный электродвигатель не может быть пущен самостоятельно.




Теоретически, однофазный электродвигатель можно было бы запустить при помощи механического вращения двигателя с последующим немедленным подключением питания. Однако на практике пуск всех электродвигателей осуществляется автоматически.


Выделяют четыре основных типа электродвигателей:


Индукционный двигатель с пуском через конденсатор / работа через обмотку (индуктивность) (CSIR),


Индукционный двигатель с пуском через конденсатор/работа через конденсатор (CSCR),


Индукционный двигатель с реостатным пуском (RSIR) и


Двигатель с постоянным разделением емкости (PSC).


На приведённом ниже рисунке показаны типичные кривые соотношения вращающий момент/частота вращения для четырёх основных типов однофазных электродвигателей переменного тока.




Однофазный электродвигатель с пуском через конденсатор/работа через обмотку (CSIR)

Индукционные двигатели с пуском через конденсатор, которые также известны как электродвигатели CSIR, составляют самую большую группу однофазных электродвигателей.


Двигатели CSIR представлены несколькими типоразмерами: от самых маломощных до 1,1 кВт. В электродвигателях CSIR конденсатор последовательно соединён с пусковой обмоткой. Конденсатор вызывает некоторое отставание между током в пусковой обмотке и в главной обмотке.





Это способствует задержке намагничивания пусковой обмотки, что приводит к появлению вращающегося поля, которое влияет на возникновение вращающего момента. После того как электродвигатель наберёт скорость и приблизится к рабочей частоте вращения, открывается пускатель. Далее электродвигатель будет работать в обычном для индукционного электродвигателя режиме. Пускатель может быть центробежным или электронным.


Двигатели CSIR имеют относительно высокий пусковой момент, в диапазоне от 50 до 250 процентов от вращающего момента при полной нагрузке. Поэтому из всех однофазных электродвигателей эти двигатели лучше всего подходят для случаев, когда пусковые нагрузки велики, например для конвейеров, воздушных компрессоров и холодильных компрессоров.



Однофазный электродвигатель с пуском через конденсатор/ работа через конденсатор (CSCR)

Этот тип двигателей, которые коротко называются «электродвигатели CSCR», сочетает в себе лучшие свойства индукционного двигателя с пуском через конденсатор и двигателя с постоянно подключённым конденсатором. Несмотря на то, что из-за своей конструкции эти двигатели несколько дороже других однофазных электродвигателей, они остаются наилучшим вариантом для применения в сложных условиях. Пусковой конденсатор электродвигателя CSCR последовательно соединён с пусковой обмоткой, как и в электродвигателе с пуском через конденсатор. Это обеспечивает высокий пусковой момент.




Электродвигатели CSCR также имеют сходство с двигателями с постоянным разделением емкости (PSC), так как у них пуск тоже осуществляется через конденсатор, который последовательно соединён с пусковой обмоткой, если пусковой конденсатор отключен от сети. Это означает, что двигатель справляется с максимальной нагрузкой или перегрузкой.


Электродвигатели CSCR могут использоваться для работы с низким током полной нагрузки и при более высоком КПД. Это даёт некоторые преимущества, в том числе обеспечивает работу двигателя с меньшими скачками температуры, в сравнении с другими подобными однофазными электродвигателями.


Электродвигатели CSCR - самые мощные однофазные электродвигатели, которые могут использоваться в сложных условиях, например, в насосах для перекачивания воды под высоким давлением и в вакуумных насосах, а также в других высокомоментных процессах. Выходная мощность таких электродвигателей лежит в диапазоне от 1,1 до 11 кВт.



Однофазный электродвигатель с пуском через сопротивление/работа через обмотку (индуктивность) (RSIR)

Данный тип двигателей ещё известен как "электродвигатели с расщеплённой фазой". Они, как правило, дешевле однофазных электродвигателей других типов, используемых в промышленности, но у них также есть некоторые ограничения по производительности.


Пусковое устройство электродвигателей RSIR включает в себя две отдельные обмотки статора. Одна из них используется исключительно для пуска, диаметр проволоки данной обмотки меньше, а электрическое сопротивление - выше, чем у главных обмоток. Это вызывает отставание вращающегося поля, что, в свою очередь, приводит в движение двигатель. Центробежный или электронный пускатель отсоединяет пусковую обмотку, когда частота вращения двигателя достигает, приблизительно, 75% от номинальной величины. После этого электродвигатель продолжит работу в соответствии со стандартными принципами действия индукционного электродвигателя.





Как уже говорилось раньше, для электродвигателей RSIR есть некоторые ограничения. У них низкие пусковые моменты, часто в диапазоне от 50 до 150 процентов от номинальной нагрузки. Кроме того, электродвигатель создаёт высокие пусковые токи, приблизительно от 700 до 1000% от номинального тока. В результате продолжительное время пуска будет вызывать перегрев и разрушение пусковой обмотки. Это означает, что электродвигатели данного типа нельзя использовать там, где необходимы большие пусковые моменты.


Электродвигатели RSIR рассчитаны на узкий диапазон напряжения питания, что, естественно, ограничивает области их применения. Их максимальные вращающие моменты варьируются в пределах от 100 до 250% от расчетной величины. Необходимо также отметить, что дополнительной трудностью является установка тепловой защиты, так как довольно сложно найти защитное устройство, которое срабатывало бы достаточно быстро, чтобы не допустить прогорания пусковой обмотки. Электродвигатели RSIR подходят для использования в небольших приборах для рубки и перемалывания, вентиляторах, а также для применения в других областях, в которых допускается низкий пусковой момент и требуемая выходная мощность на валу от 0,06 кВт до 0,25 кВт. Они не используются там, где должны быть высокие вращающие моменты или продолжительные циклы.



Однофазный электродвигатель с постоянным разделение емкости (PSC)

Как видно из названия, двигатели с постоянным разделением емкости (PSC) оснащены конденсатором, который во время работы постоянно включен и последовательно соединён с пусковой обмоткой. Это значит, что эти двигатели не имеют пускателя или конденсатора, который используется только для пуска. Таким образом, пусковая обмотка становится вспомогательной обмоткой, когда электродвигатель достигает рабочей частоты вращения.





Конструкция электродвигателей PSC такова, что они не могут обеспечить такой же пусковой момент, как электродвигатели с пусковыми конденсаторами. Их пусковые моменты достаточно низкие: 30-90% от номинальной нагрузки, поэтому они не используются в системах с большой пусковой нагрузкой. Это компенсируется за счёт низких пусковых токов - обычно меньше 200% от номинального тока нагрузки, - что делает их наиболее подходящими двигателями для областей применения с продолжительным рабочим циклом.


Двигатели с постоянным разделением емкости имеют ряд преимуществ. Рабочие параметры и частоту вращения таких двигателей можно подбирать в соответствии с поставленными задачами, к тому же они могут быть изготовлены для оптимального КПД и высокого коэффициента мощности при номинальной нагрузке. Так как они не требуют специального устройства пуска, их можно легко реверсировать (изменить направление вращения на обратное). В дополнение ко всему вышесказанному, они являются самыми надёжными из всех однофазных электродвигателей. Вот почему Grundfos использует однофазные электродвигатели PSC в стандартном исполнении для всех областей применения с мощностями до 2,2 кВт (2-полюсные) или 1,5 кВт (4-полюсные).


Двигатели с постоянным разделением емкости могут использоваться для выполнения целого ряда различных задач в зависимости от их конструкции. Типичным примером являются низкоинерционные нагрузки, например вентиляторы и насосы.



Двухпроводные однофазные электродвигатели

Двухпроводные однофазные электродвигатели имеют две главные обмотки, пусковую обмотку и рабочий конденсатор. Они широко используются в США с однофазными источниками питания: 1 ½ 115 В / 60 Гц или 1 ½ 230 В / 60 Гц. При правильном подключении данный тип электродвигателей можно использовать для обоих видов электропитания.



Ограничения однофазных электродвигателей

В отличие от трёхфазных для однофазных электродвигателей существуют некоторые ограничения. Однофазные электродвигатели ни в коем случае не должны работать в режиме холостого хода, так как при малых нагрузках они сильно нагреваются, также рекомендуется эксплуатировать двигатель при нагрузке меньшей 25% от полной нагрузки.


Электродвигатели PSC и CSCR имеют симметричное/ круговое вращающееся поле в одной точке приложения нагрузки; это значит, что во всех остальных точках приложения нагрузки вращающееся поле асимметричное/эллиптическое. Когда электродвигатель работает с асимметричным вращающимся полем, сила тока в одной или обеих обмотках может превышать силу тока в сети. Такие избыточные токи вызывают потери, в связи с этим одна или обе обмотки (что чаще происходит при полном отсутствии нагрузки) нагреваются, даже если ток в сети относительно небольшой. Смотрите примеры.





О напряжении в однофазных электродвигателях

Важно помнить о том, что напряжение на пусковой обмотке электродвигателя может быть выше сетевого напряжения питания электродвигателя. Это относится и к симметричному режиму работы. Смотрите пример.




Изменение напряжения питания


Нужно отметить, что однофазные электродвигатели обычно не используются для больших интервалов напряжения, в отличие от трёхфазных электродвигателей. В связи с этим может возникнуть потребность в двигателях, которые могут работать с другими видами напряжения. Для этого необходимо внести некоторые конструкционные изменения, например, нужна дополнительная обмотка и конденсаторы различной ёмкости. Теоретически, ёмкость конденсатора для различного сетевого напряжения (с одной и той же частотой) должна быть равна квадрату отношения напряжений:




Таким образом, в электродвигателе, рассчитанном на питание от сети в 230 В, используется конденсатор 25µФ/400 В, для модели электродвигателя на 115 В необходим конденсатор ёмкостью 100µФ с маркировкой более низкого напряжения - например 200 В.



Иногда выбирают конденсаторы меньшей ёмкости, например 60µФ. Они дешевле и занимают меньше места. В таких случаях обмотка должна подходить для определённого конденсатора. Нужно учитывать, что производительность электродвигателя при этом будет меньше, чем с конденсатором ёмкостью 100µФ - например, пусковой момент будет ниже.


Заключение


Однофазные электродвигатели работают по тому же принципу, что и трёхфазные. Однако у них более низкие пусковые моменты и значения напряжения питания (110-240В).


Однофазные электродвигатели не должны работать в режиме холостого хода, многие из них не должны эксплуатироваться при нагрузке меньше 25 % от максимальной, так как это вызывает повышение температуры внутри электродвигателя, что может привести к его поломке.

Англоязычный справочник называет асинхронный электродвигатель индукционным. Сразу точки встают над i. Интернет забит вопросами отличий данного типа машин, нюансы коллекторных, синхронных движков, на деле выходит просто. Единственный вид двигателей, создающий полюсы явлением индукции. Прочие конструкции применяют постоянные магниты, катушки, питаемые током… Только в индукционных (асинхронных) двигателях используются наводки, создающие движущую силу. Фактор определяет особенность – отличие скорости вращения вала от частоты поля.

Устройство асинхронного двигателя

Начнем простейшим распространенным вариантом: питание переменным током подается на обмотки статора. Посмотрите фото: типичный образчик статора. Вынув ротор, нельзя сказать, какому типу двигателей принадлежит сердечник, увитый медью. Получили главный вывод: статор не определяет методику формирования движущей силы. Скорее выступает опорой, относительно которой действует статор.

Видим составной сердечник, содержащий две катушки. Направление намотки создает два явных полюса. Нельзя назвать сгущения напряженности поля северным или южным, поскольку направление линий постоянно меняется (с удвоенной частотой сети 100 Гц). Сборка ведется следующим образом:

  1. Катушки мотают отдельно. Конструкторы знают, сколько витков нужно, каким проводом вести.
  2. Полученный моток надевают аккуратно на распорки магнитопровода (традиционной формы буквы Т). Для изоляции прокладывают слой винила, другого полимера.
  3. Затем концы обмоток чуть пригибают к периферии, витки плотно упираются в основание буквы Т.
  4. В нашем случае сердечник составной, внутренняя часть катушками вставлена во внешнее кольцо. Но чаще конструкция попроще.

Сердечник собирается из пластин, изолированных друг от друга при помощи лака. Идет работа асинхронного электродвигателя на 230 вольт, переменное поле наводит вихревые токи, вызывая эффект перемагничивания. Чтобы снизить потери, сердечник разбивается на пластины. Специальная сталь, легированная добавками кремния обеспечивает низкий коэффициент электропроводности.

Статор электрического двигателя

В бытовых асинхронных электродвигателях полюсов статора два. Встречаются исключения из правила. На другом снимке видим статор асинхронного двигателя напольного вентилятора с тремя скоростями. Полюсов восемь, чтобы запитать такую кучу железа, понадобился конденсатор. Сдвигает фазу напряжения на минус 90 градусов относительно тока. Становится возможным создать переменное вращающееся поле внутри статора. Данный тип асинхронных двигателей называется конденсаторным.

Первым две фазы использовать предложил Никола Тесла.

Схема выглядит следующим образом:

  1. Четыре обмотки, лежащие в вершинах креста запитываются сетью 230 вольт. Две – противолежащие – имеют один знак полюса, прочие – другой. Получается, поле вращается с половинной скоростью сети (25 Гц). Этого хватает исправной работе вентилятора.
  2. Плавный пуск асинхронного электродвигателя и работы возможны только в условиях, когда поле сглажено. Для этих целей применяются четыре обмотки, лежащие по диагоналям. Здесь напряжение сдвинуто на 90 градусов. Использованием вспомогательных катушек технические характеристики улучшаются.

Как подстраиваются обороты? Регуляторы скорости асинхронного электродвигателя коммутируют обмотку. Клавиатура управления устроена в каждый момент времени допускать нажатие одной кнопки, либо никакой. Восемь обмоток имеют пару отводов. Статором производится нужная коммутация, некоторые ветви запитываются конденсатором. Нажатие каждой кнопки включает в работу часть обмотки. Полностью статор работает на высшей скорости.

Принцип работы схемы

Примерная схема, демонстрирующая принцип работы, иллюстрируется фото. Скорость вращения задается коммутацией обмоток кнопками 1, 2, 3. Необходимость защиты от одновременного включения диктуется требованиями к нормальной работе устройства. В результате реализуется простейшими методами управление по скорости.

Сердечник магнитопровода составлен листами электротехнической стали, снижающей потерь на нагрев. Температура может достигать значительных размеров, поэтому ротор асинхронного двигателя вентилятора снабжается лопастями (см. фото). Любой вентилятор реально может только разогревать воздух, никак не наоборот.

Роторы асинхронных двигателей

Ротор асинхронного двигателя

В данном случае двигатель обеспечит долговременную работу. Поэтому ротор снабжен лопастями тангенциального вентилятора. Помогает охладить конструкцию жаркими летними ночами. Хозяин может спокойно спать, игнорируя возможность пожара. Любой хороший прибор работает аналогичным образом (себя охлаждает). В данном случае двигатель сконструирован по схеме с короткозамкнутым ротором. На валу сидит барабан, где в силумин утоплены медные жилы. Закорочены друг на друга кольцевым соединителем. Подобное техническое решение в литературе традиционно называется беличьей клеткой (колесом) в силу очевидных причин.

Асинхронный короткозамкнутый электродвигатель является доминирующим в быту. Поля в проводниках наводятся статором, затем происходит сцепление через эфир, вал набирает обороты. Никогда не догонит частоту сети. Потому что индукционные токи обращаются в нуль, сцепление нарушается. Вал тормозит, снова подхватывается полем. Подобным образом действуют однофазные асинхронные электродвигатели, любые другие. В сущности, нет разницы, при помощи чего создается переменное поле.

Выделяют ещё одно большое семейство. Устройство асинхронного электродвигателя принципиально иное. Ротор снабжен обмотками, как коллекторный мотор. Обычно трехфазные. Это позволит навести гораздо более сильные поля, возникает крупная проблема: сложно стронуть с места вал. Огромная напряженность поля образует невероятной силы сцепление, за счет чего имеется возможность выхода оборудования из строя. Кроме того вал вообще так не раскрутится.

Вот поэтому для уменьшения силы наведенных токов (напряженности поля) в цепи всех фаз ротора врубается реостат. Активное сопротивление мешает ЭДС развить мощность на валу: некоторая доля рассеивается джоулевым теплом, формируемым активным сопротивлением. Стартовый момент асинхронного двигателя с фазным ротором достаточно велик, срыва оборотов не происходит. Понятно, что значение сопротивлений реостата для каждой конструкции свое. Определяют цифру ротор асинхронного электродвигателя, заданные характеристики, стартовая нагрузка.

Обратите внимание, что во всех случаях с асинхронными двигателями наблюдаем большие потери. Особенно хорошо видно на примере реостата. Мощность асинхронного электродвигателя напрямую тратится на рассеиваемое тепло. Главным достоинство рассматриваемого класса приборов все-таки считаются простота конструкции и обслуживания. В противном случае любые типы асинхронных электродвигателей заброшены бы были на помойку истории.

Как работает асинхронный двигатель

Статор создает вращающееся магнитное поле. Направление линий напряженности определяется правилом буравчика (правой руки). Поэтому статор пока отложим в сторону, попробуем понять, что параллельно происходит на роторе. Начнем беличьей клеткой.

Внутри статора находится поле, линии напряженности которого в первом приближении направлены к центру, где находится вал. Пересекают проводник беличьей клетки под углом близким 90 градусам. По правилу правой руки переменное поле индуцирует ЭДС, порождающую ток. В результате возникает ответ.

Любая пара проводников беличьей клетки обращается в рамку. Вокруг вращается поле статора. По правилу руки возникает ответное поле, направленное противоположно исходному:

  1. Ротор движется медленнее статора. Пусть вращение описывает часовую стрелку.
  2. В какой-то момент северный полюс начинает догонять один из проводников беличьей клетки.
  3. Ток направлен так, что круговые линии напряженности ответного магнитного поля идут навстречу полюсу.
  4. Получается, впереди по курсу полюс наталкивается на одноименный знак заряда, начинает толкать его. Позади образуется «юг», старающийся бежать вслед полю.

Простое краткое объяснение того, почему беличья клетка, в конце концов, начинает вращаться. Ротор не должен быть слишком тяжелым, сцепление полей не очень сильное. Это объясняет низкое тяговое усилие, развиваемое асинхронным двигателем на старте. Пусковой ток высок, поскольку ничто не препятствует генерации поля внутри статора. Обратите внимание: в роторе однофазного асинхронного двигателя, показанного на фото в начале статьи, проводники беличьей клетки чуть наклонены к оси барабана. Помогает создать более равномерный магнитный полюс, компенсируя недостатки (в первую очередь неравномерность) вращения поля статора.

Фазный ротор состоит из обмоток, нормаль которых направлена примерно на центр двигателя (вал). Можно каждую представить гипертрофированной ячейкой беличьей клетки. Витков много (в дрелях, к примеру, порядка 40), сила поля намного выше. За счет резкого скачка на старте потребляемая энергия стала бы слишком большой. Уровень ЭДС значителен (определен скоростью изменения магнитного потока). Цепь ротора дополняется реостатом, пытаются компенсировать недостаток. Активное сопротивление понижает ток, закономерно снижая ответное поле, генерируемое проводниками.

Фазный ротор может улучшить характеристики асинхронных электродвигателей, два-три проводника (грубо говоря) дают большее тяговое усилие. К минусам технического решения относят наличие токосъемников, щеточного аппарата. Для снижения износа в некоторых асинхронных двигателях после набора оборотов ротор закорачивается специальным механизмом. Намного продляется жизнь оборудования.

Не видим причин рассматривать подробнее фазный ротор, лучшей иллюстрацией послужит усиленная беличья клетка. Представьте себе: вместо одной стало сорок штук! Количество (от 40 и вниз) регулируется сопротивлением реостата.

Как задать обороты асинхронного двигателя

Любой, в том числе асинхронный трехфазный, электродвигатель неспособен развить обороты близкие частоте поля. Количество полюсов стремятся снизить. Но даже в этом случае редко удается достичь желанных 3000 об/мин (50 Гц х 60 сек). В принципе невозможно. Увеличение количества полюсов статора практикуется для понижения оборотов, как показано выше на примере напольного вентилятора.

Чаще практикуется подключение асинхронного электродвигателя с короткозамкнутым ротором на трехфазный регулятор амплитуды. Методика позволит максимально просто добиться результата. Токи асинхронных электродвигателей велики на старте, «благодаря» потерям сердечника ротора (с ростом оборотов снижаются). Нельзя сказать, что ремонт своими руками статоров относится к категории простых, но намного лучше, нежели перематывать ротор коллектора. Простотой конструкции объясняется любовь промышленности к этому роду устройств.

Что можно сказать об электродвигателе? Такой мотор является таким электромеханическим девайсом, который преобразует электрическую энергию в механическую энергию. В случае работы переменного тока, который является трёхфазным, наиболее часто применяющимся мотором является трехфазный индукционный мотор, ведь данный вид мотора не требует никакого стартового устройства. Можно также сказать, что данный двигатель является самозапускающимся индукционным мотором.

Для того чтобы лучше понять принцип действия трёхфазного индукционного двигателя , необходимо иметь достаточно чёткое представление об основной особенности, которая присуща конструкции данного мотора. Данный электродвигатель имеет две части, которые можно назвать основными. А именно, это статор и ротор. Чтобы хорошо представлять себе работу данного устройства нужно знать достаточно об этих составляющих.

Статор

Статор данного индукционного двигателя сделан из определённого количества слотов, для того чтобы получилась трёхфазная обмотка, которая подключена к источнику переменного тока, являющегося трёхфазным. Трёхфазная обмотка размещена в слотах таким образом, что она производит магнитное поле, которое является вращающимся. Это происходит после третьей фазы. Обмотка должна получать питание в виде переменного тока.

Ротор

Ротор данного индукционного мотора содержит многослойный сердечник, который имеет цилиндрическую форму. Этот сердечник с параллельными слотами, которые могут держать элементы, проводящие электрический ток. В роли таких элементов в данном случае выступают тяжёлые медные или алюминиевые стержни, которые подходят к каждому слоту и они замкнуты конечными кольцами.

Слоты не то что бы абсолютно параллельны оси вала. Они несколько скошены. Это обусловлено тем, что такое расположение уменьшает магнитный гудящий шум и может помочь избежать потери скорости данного мотора

О том, как работает этот двигатель

Создание магнитного поля, которое вращается

Статор мотора содержит смещённые перекрытые обмотки. Электрический угол смещения составляет 120º. Тут основная обмотка или же статор подключены к источнику тока, который является переменным и трёхфазным. Это обстоятельство уже, в свою очередь, служит причиной возникновения такого магнитного поля, которое вращается, причём вращается оно с синхронной скоростью.

Секреты вращения:

Согласно закону Фарадея “электродвижущая сила, которая вызвана в какой-либо электрической схеме, является следствием процента изменения магнитного потока, который идёт через схему”. Так как обмотка ротора в индукционном моторе тоже замкнута через внешнее сопротивление или прямо замкнуто замыкающим кольцом, и отрезает магнитное поле статора (вращающееся), электродвижущая сила появляется на медном стержне ротора, и благодаря этой силе электрический ток течёт через элемент ротора, который специально для этого предназначен.

Здесь относительная скорость между вращающемся магнитным потоком и статичным проводящим элементом ротора является причиной возникновения электрического тока. Отсюда, исходя из закона Ленца, ротор будет вращаться непосредственно в том же направлении, чтобы относительная скорость уменьшилась.

Таким образом, исходя из принципа действия этого электрического двигателя, можно заметить, что скорость, которую имеет ротор, не должна достигать синхронной скорости, которая производится статором. Если скорости были бы равны, то не было бы такой относительной скорости, так что не возникало бы и электродвижущей силы в роторе, не было бы потока электрического тока, и поэтому не было бы крутящего момента.

Следовательно, ротор не может достичь синхронной скорости. Разница между скоростью статора (синхронная скорость) и скоростью ротора называется проскальзыванием. Вращение магнитного поля в индукционном двигателе имеет преимущество, что не нужны никакие электрические связи с ротором.

Пора подвести итоги. Из перечисленных выше особенностей трехфазного индукционного мотора следует, что:

— Данный электродвигатель самозапускающийся и не нуждается в помощи какого-то другого элемента для своего старта.

— Этот мотор имеет меньше противодействия арматуры и искрообразования на щётках в силу того, что отсутствуют коммутаторы и щётки, которые могут вызывать образование искр.

— Электродвигатель данного типа прочен по конструкции, что, конечно же, является большим плюсом.

— Мотор экономичный, что делает его интересным решением во многих областях; соответственно, данный двигатель имеет неплохие перспективы, ведь он будет достаточно популярен и востребован.

— Данный электродвигатель довольно лёгок в обслуживании, что опять же позволяет назвать его перспективным, ведь данное качество интересно любому пользователю подобных устройств, который понимает важность этого нюанса.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад если вы найдете на моем еще что-нибудь полезное.

Часть 3: История Теслы

Кристи Николсон вспоминает свою первую встречу с Илоном Маском на одной из вечеринок в 1989 году.

«Кажется, со второго предложения он заявил, что очень много раздумывает об электрических автомобилях», – сказала Кристи. «А потом он повернулся ко мне и спросил, думаю ли я тоже об электромашинах?»

В 1989 году электрокары были достаточно странным предметом для размышлений. Чтобы понять причины, по которым Маск так был одержим мыслями об электромашинах, давайте сначала попытаемся разобраться, что вообще такое электромобили и как они работают.

В настоящее время достаточно много типичных современных машин, которые считаются более экологически чистыми по сравнению с их бензиновыми аналогами – гибридные машины, заряжаемые гибридные машины, электрические машины (или электромобили, ЭМ). Также сейчас часто обсуждается другой вид машин – автомобили на водородном топливе. Общей чертой перечисленных выше автомобилей является наличие электродвигателя.

Существует два вида электромоторов – индукционный двигатель переменного тока и вентильный двигатель постоянного тока. Ввиду того, что читающие данные строки вряд ли уже смакуют губы в предвкушении насладиться ликбезом длиной на три абзаца о различиях, давайте для простоты считать их примерно одинаковыми.

Электродвигатель – это своего рода сосиска в тесте , где электричество подаётся на внешнюю неподвижную мучную часть (статор), заставляющее сосиску (ротор) крутиться. Ротор соединён с осью, которая и вращает колёса. Как-то вот так:

Как работает индукционный мотор переменного тока

Одним из наиболее типичных электродвигателей является индукционный мотор переменного тока (именно такие установлены в машинах Тесла). Индукционным он называется, т.к. отсутствует физический контакт между ротором и статором – электричество в статоре создаёт вращающееся магнитное поле, которое проникает в ротор посредством электрической индукции и вызывает его вращение.

Статор генерирует вращающееся магнитное поле посылая электричество через трёх-фазовую систему:

Всего имеется три различных провода, каждый с чередующейся (переменной) тягой – просто посмотрите на стрелку одного цвета и вы увидите, что она бегает туда-сюда. Но эти три провода расположены таким образом, что направление тяги статора постепенно меняется по кругу. При добавлении ротора в такое магнитное поле заставляет его вращаться:

Идея в том, что ротор никогда не может оказаться там, где он «хочет» находится – он постоянно вынужден бегать за направлением поля статора. Эта «погоня» и приводит автомобиль в движение. Индукционный мотор переменного тока был изобретён Николя Теслой, именно поэтому Тесла Моторз и названа в его честь (открывший индукцию Фарадей был на втором месте в списке кандидатов в название).

Следующие типы машин используют электродвигатель.

Гибридные машины (гибриды, гибридные электрические автомобили) несут на своём борту одновременно и электродвигатель, и бензиновый двигатель внутреннего сгорания. Гибриды не втыкают в розетку – горящий бензин заряжает их батарею. Также батарея заряжается с помощью электромотора при торможении автомобиля. Как правило, джоули кинетической энергии машины во время движения оказываются потерянными при торможении и уходят в виде тепла. При регенеративном торможении часть этой кинетической энергии посылается обратно в аккумулятор, чтобы использоваться позднее. Электрический компонент гибридной машины замещает часть потребности в сжигании бензина, увеличивая расстояние, которое способна проехать машина при том же расходе топлива. Снижаются выхлопы, уменьшаются расходы на бензин. Гибриды – огромный технологический шаг по сравнению с обыкновенными автомобилями.

Но гибриды всё равно не ахти. Почему? Они только частично улучшают ситуацию с выхлопами, но не решают её – им же всё равно необходим бензин для движения. Мир, где люди на 100% передвигаются с помощью Приусов, всё равно остаётся миром в 100%-ой зависимости от нефти.

Втыкаемые в розетку гибридные машины слегка получше обыкновенных гибридов. Подобные машины (Шеви Вольт, Хонда Аккорд, Форд Фьюжн Энерджи) позволяют подзаряжать батарею автомобиля дома и, как правило, способны проехать около 16-64 км на заряде батареи, прежде чем начнётся потребление бензина. Обычно этого оказывается достаточно для большинства людей с их ежедневными потребностями – иными словами, водители могут обходиться без нужды заправляться бензином длительное время.

Но если мы подобрались так близко с электромоторами и батареями – почему же не пойти до самого конца?

Водородные машины являются полностью электрическими, но они не используют батарею. Вместо этого их нужно заправлять топливом наподобие бензиновой машины – только вместо бензина они потребляют сжатый водород. Водород смешивается с кислородом воздуха для генерирования электроэнергии, которая и питает двигатель автомобиля. Данные машины не выделяют выхлопов, т.к. продуктом сгорания является чистая вода. Здорово ведь.

Маск же не понимает , как некоторые могут приводить доводы за использования водородных автомобилей – в свою очередь большое число автомобильных компаний (Тойота, Хонда, Дженерал Моторз) в настоящее время вливают огромные средства в производство водородных машин. Чтобы разобраться в противоречиях, я прочитал 12 статей за и против данной технологии. В результате я не остался сильно убеждённым, почему водородные автомобили ждёт многообещающее будущее по сравнению с электрокарами.

Из массы недостатков водородных машин по сравнению с электрическими можно ограничиться лишь следующими:

1) Водородные машины для производства их топлива в итоге оказываются зависимы от природного газа (ископаемое горючее), в то время как производство электричества для электромобилей становится со временем только чище.

2) Запас энергии, расстояние пробега и стоимость водородных топливных элементов оказываются очень схожими с показателями батарей для электромашин, а батареи электромобилей со временем будут улучшаться и дешеветь в производстве.

3) Водород является достаточно опасным и непростым в обращении веществом, особенно очевидным это становится в сравнении с электророзетками для подзарядки электромашин.

4) В будущем, когда в норму войдёт подзарядка машины в собственном гараже, заезд на заправку будет казаться чем-то нелепым и архаичным.

А вот мнение Маска из нашей имейл переписки касательно водородных машин: «Если вы используете электричество солнечной панели для зарядки аккумулятора, то можно достичь 90% производительности. Просто и дёшево. Ежели вы попытаетесь с помощью электричества сперва разложить воду, затем отделить водород до немыслимой чистоты, сжать его до невероятного давления (или что хуже – перевести в жидкую форму), перекачать в огромный (даже для жидкого варианта) водородный бак машины и, в конце-концов, соедините топливо с кислородом – то при большом везении, вам удастся добиться 20% производительности. Дорого, сложно, громоздко и супер неэффективно. Водород проигрывает на всех уровнях, включая время заправки бака по сравнению с заменой батареи Теслы на заряженную. Стоимость водородных топливных элементов высока. Подумайте сами – если бы топливные элементы хоть в чём-то превосходили литиевые батареи – их бы как минимум использовали в спутниках, некоторые из которых стоят более $500 миллионов. Но этого не происходит.»

Наконец, мы подобрались к электромобилям (или ЭМ) типа Ниссан Лиф, БМВ ай3, Форд Форкус Электрик и Тесла Модел Эс. Электрокары просты в устройстве – они состоят из большой батареи, которую вы периодически заряжаете, и электромотора питающегося от неё. И никакой жидкости.

В теории ЭМ вполне оправданы. Давайте попробуем забыть все остальные машины на секунду и взглянем на преимущества электромотора по сравнению с бензиновым двигателем внутреннего сгорания:

Электродвигатели в большинстве случаев более удобны, чем их бензиновые аналоги . Машины на бензине вынуждены ездить на заправку. Обладатели ЭМ, как и свой телефон, втыкают свои транспортные средства на ночь в розетку для подзарядки – никаких остановок для покупки бензина. Бензиновый двигатель гораздо более сложен в устройстве по сравнению с электромотором. Бензиновый мотор состоит из более чем 200 деталей, электрический – менее чем из десяти. Бензиновым двигателям необходима коробка передач (трансмиссия), система выхлопа, шестерёнки и куча других покрытых маслом херовин. В ЭМ все эти компоненты отсутствуют, если вы заглянете под капот – вы обнаружите пустое пространство вроде багажника. Бензиновые двигатели нуждаются в моторном масле – отсюда необходимы периодические заезды на сервис для его замены. ЭМ это ни к чему. Дополнительная сложность в устройстве бензиновых машин означает, что они требуют больше обслуживания по сравнению с электромобилями.

Стоимость питания электромотора гораздо ниже стоимости питания бензинового двигателя. Даже без учёта дополнительных расходов на замену масла и ремонт, сам по себе бензин стоит гораздо дороже электричества. Давайте взглянем на цифры.

В среднем электромобиль может проехать 5 км потратив один киловатт-час (кВт⋅ч) электричества. В США стоимость кВт⋅ч составляет 12 центов. Отсюда получается, что проехать один километр на электромобиле стоит около 2,5 цента.

Высчитать стоимость для бензиновой машины немного сложнее, т.к. цены на бензин нестабильны, а расход топлива бензиновых машин сильно варьирует. При лучших раскладах в условиях необычно дешёвого бензина ($0,40 за литр) и низкого расхода топлива (скажем, 15 км/л) стоимость проехать один километр составляет те же 2,5 цента. В худшем случае при ценах на бензин в $1.08 за литр и расходе в 6 км/л проехать один километр уже стоит 18 центов. При характерном годовом пробеге в 19 тысяч км в самом лучшем варианте бензиновые машины показывают такие же результаты, как и электромобили, а в плохом варианте кататься год на бензине стоит на $3000 дороже.

Автомобили с бензиновыми двигателями являются одной из двух наиболее значимых причин в развитии энергетического и климатического кризисов. Выше мы уже обсуждали данный аспект – транспорт, сжигающий нефть, ответственен за треть всех мировых выбросов, ведёт к загрязнению городов, ставит одни страны в зависимость от других. Электромоторы функционируют без выхлопов. Да, они потребляют электроэнергию, произведённую в том числе и грязным способом, но мы обсудим этот вопрос немного позднее.

Очевидно именно поэтому Маск поведал Кристи Киколсон о своих раздумьях об электромашинах. Электромотор определённо проще, чище и является более разумным долговременным решением для использования в автомобилях.

Но при своём первом появлении, произошедшем более ста лет назад, электромоторы обладали рядом существенных недостатков, которые и предотвратили их широкое применение. А ввиду того, что электромашины перестали производиться ещё тогда, недостаточно времени и денег оказалось вложено для решения всё тех же самых недостатков. Как правило, выделяют три основных беспокойства касательно жизнеспособности электроавтомобилей:

1) Дальность. В действительности здесь заключены три следующих проблемы:

А) Хватит ли заряда батареи для поездок на дальние расстояния? Или же ЭМ годятся только для местных поездок?

Б) Куда податься в случае необходимости подзарядить батарею в пути? Не окажусь ли я на нуле посреди поля?

В) Если всё-таки удастся отыскать станцию подзарядки в пути, придётся ли мне ждать пять часов для полного заряда батареи?

Вышеперечисленные вопросы потенциальных покупателей электромашин относятся к т.н. «беспокойствам о дальности».

2) Разгон. Наиболее распространённый электромобиль в нынешние дни – машинка для перемещения по полю для игры в гольф, что не особо возбуждает автовладельцев. Никто не хочет авто, которое управляется как кусок кала, а если говорить о стремительном ускорении, на ум, как правило, приходят мощные бензиновые двигатели, а не электромоторы.

3) Цена. С самого начала электромобили стоили дороже своих бензиновых аналогов, в основном из-за высокой стоимости батареи.

Сто лет назад, в 1910 году, люди указывали на те же самые три основных проблемы электромобилей, что отчасти является причиной, почему бензиновые автомобили со временем стали доминировать на рынке. У бензиновых автомобилей имелась куча собственных проблем, но Форд умело разобрался, как с ними можно справится – он в своё время совершил то, чего никто не смог сделать для электромашин.

Я поинтересовался мнением Маска о Генри Форде. Вот его ответ: «Форд был человеком, который при появлении препятствий на своём пути, умел находить обходы – он просто-напросто решал проблемы. Он был способен сфокусироваться на нуждах потребителя, даже если сам потребитель толком не мог сообразить, что же ему нужно.»

Когда же в 2003 году Маск завершил раздумья об электромашинах и взялся, собственно, их делать, шансы были отнюдь не на его стороне. Продолжали существовать слишком большие препятствия для входа на рынок, не позволяющие автомобильным стартапам преуспеть практически в течение целого века. В условиях неучтённой стоимости углеродных выбросов, открывать компанию по продвижению электрокаров было сродни игры в баскетбол, где все остальные игроки кроме тебя могут безнаказанно совершать фолы. Доминирующие гигантские нефтяные компании делали всё в своих силах, чтобы срезать на корню любую попытку в продвижении электромашин. Более того, электрокары являлись новым типом автомобилей, развитие которых фактически оказалось остановлено с момента, когда первые производители опустили руки век назад. Дорогостоящий и долгий процесс по навёрстыванию упущенного всё ещё предстояло пройти – все из трёх перечисленных недостатков ЭМ всё ещё нужно было каким-то образом преодолеть.

Встаёт главный вопрос – электромашины не смогли преуспеть в прошлом из-за наличия неразрешимых проблем или же просто до сих пор не нашлось человека, который бы оказался своего рода Генри Фордом для электромобилей?

Класс 214, 17 - 15012

ПАТЕНТ HA ИЗОБРЕТЕНИЕ

ОПИСАНИЕ индукционного двигателя.

1928 года (заяв. свид. No 29231).

Одним из недостатков, которым обла- дают обычные индукционные двигатели. является то, что эти двигатели в большинстве случаев для создания магнитного поля требуют от сети намагничивающего тока, вследствие чего эти двигатели, в особенности малой мощности, работают с малым коэфициентом мощности. С целью увеличения коэфициента мощности индукционных двигателей прибегают ко всякого рода комйенсационным устройствам. Однако, в большинстве случаев, компенсационные устройства индукционных двигателей обладают наличием коллектора, который является не особенно желательной частью машины.

В связи с этим обстоятельством является необходимым создание таких двигателей переменного тока, которые бы в своем устройстве не имели коллектора и не требовали постоянного тока для создания магнитного поля, как это имеет место в синхронных двигателях.

Предлагаемое изобретение касается индукционного двигателя с ротором, выполненным из постоянного магнита, и имеет целью создание двигателя. который не требовал бы намагничивающего тока из сети и, следовательно, работал бы с коэфицпентом мощности около единицы.

На чертеже фиг. 1 изображает схему пре слагаемого индукционного двигателя; фиг. 2 †видоизменен его ротора.

Первичная цепь предлагаемого двигателя устраивается так же, как и в обычных двигателях, и все устройство этой части статора ничем не отличается от статора обычных двигателей переменного тока (фиг. 1).

Вторичная цепь двигателя, или ротор 2, выполняется в виде беличьего колеса илп с коротко замкнутой обмоткой, но только, тело ротора выполняется не пз обычной динамной или простой стали, а из магнитной стали, при чем тело ротора предварительно соответствующим образом термически обрабатывается и намагничивается.

Таким образом, ротор превращается в сильный двухполюсный, четырехполюсный или многополюсный постоянный магнит (число полюсов выбирается в зависимости от скорости вращения двигателя и делается равным числу полюсов статора).

Последние успехи в области получения специальных сортов сталей дают возможность создать весьма сильные и устойчивые постоянные магниты; так, например, высококобальтовые стали позволяют изготовлять постоянные магниты, обладающие остаточной магнитной индукцией в

9000+10000 CGS, а задерживающей силой до 250 гауссов. Такой высокосортный материал может быть с успехом использован для постоянных магнитов, геометрическая форма которых оказывает сравнительно малое влияние на уменьшение остаточной магнитной индукции при разомкнутом или полузамкнутом состоянии магнитной цепи. ф ф

Пр едм ет п ате нт а.

Тип. Рилрогр. Упр. Управх. В.-M . Сил РККА. Ленинград здание Гл. Адмиралтейства.

С целью увеличения устойчивости работы двигателя ротор рекомендуется снабжать прорезами, которые делают полюсы. постоянного магнита более выявленными.

Тело ротора может делаться из сплошного куска стали или быть составным из отдельных тонких или толстых плит.

В двигателях большей мощности, с целью экономии в дорогом материале, сердечник ротора предлагается выполнять из обычной стали, а зубцы делать из магнитной стали и вставными так, как это указано на фиг. 2.

В этом случае обмотку располагают в пазах, имеющихся между отдельными магнитами.

Пуск в ход такого двигателя представляет собою не что иное, как пуск в ход возбужденного синхронно-индукционного двигателя, снабженного пусковой обмоткой в виде беличьего колеса. Когда скорость вращения достигает почти до синхронной, двигатель автоматически входит в синхронизм. В дальнейшем двигатель работает, как синхронный двигатель.

1. Индукционный двигатель с ротором, выполненным из постоянного магнита, характеризующийся тем, что постоянный магнит имеет цилиндрическую форму и снабжен короткозамкнутою обмоткою (фиг. 1).

2. Видоизменение охарактеризованного в п. 1 двигателя, отличающееся тем, что постоянные магниты в виде зубцов укреплены в теле ротора, а обмотка расположена в пазах, имеющихся между отдельными магнитами (фиг. 2).